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Abstract. The paper revisits the topic of block-Jacobi algorithms for the symmetric eigenvalue
problem by proposing a few alternative versions. The main advantage of a block Jacobi method
is that it is built entirely from computations with small dense matrices. The proposed mehod is
based on a sequence of subspace rotations whose determination requires to solve small Riccati-like
correction equation. The paper discusses theoretical and algorithmic aspects of the algorithm, and
illustrates its behavior on a few simple examples.

Key words. Symmetric eigenvalue problem, Jacobi algorithm, Riccati equations,

1. Background and introduction. The Jacobi Algorithm for computing all
eigenvalues and vectors of symmetric matrices appeared in 1846 [29] and remained the
preeminant method for diagonalizing symmetric matrices until the discovery of the
QR algorithm in the early 1960’s [17]. In 1960, a remarkable article by Forsythe and
Henrici [16] introduced the cyclic version of the algorithm and established a number of
convergence results, see also [38] for extensions of this work. After its diminished dom-
inance, the Jacobi method regained some ground when it was advocated as a viable
competitor to QR for highly parallel computers in early work on parallel algorithms,
see, e.g., [44, 35, 23] among many other works.

However, the adoption of parallel versions of the Jacobi method failed to take
hold for various reasons. One of these is that researchers have been able to adapt the
QR algorithm to the new environments. For example, a reduction to tridiagonal form
via the standard Householder transformations is not as effective for highly parallel
platforms, so researchers developed alternatives [37, 4]. Another important reason
for the lack of success of parallel Jacobi methods is that these tend to be somewhat
complex to implement and that their parallelism is limited: at most O(n) rotations can
be applied simultaneously. In addition, the computational cost on a serial computer
the Jacobi algorithm is higher than that of the QR algorithm, typically by a factor of
about 3 to 5 times [20, 6].

Block Jacobi methods appeared starting in the mid-1980s [33, 3, 14, 30] as a
means to improve parallel efficiency of the classic method. In spite of their appeal
these methods still currently lag behind theor parallel counterparts of the QR algo-
rithm. Block-Jacobi methods are designed for the new kind of hardware currently
available based on Graphics Processing Units. On certain modern platforms, certain
computations such as small matrix-matrix multiplications can be orders of magnitude
faster when they are performed in reduced precision arithmetic. The most expen-
sive parts of the operations in the block-Jacobi method discussed in this paper, are
matrix-matrix products with matrices of selected sizes. In addition, some parts of the
calculations can be performed in reduced precision without affecting the rest. A full
fledged GPU implementation of the block algorithms discussed here will take some
time to develop but this paper focusses on the algorithmic and theoretical aspects of
the methods.

It may be useful to summarize the reasons why a Jacobi-type method, whether
in standard or block form, can be advantageous, regardless of the computational
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platform being used. The best known advantage of the standard (cyclic) Jacobi
iteration comes from its iterative nature: the matrix is transformed directly into
diagonal form by an iterative scheme and there is no pre-processing to reduce the
matrix into a convenient initial form. Thus, it may require much less work than
the alternatives in any situation where the matrix is already in almost in diagonal
form. A related appealing situation is when one has a sequence of evolving matrices
A(k) where the difference ‖A(k+1) − A(k)‖ is small and where the changes occur in
a small number of locations. The QR algorithm does not seem to be amenable to
performing eigendecompostion updates of this type with similar efficiency. Finally, it
is known that the Jacobi method tends to be more accurate than the Householder-QR
combination for the small eigenvalues in the positive matrix case [20, 10].

A block form adds a number of appealing features to those already known for the
scalar version. The most prominant of these is the ability to work with dense blocks
of arbitrary size. This means that BLAS3-type computations can be optimized and
very fast GPUs can be put to work to carry out these calculations. It is also possible
to change block-size within the algorithm to exploit the convergence characteristics of
the method: at the beginning the inner problems are harder to solve so a small block
size may be more effective than a larger. Many other uses are potentially possible
but not fully explored here. For example, since the method deals explicitly with
rotating subspaces, the block variant presents the possibility of computing or updating
a specific subspace and this can have wide range of applications. An illustrative
example of this type will be discussed in Section 6.3 of the numerical experiments.

Section 2 lays-out the basic pieces of the proposed block Jacobi algorithm and
presents a ‘Riccati correction equation’ that must be solved as part of the algorithm.
Section 3, focuses on various schemes for solving this Riccati correction equation.
Section 4 is a brief discussion on extending the algorithm to generalized eigenproblems
and Section 5 is concerned with theoretical aspects. Finally, Section 6 provides a few
illustrative examples and the paper ends with concluding remarks in Section 7.

2. Jacobi Subspace Rotations. In the following we will make use of the Mat-
lab notation to represent submatrices and arrays. Thus, given a matrix A ∈ RN×N ,
A(i1 : i2, j1 : j2) represents the submatrix of size (i2 − i1 + 1) × (j2 − j1 + 1) and
denoted by G that consists of entries aij where i1 ≤ i ≤ i2 and j1 ≤ j ≤ j2. We are
given 2 sets of row indices i1, i2, and two sets of column indices j1, j2 with

1 ≤ i1 ≤ i2 < j1 ≤ j2 ≤ N . (2.1)

This simply corresponds to the selection of an arbitrary sub-block G in the strict
upper triangular part of A (diagonal entries are avoided by the constraint i2 < j1).
An illustration is shown on the left side of Figure 2.1. We will use the following
dimensions throughout the paper:

n1 = i2 − i1 + 1, n2 = j2 − j1 + 1, n = n1 + n2. (2.2)

Thus, the matrices H and M in the figure are both square and of size n1 and n2
respectively and G is a matrix of dimension n1×n2. For convenience, we may assume
without loss of generality that the row dimension of Y is not less than its column
dimension: n1 ≥ n2.

Note that G can be rectangular, i.e., we may have n2 6= n1. We will denote by Ik
the idenity matrix of size k × k and when there is no ambiguity the subscript k will
be omitted.
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2.1. Problem setting. In analogy with the standard Jacobi method, we see
that there are 4 blocks involved in the transformaton, namely: G = A(i1 : i2, j1 : j2),
H = A(i1 : i2, i1 : i2), M = A(j1 : j2, j1 : j2), and GT = A(j1 : j2, i1 : i2). The goal of
the block-Jacobi algorithm is to zero out the whole block G (and GT by symmetry)
instead of a single entry as is done in the classical Jacobi algorithm.
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Fig. 2.1. Illustration of block involved in elimination. Left side: blocks from original matrix A.
Right: The block rotation matrix U

The transformation we use to achieve this goal is formed as follows: Take an N×N
identity matrix and replace the blocks that are in the same positions as H,G,GT ,M
by In1 ,−Y, Y T , In2 respectively, where Y is a certain n1×n2 matrix to be determined.
Note that Y has the same shape as G. This is illustrated on the right side of the figure.
We call U this N ×N matrix.

We can group the four blocks in the shaded parts of the figure into contiguous
blocks and define:

C =

(
H G
GT M

)
, U =

(
I −Y
Y T I

)
. (2.3)

The matrices C and U are both of size n× n. The matrix U , and therefore also U , is
not unitary but we observe that:

UTU =

(
I + Y Y T 0

0 I + Y TY

)
. (2.4)

Note in passing that the matrices UUT and UTU are the same, i.e., U is normal and
this is because it is equal to the identity plus a skew-symmetric matrix.

Since the matrix U is not unitary, (UTU 6= I) a post-scaling will be required to
ensure that the combined transformation is a similarity transformation. We assume
that the matrix U is multipled to the right by the block-diagonal matrix:(

R−11 0
0 R−12

)
with RT1 R1 = I + Y Y T ; RT2 R2 = I + Y TY. (2.5)

Incorporating this scaling will make U unitary. The matrices R1, R2 can be obtained
from Cholesky factorizations.

The transformation UTAU will result in the following transformation of C:

UTCU =

[
H + Y GT +GY T + YMY T G−HY + YM − Y GTY
GT − Y TH +MY T − Y TGY T M − Y TG−GTY + Y THY

]
(2.6)

The goal is to make the (1,2) block equal to zero.
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To find the block Y that eliminates the (1,2) block of (2.6) we need to solve the
Riccati-type equation:

G−HY + YM − Y GTY = 0. (2.7)

This is a quadratic equation which is a generalized form of the Algebraic Riccati
Equation [20] in that the matrices H and M are not necessarily of the same dimension,
and so Y may be rectangular. This equation arises in a large number of applications,
in addition to the classical context of optimal control [31, 5]. For example, the above
equation, termed the ‘Riccati correction equation’ plays a crucial role when defining
- subspace iteration methods and the correction equation in the Jacobi-Davidson
method [1, 7, 41]. This will be discussed further in Section 3.4.

We can solve this equation in a number of ways. To simplify notation, we will
often call Ã the matrix obtained from A after a rotation is applied.

2.2. Comparison with the standard block-Jacobi approach. The stan-
dard block Jacobi method is known since the 1980s, e.g., [33, 3] and it is described in
the classical Golub and Van Loan textbook [20]. Instead of a matrix U in the form of
(2.3), the standard method only requires that U be a unitary matrix that diagonalizes
the matrix C in (2.3). In other words, U is such that UTU = I and the matrix UTCU
in (2.6) is diagonal. From one perspective a clear advantage of the classical approach
is its simplicity. However, there are a few advantages in the approach proposed in
this paper. The main ones are the following two:

1. There is a small advantage in cost. Specifically, due to the special form of U ,
the new scheme cuts the number of operation by 25%. See section (5.1) for
details.

2. The approach enables the use of more progressive schemes in the sense that if
G has already been made small from the application of previous steps, then
it less inexpensive to find the needed transformation U to annihilate it.

We need to further clarify the second point. Although the matrix C is typically small,
diagonalizing it by, e.g., the standard Householder tridiagonalization followed by the
QR algorithm can cause a bottleneck in a highly parallel environment. A progressive
scheme which takes advantage of a small G can be advantageous, especially in the
case when the blocks sizes are not that small.

3. The general Riccati correction equation. We now consider Equation
(2.7) in its general form. Although this equation has been encountered and studied in
numerous papers in the past, it is important to point out that our context is somewhat
different. Guo and Higham [24] study the Nonsymmetric Algebraic Riccati Equation
in detail and prove a number of convergence results of Newton’s method. Their theory
is geared toward applications of Markov models where the matrix H in our notation
is an M-Matrix. In fact the solution Y to the problem is nonnegative. The equation
under consideration in this paper has some similarities to that of [24] in that Y is
rectangular but our matrix C is symmetric. However, the biggest difference is that
the matrices H and M have no specific properties apart from symmetry. In the usual
setting of Grassmanian subspace iteration [7, 1, 41] and the correction equation in
general, one of the 2 dimensions, say n2 is very small relative to the other dimension,
namely n1.

In the case of the standard Continuous-time Algebraic Riccati Equation (CARE)
the two matrix dimensions n1 and n2 are the same and it is assumed that G = GT is
semi-positive definite while M = −HT in our notation, which is rather special. Also,
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in our case, the user has the freedom to select the block sizes n1, n2 and these will
often be the same, except that ‘boundary cases’ arise when N is not divisible by the
common block size.

In spite of these differences, many of the approaches that we will take are rather
similar. The Riccati equation (2.7) can be converted into an invariant subspace prob-
lem, an approach that was proposed first by Alan Laub who devised an elegant method
based on the Schur decomposition to solve the CARE problem [31].

3.1. Existence and characterization of a solution. We now return to equa-
tion (2.7). We define

S = M −GTY, (3.1)

and rewrite Equation (2.7) as follows:

−HY + Y S +G = 0. (3.2)

Then, putting (3.1) and (3.2) together in matrix form leads to:[
H G
GT M

] [
−Y
I

]
=

[
−Y
I

]
S. (3.3)

It is well-known that the standard Riccati equation can be formulated as an eigenvalue
problem, or rather an invariant subspace problem, see, e.g., [32] and others. We have
a similar situation here, but note that the basis of the invariant subspace is required
to have a specific structure.

The form (3.3) of the correction Riccati equation will help us analyze Equa-
tion (2.7). We denote by Z,E and P the following matrices:

Z =

[
−Y
I

]
, E =

[
O
I

]
, P = ZET , (3.4)

where E and Z are both of size n × n2, I is the identity matrix of size n2 × n2, and
P is therefore of size n× n.

It is easy to verify that P 2 = P , and that ET (x − Px) = 0. Therefore, P is a
projector onto Span(Z) and orthogonally to the range of E, which is the subspace of
Rn spanned by the last n2 columns of the canonical basis.

Equation (3.3) shows that if Y is solution to the Riccati equation then Z is the
basis of an invariant subspace for C. It is easy to see that the reverse is also true: If
there exists a matrix Y and a matrix S such that (3.3) holds then Y is solution of
the general Riccati equation 2.7. In the end we can prove the following lemma that
characterizes the general solution to (2.7).

Lemma 3.1. The following 3 conditions are mathematically equivalent:
(i) The general Riccati equation 2.7 admits a solution Y ;

(ii) There is an n2 dimensional invariant subspace for C that has a basis of the
form of Z in (3.4);

(iii) There is an n2 dimensional invariant subspace for C such that det(ETZ) 6= 0
where Z = [z1, z2, · · · , zn2 ] is any basis of this subspace.

Proof. The first part, namely that (i) and (ii) are equivalent, was proved above.
We will show that (ii) is true iff (iii) is true.

The necessary condition is trivial: If the condition is satisfied then there is an
invariant subspace of the form Z in (3.4) and for this Z, the matrix ETZ = I has a
nonzero determiant.
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For the sufficient condition, first note that the condition det(ETZ) 6= 0 is invariant
under a change of basis. Assume that we have an n2 dimensional invariant subspace
for C spanned by some basis Z. The assumption implies that det[ETZ] 6= 0. The
invariance under C implies that there exists an n2×n2 matrix T such that CZ = ZT .
We write Z in the form:

Z =

[
−Y1
Y2

]
.

From the assumptions, ETZ = Y2 is noningular - therefore we can change bases by
multiplying Z on the right by Y −12 and obtain the new basis Ẑ where

Ẑ =

[
−Y1Y −12

I

]
≡
[
−Y
I

]
, (3.5)

for the invariant subspace. We clearly have: CẐ = ẐS where S = Y2TY
−1
2 . This

completes the proof.
The lemma will help establish the existence of a solution for the Riccati equation

(2.7) under any condition.
Theorem 3.2. Equation (3.3), and therefore also equation (2.7), always has a

solution, i.e., there exist an n2 × n2 matrix S and an n1 × n2 matrix Y , such that
(3.3) holds.

Proof. The proof is constructive. Let the eigen-decompositon of C be

CQ = QΛ (3.6)

and consider the n2×n matrix Q1 that consists of the bottom n2 rows of Q. Since Q
is unitary, these rows are linearly independent and therefore there must exist a subset
of n2 of the columns of Q1 that are linearly independent. Let p = [i1, i2, · · · , in2

] be
this set and let Qp = Q(:, p) i.e., a matrix formed of columns i1, · · · , in2 of Q. We
have CQp = QpΛp where Λp is an n2×n2 diagonal matrix. In addition ETQ2 consists
of the bottom n2 rows of Q2 which are linearly independent so det(ETQ2) 6= 0. We
are now in the situation of case (iii) of the previous lemma which can be invoked to
complete the proof.

Note that the theorem does not state a result on uniqueness because there is
no uniqueness, not even up to basis transformation. Referring to the proof, we will

generally have
(
n
n2

)
possible choices for a subset of columns (the order within each

subset is not relevant) that satisfy the condition required by the proof. We say
‘generally’ because a few of these sets may lead to linear dependent columns. As
a result, by ‘solving’ the equation, we only mean finding one solution among many.
In fact the proof of the theorem tells us how we can build all the solutions once we
have the eigenvalue decomposition. It is possible to ask the question: among all these
solutions which one is the best, in the sense of leading to a numerically more stable
computation. This issue will be revisited in Section 3.4.

The next three subsections will address numerical methods for solving the Riccati
equation. We begin with Newton’s method.

3.2. Solving the Riccati correction equation: The Newton approach. A
classic approach to solving Equation (2.7) is to exploit Newton’s iteration, see, e.g.,
[24, 7, 2, 25]. We define the residual matrix:

R(Y ) ≡ G−HY + YM − Y GTY, (3.7)
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Newton’s method corresponds to setting the linear part around the current approx-
imation to Y to zero at each step. If Yk is the approximate solution at step k, then
we seek a next iterate in the form Y = Yk + ∆. For a new approximation of this type
the residual is:

R(Yk + ∆) = G−H(Yk + ∆) + (Yk + ∆)M − (Yk + ∆)GT (Yk + ∆)

= Rk − (H + YkG
T )∆ + ∆(M −GTYk)−∆GT∆, (3.8)

where

Rk ≡ G−HYk + YkM − YkGTYk. (3.9)

The matrix ∆ is obtained by solving solving the Sylvester equation:

(H + YkG
T )∆−∆(M −GTYk) = Rk. (3.10)

Once ∆ is available, the solution is updated as:

Yk+1 = Yk + ∆. (3.11)

Equations (3.11)–(3.10)–(3.9) could also have been arrived at by simply applying
Newton’s method to equation (2.7), and noting that the differential of the linear
mapping R(Y ) with respect to Y and applied to ∆ is:〈

dR

dY
,∆

〉
= −[(H + Y GT )∆−∆(M −GTY )]. (3.12)

Once Yk+1 is updated as in (3.11), then, according to (3.8) we have

Rk+1 = −∆GT∆. (3.13)

In summary, the main steps for solving (2.7) are as shown in Algorithm 1.

Algorithm 1 Newton method for solving (2.7)

1: Start: Select Y0 and compute R0 from (3.9)
2: while ‖Rk‖ > tol do
3: Find ∆ solution of (3.10)
4: Compute Yk+1 := Yk + ∆
5: Compute Rk+1 := −∆GT∆
6: end while

An equivalent formulation of the algorithm is to define Yk+1 directly from Yk.
It is easy to see from (3.10) and (3.9) that the matrix Yk+1 produced by the above
algorithm satisfies the Sylvester equation:

(H + YkG
T )Yk+1 − Yk+1(M −GTYk) = G+ YkG

TYk. (3.14)

Clearly, relation (3.13) shows that convergence is quadratic at the limit as is
expected. In our experiments we observed that for small block sizes, algorithm 1
often converges with the intitial guess ∆ = 0. Note that unconditional convergence
was established in a different context where the matrix C is an M-matrix [24]. In
spite of its appealing quadratic convergence, Newton’s method has the disadvantage
that it requires the solution of a Sylvester equation at each step. Its convergence can
also be erratic sometimes. The method can be useful in some special situations, see,
for example the experiments in Section 6.3. Next we describe a few alternatives based
on invariant subspaces.
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3.3. Manifold subspace iteration. As we now show, a method proposed by
Chatelin in 1984 [9] is strongly related to the Newton approach seen above. We first
give a brief description of Chatelin’s method in terms of our notation. Given a matrix
C, the problem is to find an invariant subspace as defined by a certain basis Z, i.e.,
to find Z ∈ Cn×m such that

CZ = ZT (3.15)

where T is a certain matrix in Rm×m. We select a matrix E ∈ Rn×m and impose
the condition: ETZ = I. Upon multiplying (3.15) by ET on the left we find that
T = ETCZ. Therefore, we need to find Z such that{

CZ = Z(ETCZ)
ETZ = I

The above pair of equations is a nonlinear system and Chatelin proposed to solve it
with a Newton approach. This method belongs to the class of Grassmann manifold
subspace iteration methods, see e.g., [11, 1, 45, 15, 8] among others. In these methods
the Newton iteration acts on a subspace. A constraint, such as ETZ in our case, is
imposed to extract one particular basis of the subspace among infinitely many others.
Chatelin’s method seems to be among the first in this class and has been mentioned
in a few articles that deal with Grassmanian subspace iteration [11, 1, 45, 15].

We now explore the method in more detail. Let:

F (Z) = CZ − Z(ETCZ). (3.16)

and note that the Frechet differential of F at Z can be defined through the mapping:

F ′(Z).Θ = (I − ZET )CΘ−Θ(ETCZ). (3.17)

Suppose we want to perform one step of Newton’s method. If Z is the current iterate
and if the next iteration by Newton’s method is Z̃ = Z + Θ, then, it is clear from
(3.16) and (3.17) that Θ must be solution of the Sylvester equation

(I − ZET )CΘ−Θ(ETCZ) = −R (3.18)

where R = F (Z) ≡ CZ −Z(ETCY ). We now write Z in the form (3.4) and select E
in the form defined in (3.4). In this situation:

Θ =

(
−∆
0

)
; (I − ZET )CΘ =

(
−H∆− Y GT∆

0

)
.

Now since ETCZ = M −GTY (= S) we see that (3.18) yields a system of the form:

−H∆− Y GT∆ + ∆(M −GTY ) = −R (3.19)

0 = 0.

The second equation is vacous but the first one yields:

(H + Y GT )∆−∆(M −GTY ) = R,

where R is the same as Rk in (3.10) without the indices. Therefore (3.19) and (3.10)
are identical.
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Proposition 3.3. Newton’s method for solving the Riccati equation (2.7), as
described by Algorithm 1, is mathematically equivalent to Chatelin’s Simultaneous
Newton iteration method.

In the numerical experiments, we will utilize a variant of this method which is
simply the standard manifold approach where the basis E of the left subspace in
equation (3.18) is replaced by Z and Z is made orthogonal at each step:

(I − ZZT )CΘ−Θ(ZTCZ) = −R (Solve for Θ) (3.20)

Z := qrf(Z + Θ) (Update+Orthogonalize) (3.21)

where qrf(X) denotes the Q factor in the QR factorization of X.

3.4. The invariant subspace approach. Next we exploit the eigenvalue de-
composition to solve (2.7). The approach described is closer to the traditional block
form of the Jacobi method as descibed in, e.g., [33, 3, 14, 28]. The approach discussed
here is based on the proof of Theorem 3.2 and it assumes that the eigendecomposition
(3.6) of C is available. Following the construction of the proof we can see that all
that is needed is a subset of n2 columns of the matrix Q1 that are linearly indepen-

dent. Given the large number of possible choices (there are generally
(
n
n2

)
possible

selections) we are led to ask the question which one is best. From the point of view
of the block subspace iteration, any solution will do. From a computational point of
view, we need to worry about accuracy. In computing the solution Y from (3.5), a
matrix inversion is needed. Thus, we wish to select the columns of Q1 in such a way
that the matrix Y2 is as well-conditioned as possible.

The problem of selecting the best k columns (or rows) of a given matrix has been
investigated by many authors from different perspectives. Goreinov et. al [21] seem
to be the first to have addressed the question from a theoretical angle, see also [22].
They prove that it is possible to select r columns and r rows to form what they call
the pseudoskeleton submatrix that approximates some original m×n matrix with an
order O(ε

√
r(
√
m +

√
n)). They introduce the notion of volume which is simply the

absolute value of the determinant, to measure the quality of the selected basis. Later a
number of articles explored a related question but with a different goal, geared toward
data-related applications. Specifically, the problem is to sample rows / columns with
certain probabilities, see for example [51, 12, 13, 36]. Here again the same notion of
volume plays a crucial role.

From a practical point of view, it is sufficient for our purpose to simply use a
QR-based method analyzed in [51] and named the greedy algorithm. We will simplify
notation by considering a matrixX of sizem×n wherem < n and such thatXXT = I.
The greedy QR-based approach is shown in Algorithm 2.

Algorithm 2 Greedy column selection

1: for j = 1, · · · , n2 do
2: Find index pj of column of X of largest norm. Let v = xpj and ρj = ‖v‖.
3: Project out v from X, i.e., X := X − PX, with P = vvT /ρ2j
4: end for

Apart from its lack of normalization Algorithm 2 is nothing but the ‘forward-
looking’ implementation of the modified Gram-Schmidt algorithm [20]. If Xp = X(:
, p) is the n2 × n2 selected matrix then it is easy to quantify its volume in terms of
the norms ρj produced in Algorithm 2.
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Proposition 3.4. Let p be the permutation selected by Algorithm 2 and Xp =
X(:, p) the matrix with columns p1, p2, · · · , pn2

of X. Then,

Vol(Xp) =

n2∏
j=1

ρj . (3.22)

Proof. This comes from the QR factorization Xp = QR of Xp. It can be easily
seen that the diagonal entries of R are just the scalars ρj generated by Algorithm 2.
Then, |detXp| = |detQdetR| = ρ1 · · · ρn2 .

Thus, Algorithm 2 can indeed be viewed as just a greedy approach to minimizing
volume. Bounds have been established in [51] to show how far from the optimum
(i.e., largest possible) volume one can get by using this approach. Because X has
orthonormal rows, the situation we have is more favorable than what might be inferred
from these bounds which address worst case scenarios. Indeed, a sort of universal
bound was shown in the article [21] for the exact situation we have, namely for when
XXT = I. We restate the result (Lemma 2.1 of [21]).

Lemma 3.5 ([21]). Let X be any r × n matrix (r < n) such that XXT = I and
let Xp be the matrix of largest volume extracted from X. Then the smallest singular
value σr of Xp satisfies:

σr ≥
1√

1 + r(n− r)
. (3.23)

What is remarkable about this result is that it does not depend on the given matrix
but only on the dimensions.

The final algorithm for computing the solution Y to the Riccati equation from
the eigendecomposition, can now be formulated, see Algorithm 3.

Algorithm 3 Invariant subspace approach for solving (2.7)

1: Compute the eigen-decomposition (3.6) and extract X = Q(n1 + 1 : n, :)
2: Call Algorithm 2 to find permutation p = [p1, p2, · · · , pn2

]
3: Compute Y from (3.5) where Z = [Q(:, p1), Q(:, p1), · · · , Q(:, pn2

)]

4. In brief: Extension to the generalized eigenvalue problem. Similarly
to the common block version of the Jacobi iteration [27, 26], it is also possible to extend
the subspace rotation algorithm described in this paper to generalized eigenvalue
problems of the form Au = λBu where we only make an assumption of symmetry for
both A and B. The main difference with the subspace rotation matrices U presented
in Section 2 is that we now need to zero-out two blocks at the same time one for A
and one for B. Referring to Figure 2.1, we now have two sets of blocks: Ha, Ga,Ma

for A and Hb, Gb,Mb for B and the goal is annihilate both Ga and Gb. One single
matrix Y has n1n2 unknowns which will not allow to satisfy the 2n1n2 constraints
needed to zero out the two blocks. For this we need to generalize U of (2.3) as follows:

U =

(
I −Y1
Y T2 I

)
. (4.1)

This leads to a matching number of unknowns and equations. We now have two
blocks in lieu of the (1,2) block of (2.6), one for A and one for B, both of which need
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to be set to zero:

Ga −HaY1 + Y2Ma − Y2GTa Y1 = 0 (4.2)

Gb −HbY1 + Y2Mb − Y2GTb Y1 = 0. (4.3)

The above equations represent a ‘coupled system’ of Algebraic Riccati equations and is
encountered in some applications [19, 18]. It is of the same family of Riccati equations.
Specifically, we have a mapping from R2n1n2 to R2n1n2 that includes a linear term
and a quadratic one and the goal is to find the zero of the mapping. We implemented
and tested a generalization of the invariant subspace approach described earlier, with
the MaxVol technique. Details are omitted.

5. Analysis. This section addresses a few theoretical issues for the Jacobi sub-
space rotation algorithm. In a first subsection we will consider the computational cost
of the algorithm and then we will analyse its convergence.

5.1. Computational cost. We consider an algorithm that annihilates square
blocks of size ν × ν where ν is a parameter and the dimension N of the matrix is a
multilple of ν. Thus, with this we have n1 = n2 = ν. We can view the resulting matrix
as a block matrix of size (N/ν)× (N/ν) with each entry being a ν× ν submatrix. We
define m ≡ N/ν. We would like to analyze the cost of a “complete sweep” in which
each of the m(m − 1)/2 blocks is annihilated exactly once. The goal is to compare
the cost of the resulting block algorithm with that of a standard Jacobi algorithm. In
counting arithmetic operations, we will only count multiplications. In what follows
we discuss the costs of each of the main components of the algorithm.

Determining the matrix Y . This is needed for each transformation and it costs
O(ν3). We need not be more specific as this cost depends on which of the algorithms
is used. There is an additional cost to determine the Cholesky factor of the matrix
ŨTU – also an ν3 cost. We will group these operations as one and write the cost in
the form βν3.

Applying the subspace rotation. The first set of transformations, is applied to the
right (columns). One of these is of the form

A(:, j1 : j2) := A(:, j1 : j2)−A(:, i1 : i2) ∗ Y (5.1)

which costs ν3× (N/ν) = ν2N multiplies. The other is similar and involves the group
of columns i1 : i2. Then, two similar operations are performed on the left (rows) and
involves rows i1 : i2 and then rows j1 : j2. The total for these 4 operations whould
therefore be 4× (ν2N) multilications. However, we need to keep in mind that work is
performed only on the upper part of the matrix so this must be halved to 2× (ν2N)
multilications.

Post-scaling the rotated blocks. We need to apply 4 scaling operations by the
block-diagonal matrices of size ν × ν. The cost depends on which form of scaling is
applied. If we use Cholesky factors, then the matrices R1, R2 are upper triangular
and so the cost of each scaling operation is ≈ 1

2ν
2N . There are four such operations,

two from the left and two from the right and so the total for scaling is 2ν2N - but
again we only work on the upper half of the matrix so this becomes simply ν2N .

Totals. The total for each transformation comes to βν3+3ν2N and for a complete
sweep of m(m− 1)/2 ≈ 1

2 (N/ν)2 we get the total of

TA(N, ν) ≈ N2

2ν2
[
βν3 + 3ν2N

]
=

3

2
N3 +

β

2
νN2 . (5.2)
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For the standard block-Jacobi method the transformation (5.1) becomes something
like B(:, j1 : j2) := B(:, j1 : j2) ∗ V1 + B(:, i1 : i2) ∗ V2 where V1, V2 are ν × ν and
so the cost of which is four times 2ν2N for each transformation. The total over all
blocks of a sweep becomes 2N3 + β

2 νN
2 (after we taking into account a division by 2

due to symmetry).
This is to compare with (5.2) which indicates that the overall cost of the proposed

scheme involves 25% fewer operations provided νβ remains small relative to N and
the Cholesky form of scaling is used in the transformations.

Accumulation of block rotations. To the above cost we need to add the separate
cost of accumulating the orthogonal transformations if, as is often the case, the eigen-
vectors are wanted. Here each transformation is applied on the right only and it
includes two transformations similar to (5.1) each at the cost of ν2N multiplies each
to which we add cost of 2 scalings at the cost of 1

2ν
2N each. Each transform will cost

3ν2N and the total is

TQ(N, ν) ≈ N2

2ν2
× ν2N =

3

2
N3. (5.3)

The traditional block algorithm requires a transformation on two block columns
which, when taken together, amounts to multiplying a matrix of size N × (2ν) by a
square matrix of size (2ν) × (2ν) at the cost of 4ν2N . For a sweep of m(m − 1)/2
rotations, this leads to a total of ≈ 1

2m
2 × 4ν2N = 2N3 operations. Therefore, this

part of the proposed algorithm also reduces the number of operations by about 25%
relative to that of the classical block Jacobi method.

5.2. Convergence Analysis. A convergence analysis of the Block -Jacobi al-
gorithm can be derived in a straightforward manner by adapting results that have
been established in the classical scalar and block case. A number of results already
exist for the block case, see, e.g., [14, 49, 30, 50] and interested readers are referred
to these.

Here we will only briefly discuss one tool that can be invoked in an effort to relate
the analysis to known techniques, namely the following definition of the matrix-of-
norms:

Ω(A) = {ωij}i,j=1:m with ωij = ‖Aij‖F . (5.4)

This is an m×m matrix and we observe that we have ‖A‖F = ‖Ω(A)‖F . Using this
definition reduces the analysis in effect to a sort of classical Jacobi method applied to
an m×m matrix.

For example let us assume that the classical Jacobi method is applied, where the
block that has the biggest F -norm is annihilated at each time. If DX is the block-
diagonal matrix whose block-diagonal submatrices are the same as those of X and
if Ã is the matrix obtained from A after such a block rotation is applied, then the
analysis of the scalar case [20] can be easily adapted to show the inequality:

‖Ω(Ã−DÃ)‖2F ≤
[
1− 2

m(m− 1)

]
‖Ω(A−DA)‖2F , (5.5)

which establishes global convergence in this situation. Here, we wish only to point
out that the similar notion of vector-of-norms was introduced by François Robert [42]
as a means of studying the convergence of vector sequences that arise from iterative
methods. 1

1This work won the very first PhD thesis prize at the Householder meeting (then called the
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5.3. The problem of changing ‘affiliation’. Forsythe and Henrici [16] proved
that under some mild restrictions, the sequence of matrices obtained from the cyclic
Jacobi iteration does indeed converge to a diagonal matrix. This required showing
that a diagonal entry does not change affiliation during the algorithm in the sense that

when a
(k)
ii is closest to an eigenvalue λ at step k, then a

(k+1)
ii cannot become closest to

another sufficiently distinct eigenvalue µ. This was also discussed in Wilkinson [48,
p. 268]. It is possible to show a similar, though not as complete, result for the block
case.

In what follows eigenvalues of any given block Aii are labeled decreasingly and
we denote by λl(Aii) the l-th eigenvalue of Aii. We will use the notation:

dist(λ,Aii) = min
ν
|λν(Aii)− λ|. (5.6)

Here, we reverse the definition of affiliation by saying that an eigenvalue λ of A is
affiliated with block (i, i) if

dist(λ,Aii) ≤ dist(λ,Ajj), ∀j. (5.7)

In addition, λ is ‘strictly affiliated’ with block (i, i) if there exists a positive scalar δ
(that depends on λ) such that the following holds:

dist(λ,Aii) ≤ dist(λ,Ajj)− δ for j 6= i. (5.8)

Let us assume that at some step, λ is strictly affiliated with block (p, p). If we
apply a rotation (p, q) at this step then eigenvalues in all blocks remain the same
except those in blocks p and q. The question is: Can an eigenvalue’s affiliation ‘jump’
from block p to block q (or vice versa)? We show two lemmas that will help answer
the question.

Lemma 5.1. Assume that we apply a rotation associated with block (p, q) and that
the matrix Y utilized during this rotation satisfies ‖Y ‖2 ≤ ε and also that ‖G‖2 ≤ ε.
Then after the rotation is performed we have

|λl(Ãpp)− λl(App)| ≤ ε2 [2 + ‖App‖+ ‖Aqq‖] (5.9)

|λl(Ãqq)− λl(Aqq)| ≤ ε2 [2 + ‖App‖+ ‖Aqq‖] . (5.10)

Proof. According to (2.6) Ãpp will be as follows:

Ãpp = R−T1 [App + Y ATpq +ApqY
T + Y AqqY

T ]R−11

where RT1 R1 = I+Y Y T . Consider, for any nonzero vector x in Rn1×n1 , the following
Rayleigh quotient where we set z = R−11 x :

(Ãppx, x)

(x, x)
=

(R−T1 [App + Y ATpq +ApqY
T + Y AqqY

T ]R−11 x, x)

(x, x)

=
([App + Y ATpq +ApqY

T + Y AqqY
T ]z, z)

(R1z,R1z)
.

Gatlinburg conference)
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Observe that (R1z,R1z) = (RT1 R1z, z) = ((I + Y Y T )z, z) ≡ (z, z)(1 + η2) where we
set η ≡ ‖Y T z‖/‖z‖, and note that η ≤ ε. Therefore:

(Ãppx, x)

(x, x)
=

([App + Y ATpq +ApqY
T + Y AqqY

T ]z, z)

(z, z)(1 + η2)

=
(Appz, z)

(z, z)
× 1

1 + η2
+

([Y ATpq +ApqY
T + Y AqqY

T ]z, z)

(z, z)(1 + η2)

=
(Appz, z)

(z, z)
− (Appz, z)η

2

(z, z)(1 + η2)
+

([Y ATpq +ApqY
T + Y AqqY

T ]z, z)

(z, z)(1 + η2)
,

where we used the relation 1/(1 + η2) = 1− η2/(1 + η2). This leads to the inequality∣∣∣∣∣ (Ãppx, x)

(x, x)
− (Appz, z)

(z, z)

∣∣∣∣∣ ≤
∣∣∣∣ (Appz, z)η

2

(z, z)(1 + η2

∣∣∣∣+

∣∣∣∣∣ ([Y ATpq +ApqY
T + Y AqqY

T ]z, z)

(z, z)(1 + η2)

∣∣∣∣∣
≤ ‖App‖ × ε2 + 2ε2 + ε2‖Aqq‖. (5.11)

There is a one-to-one association between a given subspace S of dimension l ≤ n1,
and the l dimensional subspace R−11 S. There is also a one-to-one correspondance
from an arbitrary vector x ∈ S to the vector z = R−11 x and the Rayleigh quotients
(Ãppx, x)/(x, x) and (Appz, z)/(z, z) are related by (5.11). We can now invoke the
min-max principle which will show the result. A similar result can be established for
the (2, 2) block.

With this, we can now prove the following result.
Lemma 5.2. Let λ be strictly affiliated with block (p, p) at some step and assume

that a block-rotation (p, q) is applied at this step where it is assumed that the block
Apq satisfies ‖Aij‖ ≤ ε and that we also have ‖Y ‖ ≤ ε. Denote by Ãpp, Ãqq, the
matrices in blocks p and q respectively obtained after the rotation is applied and define
α ≡ 2 + ‖App‖+ ‖Aqq‖. Then

dist(λ, Ãqq) ≥ dist(λ,App) + δ − αε2 (5.12)

dist(λ, Ãpp) ≤ dist(λ,App) + αε2 . (5.13)

Proof. Define the indices l, k such that:

dist(λ, Ãpp) ≡ |λ− λl(Ãpp)|, and dist(λ, Ãqq) ≡ |λ− λk(Ãqq)|.

Inequality (5.12) is based on the second triangle inequality:

|λ− λk(Ãqq)| ≥ |λ− λk(Aqq)| − |λk(Aqq)− λk(Ãqq)|. (5.14)

Our definition (5.8) shows that (recall that λ is strictly associated with (p, p))

|λ− λk(Aqq)| ≥ dist(λ,Aqq) ≥ dist(λ,App) + δ. (5.15)

In addition Lemma 5.1 shows that

|λk(Aqq)− λk(Ãqq)| ≤ αε2. (5.16)

Substituting (5.16) and (5.15) into (5.14) yields inequality (5.12).

14



To show inequality (5.13) we let l0 be the index ν for which |λ − λν(App)| is
minimum. Then we write:

dist(λ, Ãpp) = |λ− λl(Ãpp)| ≤ |λ− λl0(Ãpp)|
≤ |λ− λl0(App)|+ |λl0(App)− λl0(Ãpp)|
≤ dist(λ,App) + αε2.

which shows (5.13). This completes the proof.
A simple consequence of the above lemma is that when ε2 is small enough relative

to δ then λ cannot change its affiliation.
Theorem 5.3. Let the assumptions of Lemma 5.2 be satisfied and assume that

in addition:

δ − 2αε2 > 0.

Then, after the block rotation (p, q) is applied, the eigenvalue λ can only be affilited
with block (p, p) of Ã.

Proof. Inequality (5.13) yields dist(λ,App) ≥ dist(λ, Ãpp) − αε2. Substituting
this into (5.12) we obtain:

dist(λ, Ãqq) ≥ dist(λ, Ãpp) + δ − 2αε2.

When δ − 2αε2 > 0 then

dist(λ, Ãqq) > dist(λ, Ãpp) ≥ min
i
dist(λ, Ãii).

This means that λ cannot be affiliated with block (q, q). Since all blocks Ajj for
j 6= q, and j 6= p have not changed after the rotation, their eigenvalues are the same
as before. Therefore λ is affiliated with either (p, p) or some block (j, j) with j 6= p, q.

Let now j 6= p (and 6= q) and note that Ajj and Ãjj are identical so in what

follows dist(λ, Ãjj) = dist(λ,Ajj). Define the index l0 such that minν |λ−λν(App)| =
|λ− λl0(App)|. Using (5.8) we obtain

dist(λ,Ajj) ≥ dist(λ,App) + δ. (5.17)

Equation (5.13) along with (5.17) yield the following inequality:

dist(λ,Ajj) ≥ dist(λ, Ãpp)+δ−αε2 ≥ dist(λ, Ãpp)+(δ−2αε2) > dist(λ, Ãpp) (5.18)

which establishes the desired result that λ cannot be affiliated with block (j, j) when
j 6= p, q. In the end λ can only be affiliated with block (p, p) of Ã.

The above result may appear unnecessary at first. Indeed, we know that the
off-diagonal blocks will converge to zero so in the end we wind up with a block-
diagonal matrix that is similar to the original A and the eigenvalues of A can easily
be recovered from all the different blocks. However, there are situations where some
guarantee that the eigenvalues do not change affiliation can be useful. In case the
matrix has already been diagonalized and we perturb the original matrix we may be
interested in following say the largest k eigenvalues of the perturbed matrix. If these
belong to a certain block, then we may need to only focus on that block if we know
that affiliation has not changed. Without this, we would have to examine all the
diagonal blocks. An experiment will provide an illustration in Section 6.3.

15



5.4. Quadratic convergence. Proofs of quadratic convergence for the classical
or cyclic Jacobi iteration are rather involved, see, for example the discussion in [48],
and related articles [47, 46, 43, 34]. Rather than trying to prove formal bounds, it
may be more instructive for our purpose to explain the mechanism by which quadratic
convergence is set into motion. Here we will make similar assumptions as those of
the previous section. We will assume that after a number of whole cyclic sweeps, all
blocks are small enough as the process is nearing convergence.

Assume that the sweep proceeds row-wise: we eliminate all those blocks in the
strict upper triangular matrix by row: (1, 2), (1, 3) · · · (1,m) then (2, 3), (2, 4) · · · ,
(2,m), ... When an eliminination is processed, we combine columns (right trans-
formations) or rows (left transformations). The transform to zero-out the block in
position (p, q) is as follows:

Ã(i, p) = A(i, p) +A(i, q) ∗ Y T for i = 1 : m (5.19)

Ã(i, q) = A(i, q)−A(i, p) ∗ Y for i = 1 : m (5.20)

Ã(p, j) = A(p, j) + Y ∗A(q, j) for j = 1 : m (5.21)

Ã(q, j) = A(q, j)− Y T ∗A(p, j) for j = 1 : m (5.22)

We are assumuing that throughout the sweep, the block Y is of order ε and each
block A(i, j) also has norm of order ε. The right and left transforms are followed
by a normalization but this has little effect on the order of the terms. Figure (5.1)
shows what happens when the 1st row in the sweep is processed. After (1,2) is
eliminated and we proceed with eliminating block (1,3) the block (1,2) undergoes a
row transformation of the form (5.21), namely A(1, 2) = A(1, 2) + Y ∗A(3, 2). Thus,
block (1, 2) which was previously zeroed out, has now been filled-up with nonzero
entries. However, because A(1, 2) is initially zero, and Y and A(3, 2) are both of
order ε the block is replaced by terms of order ε2. It can be verified that the same
process is continued : either a zero block or a block of order ε2 is combined with a
product of a Y matrix and a block of A both of which are of order ε. For example in
the next subspace rotation, namely rotation (1,4), the same block A(1, 2) which now
has terms of order ε2 is modified as A(1, 2) = A(1, 2) + Y ∗ A(3, 2) so the terms will
remain of order ε2. It may be possible to formalize this with actual bounds but the
complexity of the resulting bounds are not worth it. It may also be possible to exploit
this knowledge in order to speed-up the convergence, but one must realize that this
analysis is valid when we are near the end of the process at which point convergence
is quite fast.

Initial state

? ε ε ε

? ε ε

? ε

?

↓ ↓
→ ? 0 ε ε

→ ? ε ε

? ε

?

↓ ↓
→ ? ε2 0 ε

? ε ε

→ ? ε

?

↓ ↓
→ ? ε2 ε2 0

? ε ε

? ε

→ ?

Fig. 5.1. Elimination of blocks in first row: Rotations (1,2), (1,3), and (1,4)
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↓ ↓
? ε2 ε2 0

→ ? 0 ε

→ ? ε

?

↓ ↓
? ε2 ε2 ε2

→ ? ε2 0

? ε

→ ?

↓ ↓
? ε2 ε2 ε2

? ε2 ε2

→ ? 0

→ ?

Fig. 5.2. Elimination of blocks in 2nd and 3rd row: rotations (2,3), (2,4) and (3,4)

6. Experiments. The next experiments will illustrate some features of the al-
gorithms described in this paper with a few small examples. All experiments are
conducted in Matlab and we wish to emphasize that a parallel implementation would
take time to develop and it is not within our scope.

6.1. Effect of the block-size. We begin by illustrating the effect of block-size
on convergence. Inequality (5.5) suggests that when m is smaller, i.e., when the
block-size ν is larger, then convergence may be faster. Figure 6.1 seems to confirm
this. The test involves a randomly generated matrix of size N = 256. We use our
default algorithm which is the subspace approach of Section 3.4 with the Max-volume
selection of the subspace. The block sizes used are ν = 4, 16, 64. The 3 plots show
the 2-norm of the matrix without its block-diagonal submatrices after each iteration.

1 2 3 4 5 6 7 8 9
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10
0

Block Size = 4

Block Size = 16

Block Size = 64

Fig. 6.1. Comparison of convergence as the block-size changes

6.2. Comparing the accuracy of a few methods. In the following exper-
iment, we explore the accuracy of a few of the methods discussed earlier from the
point of view of their accuracy. We generate a 512 × 512 random symmetric matrix
from which we extract the 5 principal square matrices of sizes: 32, 64, 128, 256, and
512. Along with these we select the block sizes 4, 8, 8, 16, 16 in the same order. We
then apply 5 different methods based on the block Jacobi approach to each of these
matrices:

1. Newton-Riccati iteration
2. Subspace approach - where the Max. Volume technique is applied
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3. Subspace approach - where no Max. Volume technique is applied, i.e., the
subspace selected corresponds to the one associated with the largest eigen-
values.

4. Manifold subspace iteration approach described at the end of Section 3.3
5. Classical block Jacobi method.

Note that the Newton-Riccati iteraion (1.) and the manifold subspace iteration
(4.) both require solving Sylvester equations. In our implementation this is accom-
plished by calls to the Matlab function sylvester(). Assuming the eigenvalues are
sorted in the same fashion, for each method we plot the average error:

1

N

N∑
i=1

|λi(Â)− λi(A)|
λi(A)

,

where Â is the block-diagonal matrix obtained from the method (the small entries
outside the block-diagonal form are explicitly set to zero to reflect what is normally
done in practice).
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Fig. 6.2. Comparing accuracies produced by five methods on matrices of increasing size

The results are shown in Figure 6.2.

6.3. An application: Perturbed matrix case. The goal of the next experi-
ment is to illustrate a technique that can be effective when applied with the proposed
approach but that has no equivalent with the standard block approach. Let us assume
that A has already been fully diagonalized by any method, i.e., we end up with

A = QΛQT , (6.1)

where Λ is diagonal and Q is orthogonal. A common practical situation that arises
is when one is interested in eigenvalues of a matrix obtained from A by slightly
perturbing it in some locations, i.e., by adding a sparse symmetric matrix E to A:

Ã = A+ E = Q(Λ + F )QT with F = QTEQ. (6.2)

In what follows we assume that E is of small magnitude, e.g. ‖E‖/‖A‖ ≈ 10−2, but
this can be alleviated. The goal then is to compute, for example, the largest ν eigen-
values of Ã, inexpensively. In fact a more interesting scenario is when A undergoes
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many consecutive such perturbations and the problem is to track the corresponding
largest ν eigenvalues and vectors. While there are possible solutions that involve shift-
and-invert iterations to refine the eigenvectors, the procedure based on a simplified
version of the block Jacobi algorithm described in this paper provides a simpler and
possibly more reliable technique.

Since our goal is to compute the dominant eigenvalues of

B = Λ + F (6.3)

the first step is to compute B. If we are interested in the largest eigenvalues when we
may have to apply a permutation in such a way that the largest entries of Λ are in
the leading ν × ν block. It is assumed that this permutation is applied to B and Q
accordingly. With this we cast B in the form

B =

[
H G
GT M

]
, (6.4)

where now B is of dimension N × N . Our goal is simply to annihilate the block G.
In the notation of Section2, we have: i1 = 1, i2 = ν, j1 = ν + 1, j2 = N .

If we wish to apply Algorithm 1 then we note that the Sylvester equation (3.10)
can be solved very effectively because the matrices H + YkG

T and M − GTYk will
remain nearly diagonal. Indeed, H and M are close to diagonal matrices and the
sequence of approximate solutions as well as G are going to be small. As a result we
can solve the equations approximately by ignoring the off-diagonal entries:

Set: H
(D)
k = Diag[H + YkG

T ]

Set: M
(D)
k = Diag[M −GTYk]

Solve for ∆ : H
(D)
k ∆−∆M

(D)
k = Rk. (6.5)

What this means is that when viewing the Sylvester equation as a large linear system
of size as ν.(N − ν) then the whole system is nearly diagonal and we solve it approxi-
mately by ignoring its off-diagonal entries. We have the option of employing iterative
refinement steps, until convergence to solve the linear system to some accuracy but we
will proceed differently by employing Algorithm 1 in which we solve the diagonalized
equation (6.5) instead of (3.10) in Line 3. However, since the Sylvester equation is
solved only approximately, the update of the residual in Line 5 is no longer valid and
we must use the explicit formula (3.9) instead which can be conveniently re-written
as

Rk = (G−HYk) + Yk(M − YkGT ). (6.6)

Algorithm 4 Diagonalized Newton-Riccati method for solving (2.7)

1: Start: Select Y0 and compute R0 from (3.9)
2: while ‖Rk‖ > tol do
3: Find ∆ solution of (6.5)
4: Compute Yk+1 := Yk + ∆
5: Compute Rk+1 using (6.6)
6: end while
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Note that, per Section 5.1, the cost of one iteration is ≈ 4ν2N and a very small
number of iteration (usuall 2 or 3) are needed. This is illustrated in the next experi-
ment.

The following experiment deals with a model covariance matrix. Given sample
points in R2 or R3 a model covariance matrix C is defined from a certain covariance
function k(r) as Cij = k(rij) where Rij is the distance between points i and j.

A popular choice for k(r) is the Matérn covariance function given by 2

k(r) =
21−µ

Γ(µ)

(√
2µr

l

)µ
Kµ

(√
2µr

l

)
where Kµ is the modified Bessel function of the second kind. This function has two
parameters: µ and l. In our example we take µ = 0.2, l = 0.1. The sample points are
those of a regular 32× 32 grid on the square [0, 1]2 of R2, leading to a dense matrix
of size N = 1024.

0 1 2 3 4 5

# Diag. Newton-Riccati iterations

10 -15

10 -10

10 -5

10 0

Mean eigenvalue err.

1-norm of block G

Fig. 6.3. The Diagonaized Riccati-Newton block Jacobi method

In the experiment, we diagonalize A and perturb it by random sparse generated
by the matlab commands: E = sprandn(N,N,5/N); and E = 1.e-02*(E+E’);

The goal is to reduce the norm of the block G in (6.4), ideally to zero. In the
experiments we take ν = 32, i.e., we are interested in the largest 32 eigenvalues. We
then apply Algorithm 4 to the matrix (6.3) where the while loop is replaced by a fixed
number of iterations: We perform 0, 1, 2, · · · , 5 iterations of the loop that comprises
Lines 3–5. Figure 6.3 show two curves. The first one plots the average error obtained
on the ν = 32 largest eigenvalues:

1

ν

ν∑
i=1

|λi(Ĥ)− λi(B)|
λi(B)

,

where a hat symbol indicates a block after the transformation resulting from Algo-
rithm 4 is applied. Along with this we also plot the 1-morm of the matrix Ĝ after

2In the commun notation used in the litterature, the parameter µ is replaced by ν.
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the Jacobi rotation is performed (or just G when the number of iterations is zero).
As can be seen within two iterations, the improvement to the eigenvalues is rather
substantial. After 3 iterations, the full accuracy is achieved for the eigenvalues. At
the same time the norm of the (1, 2) block Ĝ decreases gradually, diminishing by 2 to
3 orders of magnitude with each additional iteration.

We need to add that we may end-up in a situation where eigenvalues switch from
the H block to the M block. We called this ‘change of affiliation’ in Section 5.3 and
theorem 5.3 provides some theoretical guarantees under which this cannot happen.

We mentioned earlier that an alternative to the approach discussed in this section
would be to apply a shift-and-invert technique to refine each eigenvector in turn. The
key point that is exploited in both techniques is that the equations resulting from
applying the procedure are rather easy to solve due to almost diagonal structure of the
coefficient matrices involved. However, this particular alternative is not without issues
if only because computing or refining individual eigenvectors can be difficult in the
presence of clustered eigenvalues. Recently, Ogita and K. Aishima [39, 40] proposed
another technique along the same lines as ours. Their approach takes a perturbative
viewpoint to develop algorithms that also take advantage of the inexpensive nature
of the sub-problems that need to be solved in the process. Although the main ideas
behind the two methods are rather different, the resulting equations that need to be
solved are similar.

7. Conclusion. The block-Jacobi method has a number of appealing features
and has the potential to be a competitor to the usual Householder-QR combination in
suitable, e.g., GPU-based, high-performance computer environments. The proposed
alternative scheme discussed in this paper has some additional appealing features
some of which stem from the more progressive nature of the method when compared
with the classical one. The example in Section 6.3 in particular shows what can be
done in a special situation where the matrix is slightly perturbed. There are many
issues that have not yet been explored. In particular a full-fledged parallel GPU-
based implementation is still lacking. The perturbation-based scheme of Section 6.3
points to a class of methods for tracking subspaces of slowly varying matrices, where
the proposed scheme can play a role. More generally, the overall flexibility of the
approach may prove useful in other similar special situations.
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[51] A. Çivril and M. Magdon-Ismail, On selecting a maximum volume sub-matrix of a matrix
and related problems, Theoretical Computer Science, 410 (2009), pp. 4801–4811.

23


