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ABSTRACT

We present two approximation methods for computing eigenfrequencies and eigenmodes of large-
scale nonlinear eigenvalue problems resulting from boundary element method (BEM) solutions of
some types of acoustic eigenvalue problems in three-dimensional space. The main idea of the first
method is to approximate the resulting boundary element matrix within a contour in the complex plane
by a high accuracy rational approximation using the Cauchy integral formula. The second method is
based on the Chebyshev interpolation within real intervals. A Rayleigh-Ritz procedure, which is suit-
able for parallelization is developed for both the Cauchy and the Chebyshev approximation methods
when dealing with large-scale practical applications. The performance of the proposed methods is
illustrated with a variety of benchmark examples and large-scale industrial applications with degrees
of freedom varying from several hundred up to around two million.

1. Background and Introduction
The Boundary Element Method (BEM) is a powerful ap-

proach developed to solve integral equations [1]. The appli-
cation of the BEM method has gained popularity in many
branches of science and engineering over the past few years,
e.g., in elasticity, ground and water flow, wave propagation
and in electromagnetic problems [2]. The most commonly
used approaches for numerically solving PDEs are the Finite
Difference Method (FDM) and the Finite Element Method
(FEM). A standard finite difference method is suitable when
dealing with simple domains (e.g. rectangular grids), while
the finite elementmethod can handlemore complex domains.
However, the computational work involved to numerically
discretize the full domain (generatemeshes) and solve the re-
sulting discretized problem becomes excessive when dealing
with complicated domains in higher dimensions, i.e., d ≥ 3.
This is where BEM becomes appealing as it allows to signif-
icantly reduce the overall computational complexity of the
solution process. Instead of solving a problem for the par-
tial differential operator defined on the whole domainΩ, the
boundary element method uses an associated boundary in-
tegral equation reducing the domain of the problem to the
boundary )Ω. This comes at a cost since the matrix prob-
lem to solve in the approximation becomes dense.

In the following, we are interested in the efficient solu-
tion of nonlinear eigenvalue problems (NLEVPs) resulting
from the boundary element (BE) discertization of acoustic
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problems. Although a finite element discretization of the
problem yields a generalized (linear) eigenvalue problem, it
requires a discretization of the whole domainΩ which is not
always feasible, e.g., if the domain is unbounded. Though
the topic ofNLEVPs built upon the boundary elementmethod
(BEM) has been around for a number of years, the lack of
efficient eigensolvers has delayed a full exploration of BE–
based approaches. Recently, eigenvalue solvers based on
contour integrals were developed and this made BEM an
attractive alternative to the usual contenders when solving
challenging nonlinear eigenvalue problems [3, 4, 5]. Con-
tour based methods have the ability to solve NLEVPs when
the eigenvalues of interest lie inside a given closed contour in
the complex plane using rational or polynomial approxima-
tion [6, 7, 8, 9, 10]. Despite these efforts, solving NLEVPs is
still a computationally intensive task. Assembling interpo-
lation matrices and solving linear systems in the BE frame-
work are already very expensive due to the unstructured,
dense and complex nature of the resulting matrices. For ex-
ample, the Chebyshev interpolation of the BE formulation
of the large-scale accoustic problem discussed in [6] results
in a generalized eigenvalue problem which cannot be eas-
ily handled with the state-of-the-art linear solvers. Another
drawback of this method is that the quality of the approxima-
tions quickly deteriorates when dealing with complex eigen-
values.

It is the purpose of this paper to overcome the aforemen-
tioned difficulties and develop eigensolvers suitable for cal-
culations of eigenvalues of NLEVPs arbitrarily located in the
complex plane. The paper illustrates the performance of the
proposed method with a problem that arises in the modal
analysis of large-scale acoustic problems. Here we follow
the notation of [11, 12].

Consider the three-dimensional (3D) acoustic Helmholtz

M. El-Guide, A. Mi¦dlar and Y. Saad: Preprint submitted to Elsevier Page 1 of 12

http://miedlar.faculty.ku.edu/
https://www-users.cs.umn.edu/~saad/


A rational approximation method for BEM NLEVPs

equation

Δp(x) + �2p(x) = 0, x ∈ Ω ⊂ ℝ3, (1)

where Δ is the Laplace operator, p(x) is the sound pressure
at point x, � = !∕c is the wave number with the circular fre-
quency! and the speed of sound c through the fluidmedium.

Equation (1) is subject to a homogeneous condition on
its boundary )Ω of the form

a(x)p(x) + b(x)
)p(x)
)n

= 0, x ∈ )Ω, (2)

where )
)n denotes the outward normal to the boundary at

point x. Using BEM yields the following Helmholtz inte-
gral equation [13]

C(x)p(x)+∫)Ω
)g(x, y)
)ny

p(y)dy = ∫)Ω
g(x, y)

)p(y)
)ny

dy, (3)

where C denotes the solid angle at point x [13], ny the sur-
face unit normal vector at point y and g(⋅, ⋅) the free-space
Green’s function [14, 15, 11],

g(x, y) = ei�‖x−y‖

‖x − y‖
(in the 3D case). (4)

The continuous Helmholtz integral equation (3) can be
discretized to form the following discrete problem fromwhich
the boundary node pressure values p can be determined,

H(�)u = G(�)q, (5)

where H and G are discretization of the left and right side
of the Helmholtz integral equation (3), respectively; u and q
are vector collections of the nodal pressure p and its normal
derivative, respectively [13]. Note that (2) generally appears
in the following Robin boundary condition form

)p(x)
)n

= −i
�0!
Z(x)

p(x), (6)

where �0 is the density of the fluid and Z is the acoustic
impedance. In this case, the boundary element discretization
of (6) can be expressed as

q(�) = B(�)u, (7)

where B is a diagonal matrix consists of the nodal values of
−i �0!Z(x) . The continuous Helmholtz integral equation (3) can
be then discretized to form the following discrete problem

T (�)u = 0, T (�) ∶= H(�) − G(�)B(�). (8)

Here, T (�) is a matrix function that is nonlinear is � and
holomorphic since the free-spaceGreen’s functions are holo-
morphic functions of �. Obviously, equation (8) is a NLEVP
and the objective of this paper is to developmethods for find-
ing all eigenvalues �, satisfying (8), that are located inside a
certain region of the complex plane enclosed by the contour
Γ.

2. Rational and Chebyshev approximation
methods for NLEVPs
The first method we consider is adapted from [16] and

it is based on the Cauchy integral formula. Given a Jordan
curveΓ that surrounds the eigenvalues of interest, we express
the matrix function T (�) as follows:

T (�) = 1
2{� ∫Γ

T (z)
z − �

dz. (9)

By replacing both occurrences of T (⋅) in (9) by Tij(⋅), one
can see that the above expression is equivalent to expressing
each individual entry Tij(�) of T (�) by the Cauchy integral
formula. Equality (9) is valid for z inside the contour Γ and
the only requirement is that T (�) be analytic inside Γ. As is
classically done [17] we use a numerical quadrature formula
to obtain the following Cauchy integral approximation T̃ (�)
of T (�)

T̃ (�) ≈
m
∑

i=0

!iT (�i)
� − �i

, (10)

where the �i’s are quadrature points located on the contour Γ
and the !i’s the corresponding quadrature weights. Setting
Bi = !iT (�i), equation (10) can be rewritten as

T̃ (�) =
B0

� − �0
+

B1
� − �1

+…+
Bm

� − �m
, (11)

= B0f0(�) + B1f1(�) +… + Bmfm(�), (12)

with fi(�) =
1

�−�i
, i = 0,… , m. For a given vector uwe now

define

vi ∶= fi(�)u, for i = 0,… , m.

Then the approximate nonlinear eigenvalue problem T̃ (�)u =
0 yields

T̃ (�)u = B0v0 + B1v1 +…+ Bmvm = 0. (13)

Chebyshev interpolation of order m can also be used to
obtain the same form as (12) of the approximation of the
matrix-valued function T (z). In this method, proposed in
[6], the function T (�) is expanded using a degree m Cheby-
shev polynomial expansion of the form [18] :

T̃ (�) = B0�0(�) + B1�1(�) +… + Bm�m(�), (14)

where Bi and �i(z) are coefficient matrices and Chebyshev
basis functions, respectively. The corresponding nonlinear
eigenvalue problem is of the same form as (13) with the vec-
tors vi now defined by vi = �i(z)u.

The problem (13) for the Cauchy interpolation, and its
Chebyshev interpolation counterpart, can be reformulated as
a generalized linear eigenvalue problem:

w = �w. (15)

For the Cauchy rational approximation we have:
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 =

⎡

⎢

⎢

⎢

⎢

⎣

�0I I
�1I I

⋱ ⋮
�mI I

−B0 −B1 ⋯ −Bm 0

⎤

⎥

⎥

⎥

⎥

⎦

,

 =

⎡

⎢

⎢

⎢

⎢

⎣

I
I

⋱
⋱

0

⎤

⎥

⎥

⎥

⎥

⎦

, (16)

and w =
[

vT0 , v
T
1 ,… , vTm, u

T ]T whereas for the Chebyshev
interpolation

 =

⎡

⎢

⎢

⎢

⎢

⎣

0 I
I 0 I

⋱ ⋱ ⋱
I 0 I

−B0 ⋯ −Bm−3 Cm−2 −Bm−1

⎤

⎥

⎥

⎥

⎥

⎦

,

 = 2

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1
2I

I
⋱

I
Bm

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (17)

whereCm−2 ≡ Bm−Bm−2 andw =
[

uT , vT1 ,… , vTm−1, v
T
m
]T .

With regards to the rational approximation described above,
we note that an alternative that has been used with some suc-
cess in the literature is the Barycentric approximation for-
mula [8]. However, our tests with this technique showed
no significant improvement in our context over the simple
Cauchy formula used above. Note that it is also possible to
exploit other polynomials, using different classes of orthog-
onal polynomials but we will restrict our attention to Cheby-
shev polynomials of the first kind. Finally note that Cheby-
shev approximation works best for eigenvalues located in an
interval while the Cauchy rational approximation is suitable
for general complex spectra.

3. Rayleigh-Ritz procedure for BEM
eigenvalue problem
Let U be a basis of dimension � of a subspace that con-

tains good approximations of the eigenvectors of the NLEVP
problem (5). Then, it is possible to apply a Rayleigh-Ritz
procedure to (5) to obtain approximate eigenpairs. The ap-
proximate eigenvector will be of the form u = Uy with
y ∈ ℂ� . Then expressing that T (z)u is orthogonal to the
range of U yields the projected problem UHTU (z)u = 0 or,

B̂0f0(z)y + B̂1f1(z)y +…+ B̂mfm(z)y = 0, (18)

where B̂i = UHBiU . We will denote TU (z) the projected
operator, namely,

TU (z) = B̂0f0(z) + B̂1f1(z) +… + B̂mfm(z). (19)

Then, applying the same procedure as before to the pro-
jected problem we see that (18) becomes:

B̂0v̂0 + B̂1v̂1 +…+ B̂mv̂m = 0, (20)

with v̂i =
y

z−�i
in the case of rational approximation and

v̂i = �i(z)y when a Rayleigh-Ritz procedure is applied to
the Chebyshev interpolation.

3.1. Solution of the reduced NLEVP
Analogously towhat was discussed in Section 2, the prob-

lem (20) for the Cauchy rational approximation, as well as its
Chebyshev interpolation counterpart, can be written down
in a block form (15), but now of much smaller dimension.
The projected nonlinear problem (20) yields the following
linearized problem

w = �w, (21)

with w =
[

v̂T0 , v̂
T
2 ,… , v̂Tm, y

T ]T and

 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

�1I I
�2I I

⋱ ⋮
�mI I

−B̂1 −B̂2 ⋯ −B̂m 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

 =

⎡

⎢

⎢

⎢

⎢

⎣

I
I

⋱
⋱

0

⎤

⎥

⎥

⎥

⎥

⎦

(22)

for the Cauchy rational approximation, and

w =
[

yT , v̂T1 ,… , v̂Tm−1, v̂
T
m
]T ,

 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 I
I 0 I

⋱ ⋱ ⋱
I 0 I

−B̂0 ⋯ −B̂m−3 Ĉm−2 −B̂m−1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

I
2I

⋱
2I

2B̂m

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(23)

for the Chebyshev interpolation, where Ĉm−2 = B̂m − B̂m−2.
If � is fairly small, the problem (21) can be solved directly,
i.e., using standard dense packages. When � is larger, the
problem must be handled differently by some iterative pro-
cedure. Since for BEM problems the matrices Bi are gen-
erally complex, dense and unstructured, solving these lin-
ear eigenvalue problems can be computationally expensive.
Therefore, it may be advantageous to rely on subspace iter-
ation or an Arnoldi-type method to solve (21).
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Note that for both the Cauchy rational approximation and
the Chebyshev interpolation method, the matrices and
don’t have to be formed explicitly. If the partial solution of
the problem (21) are of interest, effective methods such as
the Implicitly Restarted Arnoldi method can be used to find
a few of the extreme eigenvalues. Unfortunately, these meth-
ods become expensive when the eigenvalues of interest are
deep inside the spectrum.

Alternatively, we can solve the interior eigenvalue prob-
lem with the help of the shift-and-invert technique, which
replaces the solution of the generalized eigenvalue problem
(21) by the following problem

w = 1
� − �

w,  ∶= ( − �)−1. (24)

Using the Arnoldi or the subspace iterationmethod to extract
extreme eigenvalues of (24) will result in approximations of
the eigenvalues of (21) closest to �. Again, the matrix 
need not be formed explicitly to compute the matrix-vector
product y = x. Instead, we can use a simpleLU factoriza-
tion that takes advantage of the sparsity of  and . First,
note that the matrix ( − �) is of the form

[

D F
B C

]

. (25)

By exploiting the sparsity of the matrices D and F , we can
easily form the following LU factorization

L =
[

I 0
BD−1 I

]

, U =
[

D F
0 S

]

, (26)

where S = C − BD−1F is known as the Schur complement
of the block C . With the use of matrix S, we can use the
Arnoldi algorithm on vectors of shorter length. Solving the
shifted and inverted problem (24) with Arnoldi algorithm
requires solving linear systems of the form

[

D F
B C

] [

x
y

]

=
[

a
b

]

. (27)

Using the Schur complement S, y can be easily obtained by
solving Sy = b − BD−1a. Note that D is a diagonal matrix
and F is a block of identity matrices. Once y is computed, x
can be recovered by solving the trivial systemDx = a−Fy.

3.2. Construction of the subspace of approximants
We begin this section by noting that the Arnoldi-type or

subspace iteration methods discussed in the previous sec-
tion can be applied to a linear eigenvalue problem w =
�w obtained directly from (13). However, proceeding in
this way would require either solving linear eigenvalue prob-
lems of size mn + n when using Arnoldi-type methods, or
storing vectors of length mn + n in the subspace iteration
method, and this can be computationally expensive when m
is large. Therefore, it is important to develop a technique that
allows to work with subspaces of smaller dimensions that
requires storing shorter vectors. A procedure of this type,

which works with subspaces of dimension m is presented
next.

Let us first consider a large linear eigenproblem of the
form (15) obtained from (13) without a projection. To intro-
duce the approach that works with vectors of dimension n,
we first point out that for an approximate eigenpair (�, u), u is
the bottom (resp. top part) of an approximate eigenvector w
of the large linear eigenvalue problem (15) associated with
(12) for the Cauchy rational approximation, (resp. (14) for
the Chebyshev interpolation). LetW (0) be a random initial
set of � basis vectors of a certain subspace, where each of the
� columns is of the form 3 w = [v; u] (resp. w = [u; v]) for
the splitting associated with the Cauchy rational approxima-
tion (resp. Chebyshev interpolation). Next, in order to make
these initial random vectors close to the eigenvectors of in-
terest, we apply q steps of the inverse power method with
matrix in (24) to each column ofW (0) separately. A sub-
space of dimension n that approximates the eigenvectors of
(13) is then obtained from the bottom parts (resp. top parts)
of the processed columns for the Cauchy rational approxima-
tion (rep. Chebyshev interpolation). Although this process
involves the column vectors ofW (0), only vectors of length
n need to be saved and the iterates v can be discarded. The
accuracy of the extracted eigenpairs obtained from applying
a Rayleigh-Ritz projection can be further refined by updating
U in a process that takes advantage of the structure of the ap-
proximate eigenvectors. Let (�, u) be an approximate eigen-
pair of (13) obtained from applying a Rayleigh-Ritz projec-
tion using U . The new redefined vector w for each inter-
polation method is discussed next. For the Cauchy rational
approximation, the vector v = [v1; v2; ...; vm]T (the top part
of vector w), is obtained by setting vi =

u
�−�i

, whereas for
the Chebyshev interpolation (the bottom part of vector w) it
is defined by setting vi = �i(�)u.

3.3. The inverse power method
The straightforward linearizations (16) of the Cauchy ra-

tional approximation and (17) of the Chebyshev interpola-
tion, discussed in Section 2, are high dimensional problems
and they become computationally demanding as the order m
of the approximations grows. The Rayleigh-Ritz approach
discussed above is inexpensive even ifm is large. The biggest
computational task of the presented Rayleigh-Ritz projec-
tion lies in performing q steps of the inverse power method
with the matrix ( − �)−1. It is the purpose of the
following discussion to show how each step of the inverse
power method can be carried out inexpensively. For simplic-
ity, we will assume that the shift � is the center of the unit
circle (resp. interval [−1, 1]) for the Cauchy rational approx-
imation (resp. Chebyshev interpolation). This is a natural
choice, since any circle in the complex plane can be scaled
to the unit circle and any real interval [a, b] can be scaled to
the interval [−1, 1]. Throughout this discussion, the super-
script j will correspond to the iteration number, while the
subscript i will correspond to the blocks of the vectors v(j).

3Here we use Matlab notation: [v; u] is a vector that stacks v on top of
u.
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We begin by discussing the inverse power method for the
Cauchy rational approximation.

Inverse power iteration for the Cauchy rational approx-
imation. For the Cauchy interpolation, each step of the in-
verse power iterationmethod requires solving a linear system

w(j+1) = y(j) with y(j) =w(j) and w(j) = [v(j); u(j)],
(28)

which is of the form (27). Therefore, the iterates of the in-
verse power method can be determined by solving

Su(j+1) = b, with b =
(

u(j) − BD−1v(j)
)

, (29)

Dv(j+1) = (v(j) − Fu(j+1)). (30)

SinceD is a diagonal matrix and F is a block vector of iden-
tity matrices, v(j+1)i are determined by

v(j+1)i =
v(j)i − u(j+1)

�i
, i = 0,… , m. (31)

Again, exploiting the structure ofD and F , the iterate u(j+1)
can be obtained by solving (29) with

S = −
m
∑

i=0

Bi
�i
, and b = u(j) −

m
∑

i=0

Bi
�i
v(j)i . (32)

Algorithm 1 performs one step of the inverse power iteration
for the Cauchy rational approximation.

Algorithm 1: One step of inverse power method
for Cauchy approximation

Input : D,F , B and C = 0 as defined in (27),

w(j) =
[

v(j)
u(j)

]

Output: w(j+1) =
[

v(j+1)
u(j+1)

]

1 Compute b = u(j) − BD−1v(j) = u(j) −
m
∑

i=0

Bi
�i
v(j)i ;

2 Solve Su(j+1) = b, with the Schur complement

matrix S = C −
m
∑

i=0

Bi
�i
= −

m
∑

i=0

Bi
�i
;

3 Set v(j+1)i = v(j)i −u
(j+1)

�i
;

4 return v(j+1), u(j+1)

Inverse power iteration for the Chebyshev interpola-
tion Recall that the iterates obtained from the inverse power
method for the Chebyshev interpolation can be written as
w(j) = [u(j); v(j)]. Similarly to the Cauchy rational approxi-
mation, each step of the inverse power method requires solv-
ing the linear system

w(j+1) = y(j), with y(j) =w(j). (33)

Since  is a block diagonal matrix, y(j) = w(j) can be
easily evaluated. The question that remains to be answered is
how to solve efficiently the linear systemw(j+1) = y(j). By
taking advantage of the block structure of  for the Cheby-
shev interpolation, it follows naturally that this problem can
be treated by performing the following steps, see [6, Section
2.3]. To compute the bottom part v(j+1) of w(j+1) we will
use the recursion

v(j+1)1 = y(j)0 , v(j+1)2i+1 = y
(j)
2i −v

(j+1)
2i−1 , i = 1, 2,… , (34)

for odd-numbered blocks and

v(j+1)0 = u(j), v(j+1)2i = y(j)2i −v
(j+1)
2i−2 , i = 1, 2,… . (35)

for even-numbered blocks. Since the blocks v(j+1)2i−2 in (35)
are even-numbered, we can further expand the recurrence
relation, i.e.,

v(j+1)0 = u(j), v(j+1)2i = ŷ(j+1)2i−1 +(−1)
iv(j)0 , i = 1, 2,… ,

(36)

where

ŷ(j+1)1 = y(j)1 , ŷ(j+1)2i+1 = y
(j)
2i+1 − ŷ

(j+1)
2i−1 , i = 1, 2,… .

Since v0 = �0(z)u and �0 = 1 (zeroth Chebyshev poly-
nomial), u(j+1) is the top part of vector w(j+1), i.e., u(j+1) =
v(j+1)0 and it can be obtained by solving

Gu(j+1) = b. (37)

Given the number of quadrature nodes m, let us consider the
Euclidean division ofm by 2, i.e.,m = 2 ⋅q+r, with quotient
q and remainder r. Then the matrixG has the following form

G =
q
∑

i=0
(−1)i+1B2i. (38)

The vector b depends on the parity of m. If m is odd

b =
q−1
∑

i=0
B2i+1v

(j+1)
2i+1 +

q
∑

i=1
B2iŷ

(j+1)
2i−1 +y

(j)
m−1−Bm

(

q−1
∑

i=0
(−1)q−iy(j)2i

)

,

(39)

and when it is even, then

b =
q−1
∑

i=0
B2i+1v

(j+1)
2i+1 +

q−1
∑

i=1
B2iŷ

(j+1)
2i−1 +y

(j)
m−1−Bm

(

q−1
∑

i=0
(−1)q−iy(j)2i+1

)

.

(40)

Algorithm 2 implements one step of inverse powermethod
for the Chebyshev interpolation.

To this end, only one LU factorization is required – of
the Schur complement matrix S in the case of the Cauchy
rational approximation or matrix G for the Chebyshev in-
terpolation – in the preprocessing step for all q steps of the
inverse power method.
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Algorithm 2: One step of inverse power method
for Chebyshev approximation

Input : B0,… , Bm, w(j) =
[

v(j)
u(j)

]

Output: w(j+1) =
[

v(j+1)
u(j+1)

]

1 Compute v(j+1) using recurrences (34) and (36);
2 Form matrix G defined in (38) and right-hand

side vector b using (39) or (40);
3 Solve linear system Gu(j+1) = b;
4 return v(j+1), u(j+1)

Algorithm 3: Reduced subspace iteration (no
restarts) for Cauchy (or Chebyshev) approxima-
tion

Input : Subspace dimension �; q; Number of
eigenvalues k (with k ≤ �)

Output: �1,… , �k, Uk
1 for j = 1 ∶ � do
2 Select w = [v; u] (or w = [u; v]) ;

/* Initially random vectors */

3 Run q steps of Algorithm 1 or 2 starting with
w ;

4 If w = [v; u] (or w = [u; v]) is the last
iterate, then set U (∶, j) = u;

5 Use U to compute B̂i, 0 = 1, ..., m from (20);
6 Solve the reduced eigenvalue problem (21)

associated with (22) or (23);
7 return �1,… , �k and eigenvector matrix Uk

4. Numerical Experiments
This section will illustrate the behavior of the approaches

presented in this paper for solving nonlinear eigenvalue prob-
lems in the form (5) resulting from boundary element dis-
cretization of (1) – (2). All experiments were performed
with MATLAB R2018a. Furthermore, computations in Ex-
ample 3 were performed in parallel on a Linux cluster at
the Minnesota Supercomputer Institute that has 32 cores and
31.180 GB per-core memory.

For the presented examples, the contour Γ is either circu-
lar or elliptic and the eigenvalues of interest are those closest
to the center of Γ, i.e., in Algorithms 1 and 2 the shift � is se-
lected to be the center of the region enclosed by the contour
Γ. In the case of a circular contour, the m quadrature nodes
and weights used to perform the numerical integration to ap-
proximate the functions fj inside the contour Γ were gener-
ated using the Gauss-Legendre quadrature rule. To illustrate
the effectiveness of the proposed approaches, we compare
the eigenvalues obtained by each algorithm either with ex-
act eigenvalues or the approximations obtained by the Beyn’s
method [19] or/and via a corresponding linearization.

no. eigenvalue multiplicity

1 5.441398 1
2 7.695299 3
3 9.424778 3
4 10.419484 3
5 10.882796 1
6 11.754763 6

Table 1

Approximations of the 6 smallest eigenvalues (including multi-
plicities) of the 3D Laplace eigenvalue problem on Ω = [0, 1]3
with homogeneous Dirichlet boundary conditions [6, Table 1].

Example 1
As our first example, we consider the 3D Laplace eigen-

value problem (1) on the unit cubeΩ = [0, 1]3 with homoge-
neous Dirichlet boundary conditions, i.e., (2) with a(x) = 1
and b(x) = 0. The exact eigenvalues for this problem are
known and given by

� = �
√

n21 + n
2
2 + n

2
3, ni = 1, 2, 3… . (41)

We are interested in the six smallest eigenvalues (includ-
ing multiplicities) of (1) presented in Table 1.

To determine these eigenvalues using the Cauchy ap-
proximation technique, we will build the rational approxi-
mation of the matrix-valued function T (⋅) using circular and
elliptic contours. First, we compare the accuracy between
the Cauchy rational approximation and the Chebyshev inter-
polation of T (⋅). Note that since the eigenvalues of (1) with
homogeneous Dirichlet boundary condition are real we can
use the Chebyshev interpolation technique which target situ-
ations when the eigenvalues of interest lie in an interval. Fig-
ure 1 shows the errors of each approximation versus the or-
der of approximationm for both circular and elliptic contour.
For simplicity, all the errors are evaluated on a fine mesh in
[−1, 1], since arbitrary curves in the complex plane can be
parameterized using this interval. From this figure, we can
easily see that the errors in the Cauchy rational approxima-
tion and Chebyshev interpolation decay exponentially with
the order of the approximation m, which implies that a mod-
erate m is usually sufficient to reach a good accuracy. To
capture the eigenvalues of interest, we first consider a circle
of radius r = 3.5 centered at c = 8.5. We can then solve
the linear eigenvalue problem (15) associated with (13) with
m = 25 trapezoidal quadrature nodes by performing as many
steps of shift-and-invert Arnoldi algorithm as needed to ex-
tract the 17 eigenvalues closest to the center c. The top part
of Figure 2 presents the eigenvalues computed by the Cauchy
approximation and those computed by the Chebyshev inter-
polation on a uniformmesh with 864 P1 triangular elements.
Note that, in order to make a fair comparison between the
two methods, the number of interpolation points for Cheby-
shev interpolation method is chosen to be the same as the
number of quadrature nodes m. For Chebyshev interpola-
tion method the real interval enclosing the eigenvalues of
interest is chosen as [5, 12]. The bottom part of Figure 2 il-
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lustrates the comparison between the accuracy of the rational
approximation and the Chebyshev interpolation. The accu-
racy of an eigenpair (�, u) is measured by the relative resid-
ual ‖T (�)u‖2∕‖u‖2. Our numerical tests indicate that, to
achieve a good quality of rational approximation, the quadra-
ture nodes should be close to the eigenvalues so that they can
be effectively probed. Therefore, the accuracy of the ratio-
nal approximation can be considerably improved by using
an elliptic contour instead of a circle. A rational approxima-
tion (10) is then built using an elliptic contour centered at
c = 8.5 with semi-major axis rx = 3.5 and semi-minor axis
ry = 0.1. The top part of Figure 3 presents the eigenvalues
computed by the Cauchy rational approximation and those
computed by the Chebyshev interpolation, and the bottom
part of Figure 3 compares the relative residuals of the two
methods.

We now repeat the same experiment using the Rayleigh-
Ritz procedure for the Cauchy and Chebyshev approxima-
tions. To extract the 17 eigenvalues listed in Table 1, we
start with a random subspace W of dimension � = 20. We
then apply q = 10 steps of inverse power method to W to
build a subspace of dimension �, where each column vec-
tor is of size n. We recall that these vectors are the result-
ing top parts and bottom parts of the iterates of Algorithm
1 and 2 for the Cauchy and Chebyshev approximations, re-
spectively. The resulting subspace U is then orthogonalized
to obtain an orthonormal basis U that can be used to per-
form Rayleigh-Ritz projection that leads to a small nonlin-
ear eigenvalue problem of size �. This small problem is then
solved by computing the eigenvalues and eigenvectors of the
expanded linear eigenvalue problem (21) of size (m + 1)�.
The outer iterations of the reduced procedure for the Cauchy
approximation are stopped when

‖B0Xf1(Λ) +B2Xf2(Λ) +…+BmXfm(Λ)‖F ≤ tol,

and for the Chebyshev approximation when

‖B0X�1(Λ) +B2X�2(Λ) +…+BmX�m(Λ)‖F ≤ tol,

whereX, Λ are the extracted eigenpairs at each iteration, ‖ ⋅
‖F denotes the Frobenius norm and tol the desired tolerance
for the convergence. In our experiments, we run as many
outer iterations as needed to achieve convergence with a tol-
erance tol = 10−12 for both Cauchy and Chebyshev approx-
imations. This tolerance is achieved after 10 outer iterations
for the Cauchy approximation and after 7 outer iterations for
Chebyshev approximation. Furthermore, Figure 4 presents
the relative residuals ‖T (�)u‖2∕‖u‖2 for the 17 computed
eigenvalues obtained using each approximation method. We
emphasise that the Rayleigh-Ritz approach combined with
Cauchy and Chebyshev approximations delivers more accu-
rate eigenpair approximations than those computed by solv-
ing the linearized problem obtained directly from the Cauchy
and Chebyshev approximation with projection.

Example 2
As a second example, we consider the 3D Laplace eigen-

value problem (1) on a unit spherewith homogeneousDirich-
let boundary conditions. The analytic expressions for the

100 101

m

10-20

10-15

10-10

10-5

100

A
pp

ro
xi

m
at

io
n 

er
ro

r

Rational
Chebyshev

100 101

m

10-15

10-10

10-5

100

105

A
pp

ro
xi

m
at

io
n 

er
ro

r

Rational
Chebyshev

Figure 1: Top: Approximation error versus the order of the
approximation m inside a unit circle. Bottom: Approximation
error versus the order of the approximation m inside an ellipse
centered at c = 0 with semi-major axis rx = 1 and semi-minor
axis ry = 0.2.

eigenvalues for this geometry are well-known and given as
the zeros of the spherical Bessel function of order l. We are
interested in the 6 eigenvalues of (1) listed in Table 2.

In order to compute the eigenvalues of interest using the
rational approximation technique, we consider an elliptic con-
tour centered at c = 5.5 with semi-major axis rx = 2.5 and
semi-minor axis ry = 0.1. The errors of each approxima-
tion versus the order of approximation m are presented in
Figure 5. The top part of Figure 6 presents the eigenvalues
computed by the Cauchy rational approximation and those
computed by the Chebyshev interpolation with m = 25 on
a uniform mesh with 384 triangles, whereas the bottom part
of Figure 6 illustrates the accuracy of the two methods. Also
in this example, we have tested the reduced subspace itera-
tion given by Algorithm 3. To extract the 20 eigenvalues of
interest, we consider the Cauchy approximation on a circle
centered at c = 5.5 with radius r = 2.5. The first outer iter-
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Figure 2: Top: The eigenvalues of (1) with homogeneous
Dirichlet boundary conditions inside a circle centered at c = 8.5
with radius r = 3.5 (circles) computed via (15) (plus) and
Chebyshev interpolation method inside the real interval [5, 12]
(squares). Bottom: The relative residuals ‖T (�)u‖2∕‖u‖2 of
the computed eigenpairs.

ation was carried out with a random subspaceW of dimen-
sion � = 25 to which q = 10 steps of inverse power method,
given in Algorithm 3, were applied. As for Example 1, we
run as many outer iterations as needed to achieve conver-
gence with a tolerance tol = 10−12 for both approximation
methods. Note that q = 10 steps of the inverse powermethod
were applied at each outer iteration. The Cauchy approxima-
tion and Chebyshev interpolation methods achieved desired
tolerance after 17 and 11 outer iterations, respectively. For
completeness, we have also computed the corresponding rel-
ative residuals ‖T (�)u‖2∕‖u‖2 for the resulting eigenpairs.
These relative residuals are shown in Figure 7 for each eigen-
pair index.
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Figure 3: Top: The eigenvalues of (1) with homogeneous
Dirichlet boundary conditions inside an ellipse centered at
c = 8.5 with semi-major axis rx = 4.5 and semi-minor axis
ry = 0.2 (circles) computed computed via (15) (plus) and
Chebyshev interpolation method inside the real interval [5, 12]
(squares). Bottom: The relative residuals ‖T (�)u‖2∕‖u‖2 of
the computed eigenpairs.

Example 3
In this example, we illustrate the efficiency of the Cauchy

approximation technique applied to the nonlinear eigenvalue
problem resulting fromBEdiscretization of a real-world prob-
lem of industrial relevance. We consider the geometry cor-
responding to a a pump casing model created by using the
Gmsh tool [20]. Several methods have been proposed in the
literature to comprehensively study the acoustic behaviors
of the pump casing [21, 22]. The boundary of the pump
model displayed in Figure 8 is partitioned into 3 479 652
triangles, leading to a nonlinear eigenvalue problem with
1 728 508 DoFs. Problems of such large size add another
level of difficulty to our methods, for example, we are un-
able to store the underlying matricesBi in memory. To over-
come this we resort to the-matrix based compression tech-
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Figure 4: Relative residuals ‖T (�)u‖2∕‖u‖2 of the 17 eigen-
values of the Laplace eigenvalue problem on the unit cube.
Top: after 10 outer iterations of the reduced approach using
Cauchy approximation. Bottom: after 7 outer iterations using
Chebyshev approximation.

niques. Specifically, we will use the GYPSILAB toolbox li-
braryOPENHMX [23] in order to directly assemble-matrix
compressed versions of matrices Bi. Here, we consider the
boundary element discretization of problem (1) with a rigid
boundary, i.e., a(x) = 0. It is well-known that application of
BEM for the numerical solution of exterior Helmholtz equa-
tionmay give rise to complex eigenvalues, which as wemen-
tioned before, is the case here. In our BEM calculations, we
used boundary regularized integral equation formulation of
the Helmholtz equation to determine these complex eigen-
values accurately. The highly accurate results, which are
of particular interest in acoustic problems of practical rel-
evance, can be obtained by regularization of the Helmholtz
kernel for example by computing a correction depending on
its asymptotic behavior [24, 25]. This however also means
that the fictitious solutions of the Helmholtz equation around
closed surfaces are very unlikely to appear. However, it is

no. eigenvalue multiplicity

1 3.1416 1
2 4.4934 3
3 5.7634 5
4 6.2831 1
5 6.9879 7
6 7.7252 3

Table 2

Exact eigenvalues of the 3D Laplace eigenvalue problem on a
unit sphere with homogeneous Dirichlet boundary conditions.
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Figure 5: Approximation errors versus the order of the approx-
imation m inside an ellipse centered at c = 0 with semi-major
axis rx = 1 and semi-minor axis ry = 0.2 for the spherical BEM
problem.

important to note that fictitious eigenfrequencies may occur
when solving exterior acoustic BEM problems. If that is the
case, the unwanted frequencies can be removed by using the
Burton-Miller equation [26, 27, 28] or combined boundary
integral formulation [29].

Since for this example the analytic expressions of the
eigenvalues are not available, the relative residuals of the
computed eigenpairs will be used to verify the accuracy of
the obtained approximations.

Let the domain for the Cauchy approximation be given as
a circular contourΩ centered at c = −15iwith radius r = 12.
To choose a suitable order of approximation, we consider
another circle Ω1 inside Ω with the same center and radius
r1 = r∕2 and then increase m until the resulting rational ap-
proximation inside Ω1 is accurate enough. The eigenvalue
approximations inside Ω can be obtained using a different,
much coarser triangular mesh and running as many steps
of Arnoldi algorithm as needed to accurately solve the ex-
panded linear eigenvalue problem (15). We recall that only
one LU factorization of the Schur complement-matrix S
is required in a preprocessing step before the actual Arnoldi
algorithm is invoked. In Figure 9, we present the approxima-
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Figure 6: Top: The eigenvalues of (1) with homogeneous
Dirichlet boundary conditions inside an ellipse centered at
c = 5.5 with semi-major axis rx = 2.5 and semi-minor axis
ry = 0.2 (circles) computed via (15) (plus) and Chebyshev
interpolation method inside the real interval [3, 8] (squares).
Bottom: The relative residuals ‖T (�)u‖2∕‖u‖2 associated with
the computed eigenpairs.

tion errors versus the order of the Cauchy approximation on
a fine mesh on Ω1. The bottom part of Figure 9 shows that a
high accuracy of the rational approximation can be reached
for m = 24. We can therefore solve the eigenvalue problem
(5) using m = 24 trapezoidal quadrature nodes. Forming
the 24 matrices Bi and performing the matrix-vector mul-
tiplications with Bi are efficiently parallelized on 32 cores,
where the per-core memory limit is ≈ 31 GB. The overall
computational time is 7.3 hours. The top part of Figure 9
shows the computed eigenvalues. It turns out that there are
33 eigenvalues inside the contour Ω. The relative residuals
‖T (�)u‖2∕‖u‖2 associated with the computed eigenvalues
are presented in Figure 10 and Figure 11 shows 4 different
modes of the pump model. Note that the negativity of the
real parts of some of the computed eigenvalues can be related
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Figure 7: Relative residuals ‖T (�)u‖2∕‖u‖2 associated with
the 20 eigenvalue approximations of the Laplace eigenvalue
problem on the unit sphere. Top: after 17 outer iterations of
the reduced approach using Cauchy approximation. Bottom:
after 11 outer iterations using Chebyshev interpolation.

to the existence of acoustic surface plasmon resonances [30].
These results were obtained by applying the shift-and-invert
Arnoldi algorithm to solve the expanded linear eigenvalue
problem obtained by Cauchy approximation on a uniform
mesh with 1 728 508 P1 triangular elements.

We now consider the reduced subspace iteration approach
to solve the same problem with 10704 triangles. To extract
the same 33 eigenvalues displayed in the top part of Figure
9, we start with a random subspace W of size � = 40 and
carry out 20 outer iterations of Algorithm 3 with q = 10
steps of inverse power method (Algorithm 1) performed at
each single outer iteration. Note that Algorithm 3 is suit-
able for parallelization. In our tests, we have exploited par-
allelism for computing the matrices Bi and B̂i = UTBiU
using 32 cores. Since Algorithm 1 is applied to each vector
separately to obtain a block of vectorsU , the construction of
the approximate subspace at each outer iteration can also be
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Figure 8: Geometry and BE mesh of the pump casing model
with 1 728 508 DoFs.

performed in parallel.

5. Conclusion
We have proposed two approximation methods for solv-

ing nonlinear eigenvalue problems resulting from applica-
tion of boundary element method (BEM) to some types of
acoustic eigenvalue problems in three dimensions. These
methods are based on a newly proposed linearization which
exploits the rational approximation of nonlinear functions
via discretization of their Cauchy integral representation, which
to our knowledge, has not been used previously. The re-
sulting linearization fits within the broader class of so-called
BlockKronecker Linearizations and therefore it inherits back-
ward stability. One of the primary advantages of this gen-
eral approach is that standard projection methods can be ap-
plied to a sequence of problems of the same size as the origi-
nal problem. The rational approximation method, combined
with -matrix techniques has enabled us to solve a chal-
lenging real-world problem in a boundary element approxi-
mation of 3-dimensional acoustic equations. We believe that
the proposed approach can be useful in solving other classes
of large scale nonlinear eigenvalue problems.
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