A RATIONAL APPROXIMATION METHOD FOR THE NONLINEAR
EIGENVALUE PROBLEM

YOUSEF SAAD *, MOHAMED EL-GUIDE f, AND AGNIESZKA MIEDLAR f

Abstract. This paper presents a method for computing eigenvalues and eigenvectors for some
types of nonlinear eigenvalue problems. The main idea is to approximate the functions involved in
the eigenvalue problem by rational functions and then to linearize the resulting problem. A few
different schemes are proposed to solve this linear eigenvalue problem. The expanded form of the
linear problem is not solved directly but it is exploited instead to extract all eigenvalues in a certain
region of the complex plane. A few theoretical results are established to explain why the approach
works and a few numerical experiments are described to validate it.
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1. Background and introduction. We consider the nonlinear eigenvalue prob-
lem (NLEVP)

T(Mu=0, (1.1)

where T'(z) € C"*™ is a holomorphic matrix-valued function on an open set & C C
that is nonlinear in the parameter z. There are many differences between the linear
case where T'(z) = A — zB and the general nonlinear case. For example, the number
of eigenvalues of T is no longer equal to n but can be arbitrary and eigenvectors
associated with distinct eigenvalues are not necessarily linearly independent.

Problems of this type arise in many applications, e.g., in fluid-structure inter-
action problems [51], acoustic problems with absorbing boundary conditions [9] or
in electronic structure calculation for quantum dots [5]. Sometimes the underlying
nonlinear eigenvalue problems may be dependent not only on the spectral parameter
but also on some additional physical parameters and need to be solved for a large
parameter range, e.g., describing vibration behavior of viscoelastic materials leads to
NLEVPs with stiffness properties which are frequency-dependent [9], whereas band
structure calculations for photonic crystals result in problems that depend on the wave
vector [20]. The following provides a brief introduction to the numerical treatment
of NLEVPs. More comprehensive surveys on the state of the art in NLEVPs can be
found in [48, 27, 54, 26, 16].

Newton-type methods. A classical algorithm for solving general nonlinear eigen-
value problems is to exploit a Newton method to find the zeros of the characteristic
equation det(T(\)) = 0, see e.g., the Newton-trace iteration [23, 24], Newton-QR
method [22] or implicit determinant method [44]. Alternatively, the Newton method
can be applied to the vector equation

F(z,\) = [ Cg(gf)fl } =0, (1.2)

where ¢ € C" is a suitably chosen normalization vector. The Newton iteration step for
(1.2) results in the nonlinear inverse iteration method [49, 34]. The inverse iteration
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method can be extended using (generalized) Rayleigh functional to the Rayleigh func-
tional iteration method [33] in the case of Hermitian T'(+), or the two-sided Rayleigh
functional iteration [40] for the general T'(-). All the above mentioned variants of
inverse iteration require factoring the matrix T'(A;) at each step step k. To overcome
this difficulty, Neumaier [31] proposed the residual inverse iteration.

For simple eigenpairs, single vector Newton-like methods, i.e., inverse iteration,
Rayleigh functional iteration, residual inverse iteration or single-vector Jacobi-David-
son [31, 18, 12] as well as their inexact counterparts [45, 46] exhibit local quadratic
or cubic (in the presence of symmetry of T'(-)) convergence. Another Newton-type
method based on the first order approximation of problem (1.1) is the method of suc-
cessive linear problems (linear approximations) [34]. If one can provide a variational
characterization of eigenvalues, the nonlinear eigenvalue problem can also be solved by
the so-called safe-guarded iteration method [55, 53]. In principle, all presented meth-
ods can be used to compute several eigenpairs if combined with deflation techniques,
e.g., using nonequivalence transformation to map the already computed eigenvalues
to infinity [16] or invariant pairs [10]. The block analog of Newton method for com-
puting an invariant pair of T'(-) is presented in [21]. The complementary sensitivity
of invariant pairs is discussed in [47].

Methods based on contour integration. In a series of papers Asakura et al. intro-
duced nonlinear variants of the Sakurai-Sugiura (SS) method [39] with block Hankel
matrices (SS-H method) for the polynomial eigenvalue problems [1] and for eigenvalue
problems with analytic matrix-valued functions T' () [2]. Although cost- efficient and
scalable, the method yields solutions with relatively low accuracy. Almost at the
same time, Beyn [8] introduced a contour integration technique that allows to reduce
a NLEVP with m < n eigenvalues inside contour I' to solving a linear eigenvalue
problem of dimension m. The main idea of Beyn’s integral method is to probe a
Jordan decomposition of the m x m matrix following the Keldysh’s theorem [29, The-
orem 1.6.5]. The method is conceptually simple but probing a Jordan decomposition
is known to be extremely sensitive to perturbations. Moreover, since the value of the
parameter m (the number of linearly independent eigenvectors) is not known in ad-
vance, the practical realization of Beyn’s algorithm requires various adaptations. For
example, refining the accuracy of the contour integration for a single multiplication in-
volves performing a new matrix factorization for each newly added quadrature point,
making its overall computational cost relatively high. Also the numerical quadrature
errors in the contour integral can significantly impact the accuracy of the results.

Recently, Yokota and Sakurai [56] addressed the problem of low accuracy in the
nonlinear SS-H method by using the Rayleigh-Ritz procedure to extract the approxi-
mate eigenpairs from the underlying subspaces. The resulting projection-type method
does not require any fixed point iterations and gives better accuracy than the meth-
ods of Asakura et al. [1] and Beyn [8]. In comparison to Beyn’s integral approach,
the SS-type methods refine their solutions by increasing the dimension of their search
subspaces by calculating additional moments of (1.3) using the same quadrature rule
each time; the dimension of the search subspace is increased iteratively until the de-
sired solution is sufficiently accurate. All contour integral methods mentioned above
exploit the moments of the Cauchy integral of the residual function T'(\), i.e.,

1 kp—1
— T dz, k> 1.
57 § T k> (13)

and can be easily obtained as an algorithmic realization of the general framework
presented in [16, Theorem 5.2]. Beyn’s method uses the zeroth (k = 0) and first (k =
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1) moments, whereas the SS-type methods use a number of moments & as large as is
necessary to reach convergence. Eigenvalue techniques based on higher-order moments
are necessary when m > n and the generalized eigenvectors are not necessarily linearly
independent. A new efficient and highly-parallelizable contour integral method based
on an alternate integrand function has been recently introduced in [14]. The nonlinear
FEAST algorithm is a generalization of Neumaier’s [31] residual inverse iteration using
multiple shifts and it allows to compute eigenpairs corresponding to the eigenvalues
that lie in an arbitrary user-specified region in the complex plane.

Other methods. As for the linear eigenvalue problems involving large and sparse
matrices, iterative projection methods have been found useful for solving their non-
linear counterparts. The nonlinear Arnoldi method [52] does not generate a Krylov
subspace as does its linear predecessor, but it still allows to transform the large-
scale problem to the one of much smaller dimension. Other Arnoldi-type methods
have been proposed, e.g., a second-order Arnoldi method [3] or two-level orthogonal
Arnoldi method [25]. Jacobi-Davidson methods provide an alternative to Arnoldi-type
methods and have been extensively studied in various contexts [42, 7, 41]. Another
class of linearization-based approaches consists of methods like Chebyshev interpola-
tion method [11], infinite Arnoldi and bi-Lanczos methods [19, 13] and rational Krylov
methods [36, 37, 32, 15, 4, 50].

When dealing with large-scale nonlinear eigenvalue problems many of the ap-
proaches just mentioned involve two main steps: (1) projecting the large-scale nonlin-
ear eigenvalue problem onto a subspace of small dimension, (2) solving the resulting
small, still nonlinear, eigenvalue problem. We will refer to a technique of this type as
a nonlinear projection method.

The goal of this paper is to introduce a new class of methods for solving non-
linear eigenvalue problems. We begin by restricting slightly the class of problems
we consider. Specifically, we follow Kressner [21] and limit ourselves to problems in
which:

with holomorphic functions fo,...,f, : € — C and constant coefficient matrices
A, ..., Ap. In what follows we will call I' the boundary of Q. Since T' € H(2,C), it
can always be written in the form (1.4) with at most p = n? terms. Note also that
this representation is not unique. Furthermore, it is very common in practice to have
fo(z) =1 and f1(2) = 2, so instead of the above we will assume the form:

As it turns out many of the nonlinear eigenvalue problems encountered in applications
are set in this form. We are interested in all eigenvalues that are located in a region
of the complex plane enclosed by curve I'.

The techniques introduced in this paper are all based on first replacing the original
problem by one in which the nonlinear functions f;(z) are approximated by rational
functions. Once this transformation is performed, it is possible to solve the resulting
problem directly by linearization and this can be adequate for small problems. For
larger problems, we also propose a nonlinear projection-type method of the type
discussed above.

The next section will introduce the idea of rational approximation for solving
problems of type (1.5) along with several algorithms. Section 3 presents some theo-
retical results. Numerical experiments are discussed in Section 4 and a few concluding
remarks are stated in Section 5.



2. Rational approximation methods for NLEVPs. The main assumption
we make is that each of the holomorphic functions f; : Q& — C in representation (1.5)
is well approximated by a rational function of the form:

m

filz) =3 2 (2.1)

z—0;
i=1 B

Note that the set of poles g;’s is the same for all of the functions. This setting comes
from a Cauchy integral representation of each function inside a region limited by a
contour I*:

L[ f®)
- Q. 2.2
vim Jozot ¥ F€ (22)

fi(z) =

Using numerical quadrature (2.2) is then approximated into (2.1), where the o;’s are
quadrature points located on the contour I'. Substituting (2.1) into (1.5) yields the
following approximation T of T

~ P Qij - Z?:O aijAj
T(z) = —Bo-i-ZAo-l-ZZ —— 4= _B0+ZAO+Z T g
jm1im1 i i=1 T
m Bi
= _BO =+ ZA() + Z ) (23)
im1 zZ— 0
where we have set
P
Bi=YayA;,  i=1...,m. (2.4)
=0

Given the approximation T(z) of T'(z) shown in (2.3), the problem we need to solve
can be written as follows:

(—B0+on+i Bi )uzO. (2.5)
i=1

zZ— 0

We will often refer to this problem as a surrogate for problem (1.5). It will be seen
that if each of the functions f; is well approximated then this surrogate problem will
provide good approximations to eigenvalues of (1.5) located inside the contour but
that are not close to the poles.

For a given vector u, let us define

;= i=1,...,m. 2.6
UZ O_Z _ z7 1 ) 7m ( )
Then we can write
T(z)u = (—BQ—FZAO—I—i Bs )u 2.7)
o ¢ i
= (_BO + ZAQ)U - Z Bivi; (28)
i=1



which can be expressed in block form as follows:

(z—o01)] I vy
(Z — 02)[ I V2
: : w=0, w=/|:|. (29)
(z—om)l I U
7B1 7.82 . 7Bm ZAO — BO u

Since (2.9) is of the form (2M — A)w = 0, solutions of the surrogate eigenvalue
problem T'(A)u = 0 can be obtained by solving the linear eigenvalue problem

Aw = AMuw, (2.10)
with
1 o1l .y
1 ool —I
M= ) A= Sl (2.11)
: omd —1
A, B, By ... B, Bo

Note that the diagonal block with the o;’s is of dimension (mn) x (mn) and the
matrices M, and A are each of dimension (mn+n) x (mn+n). The above formalism
provides a basis for developing algorithms to extract approximate eigenvalues of the
original problem (1.5) but note that we will not store the matrices A and M explicitly.

2.1. Shift-and-invert on full system. We will now consider a subspace itera-
tion or an Arnoldi-type procedure for solving problem (2.10 — 2.11). Partial solutions
of the problem can be extracted by several available algorithms. Since we are inter-
ested in interior eigenvalues, it is imperative to exploit a shift-and-invert strategy,
which consists of replacing the solution of problem (2.10) by

1

w, H:i=(A—oM)"'M, (2.12)
A—o

Hw =

where o is a certain shift.

In order to extract the eigenvalues closest to the specified shift o, we will use the
Arnoldi or subspace iteration method to compute the dominant eigenvalues of (2.12).
These two projection procedures will require solving linear systems with a shifted
matrix (A — o M) at each step. To solve such systems, we can exploit a standard
block LU factorization that takes advantage of the specific patterns of A and M. As
a consequence of (2.11), all these systems are of the form

[B% f;ﬂ B] B [b] ’ (2.13)

where D is diagonal. Consider the block LU factorization of matrix .A:

where S = By — BT D7!F is the Schur complement of the block By. Solving (2.13)
requires first solving the system Sy = b — BT D~ !a and then substituting y in the
first part of (2.13) to obtain x = D~!(a — Fy). This results in a practical algorithm
sketched as Algorithm 1 below. As explained earlier, the linear system solves involved
in line 2 of Algorithm 1 are processed without forming the matrices A, M explicitly.
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Algorithm 1: Shift-and-Invert Arnoldi on full system (2.10)

Input : A matrix-valued function T'(A\) € C"*™, shift o, number of
eigenvalues k, number of quadrature nodes m for the rational
approximations (2.1)

Output: Aq,..., g, Ug

1 Compute B;,i = 1,...,m from (2.4);
2 Compute the k largest eigenvalues closest to o using Implicitly Restarted

Arnoldi method applied to matrix H in (2.12);
3 return \q,..., \x and eigenvector matriz Uy

2.2. Power iteration and full Subspace Iteration. We now examine care-
fully the iterates of the inverse power method (inverse iteration) or shift-and-invert
method to see how they can be integrated into a subspace iteration approach. For
simplicity, we will assume for now that A9 = I. We write the iterates obtained from
an inverse iteration procedure as w7 = [’U(j )yl )} where we used MATLAB notation
[z ; y] to denote a vector that consists of x stacked above y. We begin by discussing
the inverse power method (inverse iteration).

Inverse power method. Each step of the inverse power method (inverse iteration)
requires solving the linear system

. , (G+1) (4)
, v v
Awt) = @) o A L(J_+1)} = [u(j)] ; (2.15)

and scaling the new vector in a certain way, see e.g., [38, Sec. 4.1]. In the case of
shift-and-invert method the matrix A is replaced by A — oI where o is the shift, but
the rest of the approach stays identical - so we assume that o = 0. The system (2.15)
is of the same form as that in (2.13) and it can be solved the same way, resulting in
the following steps (assuming o = 0):

uI* = S_l(u(j) - BTD_lv(j))7 (2.16)
Ut = D7) — py 1Y), (2.17)
Algorithm 2 shows an implementation of a single step of this scheme for a general

o # 0 in which the operations (D — o1 )*11}(7‘) are translated by scalings on each of
the subvectors.

Algorithm 2: Single step of inverse iteration method

) (4)
Input : D,F,B” and By as defined in (2.13), w¥) = [U ]

u@
v<j+1>}

Output: wU+D) = L‘(jﬂ)

1 Compute b = ul) — BT(D — oI)" 1wl = u() — 37" (o; — 0)_1Biv§j);

1=

N

Solve S(o)ul*) = b, with Schur complement matrix S(o);
s Set /T = [0 — @]/ (0; — o) for i =1,...,m;
4 return Ut G+




The second part of line 1 of the algorithm executes the operation BT (D —oI)™1,
exploiting the block structure. Note that the superscripts j correspond to the iteration
number while the subscripts i correspond to the blocks in the vector v). Similarly,
line 3 unfolds the operation represented by (2.17) into blocks.

Arnoldi-like schemes and acceleration. In theory, the above single vector proce-
dure can be applied to generate a certain number of vectors and these can be used
to perform a projection step. This would yield a method mathematically equivalent
to the Arnoldi procedure applied to the matrix A~!'. The primary issue with this
approach is that it would not be numerically stable. The second issue is that we need
to store potentially many vectors, each of length mn because the Arnoldi procedure
requires saving all previous Arnoldi vectors in a given iteration. If m is large, this will
lead to a big demand of memory. Another solution is to use Chebyshev polynomi-
als [38, Sec. 7.4] instead of monomials as in the power method. The vectors generated
in this way tend to keep their linear independence longer but we will not consider this
approach here.

Subspace iteration. We now consider a standard subspace iteration scheme with
AL, Suppose we have some initial basis W(®) with v columns, and apply ¢ steps of
Algorithm 2 to each of its column-vectors. Initially we generate the columns of W(©)
randomly. At the end of the ¢ steps of the inverse power iteration process we obtain
the system W@ = A=9W (), This is then orthonormalized to perform a Rayleigh-
Ritz procedure applied to the matrix A. The algorithm is restarted with W(©) reset
to the most recent Ritz vectors. This results in Algorithm 3 shown below.

Algorithm 3: Full Subspace Iteration

Input : W ¢ Cm+n)x¥. ¢ number of eigenvalues k (with k < v/)
Output: Ay,..., A\, Ug

1 while Convergence not yet reached do

2 for j=0tog—1do
L /* Apply Algorithm 2 to each column of W, x/
3 WU+ = A-1w @) .
a W@ .= ngs(W@) ; /* Orthonormalize W@ x/
/* Apply Rayleigh-Ritz procedure with W@ : */
5 Compute: A, = (W@)H AW (@),
6 Diagonalize: [X,A] = eig(A,) ; /* MATLAB notation */
7 | Set: WO =w@Xx;
8 | Test convergence;
9 return \q,..., \; and eigenvector matrix Uy

Step 3 of the algorithm calls Algorithm 2 which is applied to each column of W),
It can also be restated in block form by using a similar notation as above in which
upper-case letters are substituted for lower-case ones:

U+ = Sfl(U(j) — BTDflv(j)),

VU+D = p-i(yG) - pGHy), for j=0,...,¢ -1

It is common in the subspace iteration algorithm to select a number of columns v
that is significantly larger than k& to ensure rapid convergence. For example, it is often
recommended to take v = 2k. In step 9 of the algorithm only those k eigenvalues
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obtained from the A in step 6 that are closest to the shift o are returned along with
the corresponding eigenvectors which are extracted from the bottom part (‘U’ part)
of the latest matrix W calculated in step 7.

It is important to reiterate that none of the steps of Algorithm 3 requires forming
matrix A explicitly. Steps 3 and 5 take full advantage of the underlying block structure
of A. However, a disadvantage of Algorithm 3 is that it requires saving a set of basis
vectors W of v vectors each of length mn + n. All vector operations are performed in
a space of dimension mn + n and when m is large this can be expensive. A remedy
is the reduced approach discussed next which works in a space of dimension n.

2.3. Projection method on the reduced system. This section describes a
projection method that works in C", i.e., it only requires vectors of length n, the size
of the original problem (1.1). Let us consider the surrogate problem (2.5). For now, we
assume that we are able to find a subspace U, which contains good approximations
to eigenvectors of problem (1.1), where T'(z) is of the form (1.5). For the sake of
simplicity of the presentation, we will focus on orthogonal projection methods here,
noting that generalizations to non-orthogonal methods are straightforward.

Let U = [uy,ug, ..., u,] be an orthonormal basis of /. An approximate eigenvec-
tor u can be expressed in this basis as u = Uy, with y € C”. Then, a Rayleigh-Ritz
procedure applied to (1.1) yields a projected problem:

B;

zZ— 0

UH<—BO+zAO+§: )Uy:O. (2.18)
=1

This leads to a nonlinear eigenvalue problem in C", namely:

~ ~ mo B
“By+2A i ) -0, 2.19
( ot zA0 + ; o Yy (2.19)
in which go = UH AU, and éi =UHB,U, for i =0,1,...,m. When v is small this
can be handled by solving problem (2.10 — 2.11) directly or by the methods described
in the previous sections, even if m is fairly large.

Algorithm 4: Reduced Subspace Iteration (no restarts)

Input : Subspace dimension v; ¢; Number of eigenvalues k (with k < v)
Output: A,..., g, Ur

1 for j=1:vdo

2 Select w = [v; u] ; /* Initially: wuse random vectors */
3 Run ¢ steps of Algorithm 2 starting with w ;

4 If w = [v; u] is the last iterate, then set U(:,j) = u;

5 Use U to compute éo, Ay and é,;, i=1,...,m from (2.19);

6 Solve the reduced eigenvalue problem (2.10) associated with (2.19);

7 return \q,..., \;x and eigenvector matriz Uy,

The question that still remains to be answered is how to obtain a good subspace
U to perform the projection method. Here, we will rely once more on the surrogate
form (2.10 — 2.11) and the vectors obtained from a shift-and-invert approach.

To motivate our approach of obtaining a good basis U, suppose we wish to perform
a single (outer) iteration of Algorithm 3, but that we are only interested in the bottom
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part (U’ part) of the result W (%) obtained in line 3 of the algorithm. Let a column
of W be of the form w® = [v(; 4], where MATLAB notation is used once more
and the splitting is relative to the block structure in (2.11). We perform ¢ steps of
the inverse power method for the matrix A~! (or (A—oM)~!' M in the general case),
and denote the j-th iterate by w() = [v(j); u9)]. After a column is processed by
q steps of the power method we discard its top part and add u(? to the basis U.
This is done one column at a time and therefore we only have to keep one vector of
length mn + n. Doing this for all columns of U constitutes one step of what we call
“reduced subspace iteration”. The resulting technique is summarized in Algorithm 4.
To simplify notation, we removed the outer (while) loop that was in Algorithm 3 so,
as it is presented, Algorithm 4 is a one-shot method, i.e., it does not include restarts.
Restarting can be added and this is discussed next.

In order to restart Algorithm 4, i.e., to add an outer while loop similar to that
of Algorithm 3, we need to redefine the vectors w in line 2. At the very first outer
iteration, the vectors v and u are just taken as random vectors. In the second iteration
and thereafter, w = [v; u| should ideally be taken to be an approximate eigenvector
of (2.10 — 2.11). After the Rayleigh-Ritz projection is performed in line 6, we obtain
v approximate eigenpairs for the surrogate problem (2.5). Each of these eigenpairs
(A, u), yields the bottom (U-part) of an approximate eigenvector w, but the corre-
sponding v vector (top part of w) is not available. This is remedied by relying on the
relation (2.6), i.e., we define the vector v by setting each of its i-th components to be
v; = u/(ai — )\)

3. Theoretical considerations. Let us consider problem (2.10 — 2.11) under
the simplified assumption that Ag = I. This is equivalent to having an Ay that is
invertible, since in this case we can multiply equation (1.5) by Ay ! to reach the desired
form in which Ag = I. Hence, without loss of generality, we assume M = I.

3.1. Characterization of eigenvalues of A. Now, we would like to examine
all the eigenvalues of matrix A. For this, we consider the characteristic polynomial of
matrix A. When z is different from all the o;’s, A — zI can be written as:

(3.1)

D-zI F
A_ZI_[ BT Bo—zl}’

where, referring to (2.11), we see that D is (mn) x (mn), and F' and B are both
(mn) x n. Then, when D — zI is invertible, the block LU factorization of A — 2T is:

1 0| |D—21 F
A=zl= {BT(D —zI)7t I} { 0 S(z)] ’ (3:2)
where S(z) is the (spectral) Schur complement:
S(2)=By—2I —BY"(D—2I)"'F=B —zf+zm: Bi (3.3)
= Dy 0 JE— . .

i=1

Hence, when z is not a pole, then det(A — zI) = det(S(z)) det(D — zI). Moreover, by
comparing equation (2.3) and (3.3) we observe that S(z) = —T'(=).

Let us assume now that z is a pole, e.g., without loss of generality let z = 0.
In this case, we can use a continuity argument. Indeed, det(A — zI) is a continuous
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function and therefore we can define det(A — 21) as the limit:

m

[Iei-2)"

i=1

det(A —o11) = lim det

zZ—01 o; — 2

By — 2l + Z !
=1

_ ) B B m 0_1 — - m o N
= Jlim det l(al 2)(By — zI) + e ~B; 1:[2(0—1 2)
= det(By) [[(oi — o)™

=2

Note that a second approach to prove the above relation is to observe that when
z = o1, then the top left n x n block of A — zI is a zero block and this can be
exploited to expand the determinant.

This result can be generalized to any other o;, and therefore we can state the
following lemma.

LEMMA 3.1. The following equality holds :

det(S(z))H;.”:l(aj —2)" if z#o0; i=1,...m,

det(B) [0, — o) if 2 =0 (3.4)

det[A — 2] = {

Let us denote by e; the i-th canonical basis vector of the vector space C™*! and
by ® the Kronecker product (operator kron in MATLAB). The following corollary is
an immediate consequence of Lemma 3.1.

COROLLARY 3.2. If all the matrices B;,i = 0,...,m are nonsingular, then the
eigenvalues of (2.5) are the same as the eigenvalues of matriz A. If a matriz B; is
singular and u is an associated null vector, then o; is an eigenvalue of A and e; @ u
s an associated eigenvector.

Hence, we can ignore any eigenvalue that is equal to one of the ¢;’s when it occurs.
The next results will show that as long as the rational approximations of the functions
fj : 8 = C are accurate enough, the eigenvalues of T'(z) will be good approximations
to all eigenvalues of T'(z) located inside the region .

3.2. Accuracy of computed eigenvalues. Let 1 be a region strictly included
in the (larger) disk € such that || f;(z) —r;(2)|lo, < € where the ;-norm is, e.g., the
infinity norm in ©; and r;(z) is the rational approximation of function f;(z). In
other words, each function f;(z) in (1.4) is approximated by a rational function r;(z)
and this approximation is assumed to be accurate to within an error of ¢ in the
region ;. Our goal now is to show that each of the eigenvalues inside €25 is a ‘good’
approximation to an eigenvalue of the original problem (1.1). This can be done by
exploiting the corresponding approximate eigenvectors and by considering the residual
associated with the approximate eigenpair. The following simple proposition shows a
result along these lines.

PROPOSITION 3.3. Let us assume that ||f;(2) —7;(2)||lq, <€ forj=1,---,pand

let (X, u) be an exact eigenpair of the surrogate problem (2.5) with X located inside 0

P
and ||T]| =1 for a certain vector norm || -||. Let p= > [|Aj|. Then,
j=1

IRl < pe.
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Proof. The approximate problem (2.5) is obtained by replacing T'(z) in (1.5) by:

T(z) =—Bo+zAg+11(2)A1 + ...+ 1p(2)Ap. (3.5)
Since (X, 1) is an eigenpair of problem (2.5), T(A)@ = 0, which implies
[~ Bo + Ao + 11 (VA1 + ... + 1,V A)a = 0.

Setting rj(X) - fJ(X) = nj(X) and substituting this into above equation gives

[=Bo + Mo + Y _(f;(X) —n; (V) A;]i = 0,

j=1

[~Bo+ Ao+ Y fi(NAJa= | 0,04, | @,

and thus T(\)u = [Z?Zl nj(X)Aj} @. Taking norms on both sides and recalling that

I fi(2)=7;(2)]lq, <eyields: TNl = || Py nj(X)AJﬂH < pe, which is the desired
result. 0

Proposition 3.3 implies that any eigenpair of problem (2.5) is an approximate
eingepair of the original problem provided that each function f;(z) is well approxi-

mated by a rational function r;(z) in €; and that the eigenvalue A is inside €. By
a backward argument the opposite is also true.

PROPOSITION 3.4. Let us assume that || f;(z) —rj(2)||lo, <€ forj=1,---,p and
let (\,u) be an exact eigenpair for T(z) with X\ located inside Oy and ||u|| = 1. Then,
(A, u) is an approzimate eigenpair of the problem (2.5), i.e.,

1TVl < pe,

where 1 is defined as in Proposition 3.3.

Proof. The proof is essentially identical to that of Proposition 3.3. O

These two results show that for € small enough, we should be able to find ap-
proximations to all eigenvalues of the exact problem located in ©; (and only these)
by solving (2.5), except for cases with very bad ill-conditioning.

3.3. Conditioning of a simple eigenvalue. For the reason stated above, it
is of particular importance to examine the condition number of an eigenvalue of the
extended problem (2.10 — 2.11). As before, we assume that Ay = I. Let us consider
a simple eigenvalue A of the matrix A. Its right eigenvector is a vector w of the form
shown in (2.9) with v; = u/(0; — A) defined in (2.6). As seen earlier — equation (2.5)
— the vector u is an eigenvector of S()\), i.e., we have S(\)u = 0.

The left eigenvector is a vector s that satisfies A¥s = Xs. Similarly to w, it
consists of block components hy, ..., h,,, and y. The equation (A7 — X\I)s = 0 yields
the relations:

i 1
(G; = Nhi+Bfy=0 = hi = 5 — By, i=1,...,m

—Uq

and

=S hi+ (B =Ay=0 = SNy=o.
=1
11



Thus, the right and the left eigenvectors of A are defined in terms of the right and
the left eigenvectors u and y of S(\).

As is well-known the condition number of a single eigenvalue A is the inverse
of the cosine of the acute angle between the left and the right eigenvectors. Before
considering the inner product (w, s), we point out that the derivative of S(z) is

’z)_1+z(zf;)2. (3.6)

Consider now the inner product s7w:

m

- HB;
s = ytut 3ot = yu— 37 A = S .

i=1 i=1 l

Finally, we need to calculate the norms of s and w. For w we have

2 HUHQ 2 1
— 1 -
Hw”z [Jull* + § |/\ o2 = [|ul| { + =2’

while for s:

1B yll
Isll3 = ||y||2+Z| : 2 = [lylI*

1Byl3
1 .
*Z VI3 — oil?

Assuming that the vectors v and y are of norm one leads to the following proposition
which establishes an expression for the desired condition number.

PROPOSITION 3.5. Let A be a simple eigenvalue of (2.11), and u,y the correspond-
ing unit norm right and left eigenvectors (respectively) of S(A\). Then the condition
number of X as an eigenvalue of (2.10 — 2.11) is given by

0l Oy

"N = )

(3.7)

where

LA 1Biyllz
oy = 1+Zm and o, = 1+Z|A_ (3.8)
=1

The coefficients ay,, a, will remain bounded as long as A is far away from any of
the poles. Note in particular that the terms ||B;y|l2 can be bounded by the constant
B = max; || B;|l2- On the other hand nothing will prevent the denominator in (3.7)
from being close to zero. The condition number can be easily gauged to determine if
this is the case. Note that yS’(\)u is inexpensive to compute once the eigenvectors
u and y are available.

3.4. The halo of extraneous eigenvalues. In all our experiments we observed
that the eigenvalues of the problem (2.10 —2.11) that are not eigenvalues of the original
nonlinear problem (1.5) tend to congregate into a ‘halo’ around the contour I' used
for the Cauchy integration.

12



It is possible to explain this phenomenon. First note that the basis of the method
under consideration is to approximate the original nonlinear matrix function 7'(z) in
(1.5) by the rational function:

T(z) = =By + 240 + 11(2) A1 + ... +1,(2)A,, (3.9)

where each r;(2) is an approximation of f;(z).

Consider the situation when z is outside the domain used to obtain the Cauchy
integral, far from the contour. Assuming that m is large enough, then each r;(z) will
be close to zero. Hence, any eigenvalue A of T(z) that is outside the contour and not
too close to it should be just an eigenvalue of the generalized problem (By—AAg)u = 0.
In other words, it should be close to an eigenvalue of the linear part of T'(z).

Let us now consider the opposite case of an eigenvalue of f(z) that is inside the
contour but also not too close to it. Our earlier results show that in this case we
should only find eigenvalues of the original problem (1.5) and no other eigenvalues.

For an eigenvalue to be extraneous, i.e., in the spectrum of (2.10 — 2.11) but not
of (1.5), it must therefore either be (close to) an eigenvalue of the linear part of T(z),
or located (close to) the contour.

Although this argument is based on a simple model, it provides a picture that
is remarkably close to what is observed in practice. Next we present an illustration
using a small quadratic eigenvalue problem. Quadratic eigenvalue problems can be
handled more efficiently by standard linearization than by the method presented in
this paper. However, they can be useful for the purpose of validation because their
eigenvalues are readily available. Consider the problem

(=Bo + Mo + A2 Ax)u =0, (3.10)

where the matrices By, Ag, A are generated by the following three MATLAB lines of
code with n = 4:

BO = -2*eye(n)+diag(ones(n-1,1),1)+diag(ones(n-1,1),-1) ;

A0 = eye(n);

A2 = 0.5x(n*eye(n)-eye(n,1)*ones(1l,n)-ones(n,1)*eye(1,n));
The eigenvalues are all located inside a rectangle with bottom-left and top-right cor-
ners (—1,—1.5%), (0, 1.5¢) which we use as the integration contour.

Gauss-Legendre quadrature formulas are invoked on each side of the rectangle
with a number of points selected to be proportional to the side length. The left side
of Figure 3.1 shows the 8 eigenvalues of the original problem (1.5) as well as the 4
eigenvalues of the pencil (By, Ag). Three of these eigenvalues are located outside the
contour and one inside. The right part of Figure 3.1 and the two plots in Figure 3.2
show the eigenvalues of problem (2.10 — 2.11) when the number of contour points
is m = 20, 32,60, respectively. When m = 20 the approximations are still rough.
However, the pattern mentioned above begins to unravel: the eigenvalues of (3.10)
located inside the contour are more or less approximated, and those eigenvalues of
(Bo, Ag) that are outside are starting to be neared by pluses. Observe that the
eigenvalue of (By, Ag) that is near —1.5 is approximated by two eigenvalues of A. In
contrast, the one near —0.5 (inside the contour) is not approximated as predicted by
the theory. As m increases this picture is confirmed: (1) all the eigenvalues of (3.10)
inside the contour are well approximated, (2) all the eigenvalues of (By, Agp) outside the
contour are well approximated by eigenvalues of A, and (3) the eigenvalue of (By, Ag)
inside the contour is essentially ‘ignored’. In addition, the halo of eigenvalues around

13
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Fi1G. 3.1. Left: The 8 eigenvalues of the original problem (3.10) (circle); the 4 eigenvalues of
the linear part (square); contour and quadrature points along it. Right: Eigenvalues computed with
m = 20 quadrature points (plus) along with contour, original eigenvalues (circle), and eigenvalues
of linear part (square).
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F1c. 3.2. Same information as in the right part of Figure 3.1 using a total of m = 32 quadrature
points (left) and m = 60 quadrature points (right).

the contour becomes quite close to the contour itself. This small example provides a
good illustration of the general behavior that we observe in our experiments.

4. Numerical Experiments. All the numerical experiments presented in this
section were performed with MATLAB R2018a. We will illustrate the behavior of
Algorithms 1, 3 and 4 on several nonlinear eigenvalue problems discussed in [8, 35, 21].
All the examples considered come in the form given in (1.5). For most of the examples,
the contour T is either circular or rectangular and we seek the eigenvalues closest to
the center of I". For Algorithms 1 and 4, the shift o is selected to be the center of the
region enclosed by the contour I'.

In the case of a circular contour, the m quadrature nodes and weights used to
perform the numerical integration to approximate the functions f; inside the contour
I' were generated using the Gauss-Legendre quadrature rule. To choose a suitable m,
we take two circles 1 and Q with the same center and Q1 C Q. Then, m is increased
until the accuracy of the resulting rational approximation is high enough inside €2;.
Note that we need to avoid a region near the outer circle not only because of the
poles, but also because the approximations of the f;’s will tend to be poor in this
region. To illustrate the effectiveness of the proposed approaches, we compare the
eigenvalues obtained by each algorithm with the ones obtained by Beyn’s method [8]

14
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Fi1G. 4.1. Left: Figenvalues of (4.1) inside a circle of radius r = 6 centered at ¢ = —1 obtained
by solving the eigenvalue problem (2.10) (plus) using m = 50 gquadrature nodes (point) and by Beyn’s
method (circle) using 150 quadrature nodes. Right: The errors em of the rational approzimation of
e~ % versus the number of quadrature nodes m.

or/and via a corresponding linearization.

Example 1. Consider the following example discussed in [30, Sec. 2.4.2] and
[21, Example 13],

T(z) =—Bo+ 2zl +e *" Ay, (4.1)

. -5 1 -2 1
WlthBo<2 _6>,A1<4 _1
problem (4.1) is the characteristic equation of a delay system a'(t) = —Bgz(t) +
Aqz(t — 7). For the purpose of a comparison with the results from [8, Example 5.5],
we calculate all eigenvalues enclosed by a circle centered at ¢ = —1 with radius r = 6.
Referring to Proposition 3.3 we first check which values of m will provide a good
rational approximation r,,(z) of f(z) = e #. The right part of Figure 4.1 shows
the errors e, = || f(2) — rm(2)]|eo (evaluated on a finely discretized version of )
versus the number of quadrature nodes m. Notice that the accuracy of the rational
approximation of f(z) inside the considered contour is good enough for m = 50. We
can therefore solve the eigenvalue problem (2.10) associated with the approximate
problem (2.5) with m = 50 Gauss-Legendre quadrature nodes. The left part of
Figure 4.1 compares the eigenvalues computed by Algorithm 1 and those computed
by Beyn’s method using the same contour. Note that the number of quadrature nodes
for Beyn’s method necessary to get the five eigenvalues inside the circle is 150.

In order to check the conclusions of Proposition 3.3, we compute again all the
eigenvalues of the generalized eigenvalue problem (2.10) associated with the approx-
imate problem (2.5) inside a circle Q centered at ¢ = —1 with radius r = 6, using
m = 100 quadrature nodes. These eigenvalues are shown on the left side of Figure
4.2. Let Qp be a disk with the same center as 2 and with radius r; = r/2. Let A\
be the closest eigenvalue to ¢ located in €; and u; be the corresponding eigenvector.
Recall that u; is taken from the last n entries of the eigenvector corresponding to the
eigenvalue A1 of (2.10). Let u be the constant from Proposition 3.3 and r,,(z) the
rational approximation of the function f(z) = e7*. The right-hand side of Figure 4.2
compares the residuals || T(A1)u1|leo with the errors e, = ul|f(2) — rm(2)]cc When
the number of quadrature nodes m varies.
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1T (M)utlloe (diamond) and errors em (circle) versus the number of quadrature nodes m.

Example 2. In this experiment, we consider the same nonlinear eigenvalue prob-
lem as in Example 1 with a different search contour. The location of the eigenvalues
in Example 1 suggests that it should be more effective to consider a rectangular con-
tour instead of a disk. An advantage of rectangular regions is that they are easier
to subdivide into smaller rectangular regions than disks. For example, we can split a
rectangle in the complex plane into different sub-rectangles and then apply Algorithm
1 or Algorithm 4 in each sub-rectangle. A side benefit of this approach is the added
parallelism since each sub-rectangle can be processed independently. Finally, this
divide-and-conquer approach also allows to take advantage of the trade-off between
using smaller regions which require fewer poles versus larger regions which will yield
more eigenvalues at once at the cost of using more poles.

If ¢q, ¢, c3, ¢4 are the four corners of the rectangle, listed counter clock-wise with
c1 being the top-left corner, the integration starts at ¢;, and is performed counter-
clockwise using Gauss-Legendre quadrature on each side. To solve the nonlinear eigen-
value problem (4.1), we consider the rectangle defined by the two opposite corners at
cg = —3—6¢ and ¢4 = 14-6¢, and we solve the eigenvalue problem (2.10) directly, using
m = 40 quadrature points. The left part of Figure 4.3 shows that all eigenvalues are
well approximated inside the rectangle. To illustrate the behavior of the rational ap-
proximation method for the nonlinear eigenvalue problem near the nodes, we consider
a smaller rectangle defined by co = —2.5 — 62 and ¢4 = —0.2 + 6:. As we can clearly
see on the right-hand side of Figure 4.3, eigenvalues near the quadrature nodes are
not well approximated. This is a consequence of the poor rational approximation of
the function f(z) = e~* near the quadrature nodes. Good eigenvalue approximations
can be computed by increasing the number of quadrature nodes on each side. This is
illustrated in Figure 4.4 in which m = 50 quadrature nodes are considered.

Example 3. As our next example, we consider the following nonlinear eigenvalue
problem, see [43, 21],

1
T(Z) = BO + ZAO + :enez, (42)

16
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with

resulting from the finite element discretization of the nonlinear boundary eigenvalue
problem

A
A—1

—u(x) = du(z),0 <z <1, u(0)=u(1)+ u(1l) =0. (4.3)

To compare our results with those obtained by Beyn’s method [8, Example 4.11],
we consider the case when n = 100 and compute five eigenvalues enclosed by a circle
centered at ¢ = 150 with radius r = 150. We first determine the number of quadrature

nodes m needed to get a good rational approximation of the function f(z) = 1;
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inside the considered circular contour I'. The right part of Figure 4.5 shows the
approximation error for the rational approximation of f(z) versus m.

Because f(z) is itself a rational function a high enough accuracy is obtained for
a small value of m, namely m = 6. Therefore, we apply Algorithm 1 with m = 6 and
o = c to get the approximate eigenvalues inside the circle. The computed eigenvalues
are shown on the left of Figure 4.5. These results are directly compared with the ones
obtained by Beyn’s method using 50 quadrature nodes.

Note that the function f(z) is already given in a rational form and so we can
solve (4.2) by considering the same linearization as the one invoked in Section 2:

I L S R bl (1.4

Figure 4.6 compares the eigenvalues obtained by solving (4.4) and the ones computed
by Algorithm 1.

Alternatively, we can solve problem (4.2) directly using Algorithm 4 without
restarts. Let w; = [v;; w], ¢ = 1,...,v be a set of v random vectors of size N =
(m + 1)n, where v; € R™ and u; € R™. For this experiment, we choose v = 7
and we apply ¢ = 5 steps of Algorithm 2 on each w;. We orthogonalize the resulted
vectors U = [u1,usg,...,u,] to obtain a good subspace to perform the projection
method introduced in Algorithm 4. We recall that using Algorithm 4 allows to work
with vectors of size n only, while Algorithm 1 requires storing vectors of length N =
(m+ 1)n. As for Algorithm 1, we choose m = 6 and we use Algorithm 4 to compute
the eigenvalues enclosed by the same circular contour. As can be seen on the left of
Figure 4.6, the eigenvalues obtained by Algorithm 4 are in good agreement with those
obtained by Algorithm 1 and by Beyn’s method.

Example 4: Hadeler problem. As an example of a general nonlinear eigen-
value problem, we consider the Hadeler problem [17, 35, 6]:

T(A) = (e* = 1)B1 + X*B; — By, (4.5)
with the coefficient matrices

By=bol, Bi=(0y), Ba=(}), (4.6)
18
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Fi1G. 4.6. Left: Eigenvalues of (4.2) inside a circle of radius r = 150 centered at ¢ = 150
obtained by Algorithm 4 (plus) and by Beyn’s method (circle). Right: Eigenvalues of (4.2) inside
a circle of radius r = 150 centered at ¢ = 150 obtained by Algorithm 1 (plus) and by linearization
(4.4) (square).

bﬁ) = (n+ 1 — max(j, k))jk, bﬁ) =nd, +1/(j + k), (4.7)

of dimension n and a parameter by = 100 (following reference [35]). For our experi-
ments we choose n = 200.

We refer the reader to the above articles for details on this problem. The eigen-
values of (4.5) are real with n of them being negative and n positive. The eigenvalues
become better spaced as we move away from the origin and the smallest one is close
to —48. We compute the eigenvalues inside a circle centered at ¢ = —30 with radius
r = 10. Using m = 50 Gauss-Legendre quadrature nodes, 12 eigenvalues of (4.5) were
computed using Algorithm 1. These results are compared with the approximations
obtained by Beyn’s method [8], see Figure 4.7.

We repeat the same experiment using the reduced subspace iteration given by
Algorithm 4 with restarts. We first start with v = 24 random vectors, where v is the
dimension of the subspace in Algorithm 4 and then apply ¢ = 10 steps of Algorithm
2 on each of these vectors separately to obtain a block of v vectors each one of size n.
Not that these vectors are the resulting bottom parts of the final iterates of Algorithm
2. These v bottom parts are orthogonalized to obtain an orthonormal basis U used to
perform Rayleigh-Ritz projection that leads to a nonlinear eigenvalue problem in C¥ of
the form (2.19). We then solve this reduced (nonlinear) eigenvalue problem (2.19) by
computing the eigenvalues and vectors of the expanded problem (2.10 — 2.11) that are
obtained from it. Note that this problem is now of size (m + 1)v. Before each restart
of Algorithm 4, we select v approximate eigenpairs whose eigenvalues are inside the
contour. The initial vectors w selected in line 2 of Algorithm 4 with restarting are of
the form w = [v; u] where the components v; of v satisfy v; = u/(o; — A). Here (A, u)
is one of the v approximate eigenpairs computed from the previous outer iteration.
At the very first outer iteration v and u are random vectors. The resulting bottom
parts of the final iterates are used to form the block U of Algorithm 4 with restarting.
The columns of U are orthonormalized before applying the Rayleigh-Ritz procedure
in lines 5-6. The outer iteration of Algorithm 4 is stopped when

Kk k P
S ITa)uill < tol > | 1Boll + INilllAoll + D Irs o) 1411 | - (4.8)
i=1 i=1 j=1
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obtained by Algorithm 1 (plus), by Beyn’s method (circle). Right: The residual norm of the rational
approzimation of €* — 1 (square) and 2% (circle) versus the number of quadrature nodes m.

where || - || stands for the 2-norm. We run as many outer iterations as needed to
achieve convergence with a tolerance of tol = 10710, Algorithm 4 computed the same
12 eigenvalues of (4.5) as those obtained by Algorithm 1, requiring 13 outer iterations
to satisfy the above stopping criterion. To verify that the computed eigenpairs are
good approximations to the original problem, we computed the residual norm sum
scaled similarly to (4.8) and found that for problem (4.5) we have

k
T . .
Z || (AZ)U'LH ~ 928 % 10—147
v

i=1

at the end of Algorithm 4, where v = S0 (11Boll + [Aill oll + S0, 11500 114,11).
Another way to extract those 12 eigenvalues of interest is to resort to the rational
approximation using the Cauchy integral formula inside an elliptic contour. We con-
sider an ellipse centered at ¢ = —30 with semi-major axis r, = 10 and semi-minor axis
ry = 1 on the z—axis and y—axis, respectively. We can use Algorithm 1 with m =8
and 0 = ¢ and perform as many steps as needed to extract all 12 real eigenvalues
inside the elliptic contour. In Figure 4.9, we present the eigenvalues computed by Al-
gorithm 1 and by Beyn’s integral method using the same elliptic contour. For Beyn’s
method 50 trapezoidal quadrature nodes are necessary to get those 12 eigenvalues.

Example 5: Butterfly Problem. To illustrate the behavior of rational ap-
proximation methods when using a contour centered at an arbitrary point in the
complex plane, we present a few results with the butterfly problem (so called because
of the distribution of its eigenvalues in the complex plane) available from the NLEVP
collection [6]. This is a quartic eigenvalue problem of the form

T(X) = Ao+ Ay + A2 Ag + N2 A3 + X' Ay, (4.9)

where Ag, Ay, ..., Ay are structured matrices of size n = 64. The 256 eigenvalues of
this problem are shown on the left side of Figure 4.10. A detailed description of this
example can be found in [28]. We use Algorithm 1 with m = 50 quadrature nodes to
compute the eigenvalues enclosed by a circle centered at ¢ = 1412 with radius r = 0.5.
We compare approximations of 13 computed eigenvalues with those determined by the
linearization of problem (4.9) and by application of Beyn’s method. The right part of
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F1G. 4.8. Eigenvalues of (4.5) inside a circle of radius r = 10 and center ¢ = —30 obtained by
Algorithm 4 (plus) and by Beyn’s method (circle).

F1G. 4.9. Eigenvalues of (4.5) inside an ellipse centered at ¢ = —30 and with semi-magjor axis
re = 10 and semi-minor axis ry = 1 obtained by Algorithm 1 (plus) and by Beyn’s method (circle).

Figure 4.10 summarizes our findings. Alternatively, we can use a rectangular contour
as described already in Example 2. Figure 4.11 shows approximations of 17 eigenvalues
enclosed by the rectangular contour defined by the corners ¢; = (0.55,0.48) and
cq = (1.2,1.3) obtained using Algorithm 1 with m = 90 quadrature nodes and direct
linearization.

5. Concluding remarks. An appealing feature of the general approach pro-
posed in this paper for solving nonlinear eigenvalue problems is its simplicity. A
general nonlinear problem is approximated by a rational eigenvalue problem which
is then linearized. The resulting linear problem provides the basis for developing a
number of methods and three of these, among possibly many others, were discussed in
this paper. The theory allows us to exactly predict which eigenvalues of the original
problem are well approximated and it also tells us that no eigenvalues in the region
will be missed. Another attribute of the method is its flexibility. It is possible to
compute all eigenvalues in a union of small regions each requiring a small number of
poles, or to use one single large region to compute many eigenvalues but now with a
large number of poles. Finally, the method has a good potential for solving realistic
large sparse nonlinear eigenvalue problems such as those mentioned in the introduc-
tion. In this regard, we note that only one factorization is required namely that of
S(o) where o is the shift in the shift-and-invert procedure. In many applications the
patterns of the matrices A; are not too different from one another and so S(o), which
is itself a combination of the A;s, will remain sparse.
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