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SUMMARY

A Rayleigh-Ritz with Continuous Galerkin method based approach is
presented to compute the normal modes of a planet in the presence
of an essential spectrum. The essential spectrum is associated with a
liquid outer core. The presence of a liquid outer core requires the intro-
duction of a mixed Continuous Galerkin finite-element approach. Our
discretization utilizes fully unstructured tetrahedral meshes for both
solid and fluid domains. The relevant generalized eigenvalue problem
is solved by a combination of several highly parallel, computationally
efficient methods. Self-gravitation is treated as an N-body problem and
the relevant gravitational potential is evaluated directly and efficiently
utilizing the fast multipole method. The computational experiments
are performed on constant elastic balls and the isotropic version of the
preliminary reference earth model (PREM) for validation. Our pro-
posed algorithm is illustrated in fully heterogeneous models including
one combined with crust 1.0.

1 INTRODUCTION

Planetary normal modes are important for studying the dynamic response to sources including earthquakes

along faults, meteorite impacts, postseismic relaxation, as well as for analyzing and computing surface and

body waves (Dahlen & Tromp 1998; Lognonné 2005). The relatively low-lying, but many eigenfrequencies in

the spectrum of a planet contain critical information about its large-scale structure and provide constraints

on heterogeneity in composition, temperature, and anisotropy.

For a review of Earth’s free oscillations, we refer to Woodhouse & Deuss (2007). Current standard

approaches to computing the point spectrum and associated normal modes have several limitations. Assum-

ing spherical symmetry, the problem becomes one-dimensional and the computations in such models using

MINEOS (Woodhouse 1988; Masters et al. 2011) are still common practice; these are then typically used in a

perturbation theory to include angular heterogeneities. Utilizing the normal modes in a spherically symmet-
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ric model as a basis leads to a full-mode coupling approach (Deuss & Woodhouse 2001, 2004; Al-Attar et al.

2012). Such a Rayleigh-Ritz type approach works well under the assumption of weak angular heterogeneity,

in particular, assuming that the fluid-solid boundaries are exact spheres. Indeed, this basis does not fit any

non-spherically symmetric discontinuities. A separation of the essential spectrum needs to be carried out

carefully. We discuss this approach in Appendix A.

In this paper, we revisit the work of Buland & Gilbert (1984). They encountered several complications

that we overcome by characterizing and separating the essential spectrum and introducing the mixed finite-

element method (FEM) for fully heterogeneous terrestrial planets. In a separate paper (Shi et al. 2018),

we introduce a highly parallel algorithm for solving the generalized eigenvalue problem resulting from our

analysis.

Self-gravitation manifests itself in the incremental gravitational potential because the density change

with displacement needs to be included for computing long-period modes. We utilize the fundamental solu-

tion and treat the self-gravitation as an N-body problem. We then apply the fast multipole method (FMM)

(Greengard & Rokhlin 1997; Gimbutas & Greengard 2011; Yokota 2013), which reduces the algorithm

complexity significantly, to compute both the reference gravitational and the incremental gravitational po-

tentials. Alternatively, one can apply a finite-infinite element method (Zienkiewicz et al. 1983; Burnett 1994)

for modeling unbounded domain problems to approximate the far-field of Poisson’s equation. More recently,

the spectral-infinite-element method (Gharti et al. 2018) has been developed for incorporating gravity. While

our eigensolver (Shi et al. 2018) only takes matrix-by-vector products, any suitable schemes, such as FMM

or infinite-element methods, can be used in our computational framework.

The outline of this paper is as follows. In Section 2, we revisit the physics of normal mode seismology

and design the proper weak formulation of the elastic-gravitational system and the separation of the essential

spectrum. In Section 3, we introduce the Continuous Galerkin mixed FEM and obtain the corresponding

matrix equations. In Section 4, we study the computation of the reference gravitational field and self-

gravitation using the FMM. In Section 5, we discuss the resulting generalized eigenvalue problem and

eigensolvers. In Section 6, we present and validate our 3D computations using constant elastic balls and

an isotropic PREM with and without self-gravitation. We calculate normal modes of two fully 3D Earth

models including one with a complex 3D crust. The visualization of various modes of PREM can be found

in Appendix B. In Section 7, we summarize our current work and discuss future directions of research.

2 WEAK FORMULATION: THE ELASTIC-GRAVITATIONAL SYSTEM

In this section, we present the elastic-gravitational system of equations of a non-rotating planet in the weak

form; see Dahlen & Tromp (1998); de Hoop et al. (2015) for the strong formulation. Since Earth contains

both solid and fluid regions, we use it as one of our examples and then generalize our approach to study

other planets.

2.1 Natural subdomains and computational meshes

Following the notation in de Hoop et al. (2015), a bounded set X̃ ⊂ R3 is used to represent the interior

of the Earth, with Lipschitz continuous exterior boundary ∂X̃. The exterior boundary ∂X̃ contains fluid

(ocean) surfaces ∂X̃F and solid surfaces ∂X̃S. We subdivide the set X̃ into solid regions ΩS and fluid regions

ΩF. The fluid regions contain the liquid outer core ΩOC and the oceans ΩO. The solid regions can be further

subdivided into the crust and mantle ΩCM and the inner core ΩIC. We use Σ to represent the interfaces

between these subregions. In summary,

X̃ = ΩS ∪ ΩF ∪ Σ ∪ ∂X̃, ∂X̃ = ∂X̃S ∪ ∂X̃F, ΩS = ΩCM ∪ ΩIC, ΩF = ΩOC ∪ ΩO.

The interior interfaces can further be subdivided into three categories: interfaces between two fluid regions

ΣFF, interfaces between two solid regions ΣSS, and interfaces between fluid and solid regions ΣFS. We can

subdivide ΣFS into two major interfaces: internal interfaces ΣFS
int and the bottom interface ΣFS

O of the oceans.

The internal interfaces include interfaces between the lower mantle and the outer core ΣCMB, which is known
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Figure 1. Illustration of different meshes. (a1) Three triangularized surface meshes; (a2) A tetrahedral mesh with
100k elements that is generated from (a1); (b1) Seven triangularized surface meshes; (b2) A tetrahedral mesh with 1

million elements that is generated from (b1). The light surfaces in (b1) and (b2) denote the CMB.

as the Core Mantle Boundary (CMB); the interface between the outer core and the inner core is denoted as

ΣICB, which is known as the Inner Core Boundary (ICB). Thus,

Σ = ΣSS ∪ ΣFF ∪ ΣFS, ΣFS = ΣFS
int ∪ ΣFS

O , ΣFS
int = ΣCMB ∪ ΣICB.

Since a general terrestrial planet may contain multiple complex discontinuities associated with different

geological and geodynamical features, utilization of a flexible, fully unstructured tetrahedral mesh will be

natural. We discretize the major discontinuities using triangulated surfaces that are generated via distmesh

(Persson & Strang 2004) and then build up the Earth model using an unstructured tetrahedral mesh via

TetGen (Si 2015). In Fig. 1 we illustrate the interfaces and meshes with one hundred thousand and one

million elements. The techniques show great flexibility and can provide models with multiple resolutions. In

Figs. 2, we illustrate a 3D Earth model built on a tetrahedral mesh. In Fig. 2(a), we show the Moho interface

that is constructed using an unstructured triangular mesh. The color shows the depth and the black lines

are the edges of triangles. In Fig. 2(b), we illustrate the 3D VP model based on MIT’s mantle tomographic

results (Burdick et al. 2017) and crust 1.0 (Laske et al. 2013). The core model is based on PREM.

2.2 The basic equations

Here, we revisit seismology of the non-rotating Earth and set up the strong form of the elastic-gravitational

equations with all the necessary boundary conditions.
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(a) Moho (b) MIT VP model

Figure 2. A 3D Earth model built using MIT tomographic results (Burdick et al. 2017) and crust 1.0 (Laske et al.

2013). (a) A triangle mesh built for Moho. The color indicates the depth below the reference surface of the Earth.

The bottom of the Tibet Plateau is shown. (b) MIT mantle VP model built on a tetrahedral mesh. The VP model
and the contours of dVP /VP (%) are shown.

Given the reference density ρ0 and the gravitational constant G, we let Φ0 denote the gravitational

potential, satisfying

∆Φ0 = 4πGρ0, (1)

and S(u) denote the Eulerian perturbation of the Newtonian potential associated with the displacement, u,

satisfying

∆S(u) = −4πG∇ · (ρ0u). (2)

The elastic-gravitational system of the non-rotating Earth has the form

− ρ0ω2u = ∇ · TPK1 − ρ0u · ∇∇Φ0 − ρ0∇S(u), (3)

where TPK1 = ΛT0

: ∇u denotes the first Piola-Kirchhoff stress tensor with the elasticity tensor ΛT0

. Here,

ΛT0

is defined as

ΛT0

ijkl = cijkl +
1

2

(
T 0
ijδkl + T 0

klδij + T 0
ikδjl − T 0

jlδik − T 0
jkδil − T 0

ilδjk
)
,

where c is the elastic stiffness tensor and T 0 satisfies the mechanical equilibrium given by the static mo-

mentum equation,

∇ · T 0 = ρ0∇Φ0. (4)

In Table 1, we show all the boundary conditions for the elastic-gravitational system (3) as in de Hoop et al.

(2015), where ν denotes the normal vector; ∇Σ· is the surface divergence and W is the Weingarten operator.

We transform (3) to

− ρ0ω2u = ∇ · TL1 −∇ · (u · ∇T 0)− ρE1∇Φ0 − ρ0∇S(u), (5)

where ρE1 = −∇ · (ρ0u) denotes the first-order Eulerian density perturbation and TL1 = ΥT0

: ∇u denotes

boundary types linearized boundary conditions

Earth’s free surface, ∂X̃ T 0 · ν = 0; ν · TPK1 = 0

solid-solid interfaces ΣSS [ν · TPK1]+− = 0; [T 0 · ν]+− = 0; [u]+− = 0

fluid-solid interfaces ΣFS [T 0 · ν]+− = 0; [u · ν]+− = 0

& fluid-fluid interfaces ΣFF [ν · TPK1]+− = −ν∇Σ · (p0[u]+−)− p0W [u]+−
all interfaces Σ & ∂X̃ [S(u)]+− = 0; [∇S(u) · ν + 4πGρ0u · ν]+− = 0

Table 1. Boundary conditions for a general Earth model.
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boundary types linearized boundary conditions

Earth’s free surface, ∂X̃ T 0 · ν = 0; ν · TL1 = 0

solid-solid interfaces ΣSS [ν · TL1]+− = 0; [T 0 · ν]+− = 0; [u]+− = 0

fluid-solid interfaces ΣFS [T 0 · ν]+− = 0; [u · ν]+− = 0

& fluid-fluid interfaces ΣFF [ν · TL1]+− = ν[ν · TL1 · ν]+− = 0

all interfaces Σ & ∂X̃ [S(u)]+− = 0; [∇S(u) · ν + 4πGρ0u · ν]+− = 0

Table 2. Boundary conditions for a hydrostatic Earth model.

the incremental Lagrangian Cauchy stress. The elasticity tensor, ΥT0

ijkl, attains the form,

ΥT0

ijkl = cijkl +
1

2
(−T 0

ijδkl + T 0
klδij + T 0

ikδjl − T 0
jlδik + T 0

jkδil − T 0
ilδjk).

In fact, (4) does not determine the entire tensor T 0. It is common practice to invoke the hydrostatic

assumption when T 0
ij = −p0δij ; then ΥT0

ijkl reduces to cijkl. With gravitational acceleration g = −∇Φ0, we

can rewrite (5) as

ρ0ω2u = −∇ · (c : ∇u)−∇(ρ0u · g) +∇ · (ρ0u)g + ρ0∇S(u). (6)

In Table 2, we show the boundary conditions for system (6) assuming a hydrostatic Earth model.

2.3 The weak formulation

To study planetary normal modes, we include linear elasticity, compressible fluids, the fluid-solid and free

surface boundary conditions. Discretization of the standard formulation leads to computational difficulties

since the non-seismic modes from the compressible fluid pollute the computation of the point spectrum. In

this paper, we restrict the solution space through a displacement-pressure while separating out the essential

spectrum originating from the liquid core.

2.3.1 Choice of physical variables for fluid regions

Here, we review different approaches pertaining to the above-mentioned separation. The natural displace-

ment formulation will result in a symmetric eigenvalue problem. However, the drawback is the existence

of spurious oscillations (Kiefling & Feng 1976). Several finite-element methods have been developed for

modeling the fluid regions with fluid-solid interaction: A displacement formulation (Hamdi et al. 1978),

a pressure formulation (Zienkiewicz & Newton 1969; Craggs 1971), a displacement-pressure formulation

(Wang & Bathe 1997), and a velocity potential formulation (Everstine 1981; Olson & Bathe 1985). How-

ever, the pressure formulation leads to a non-symmetric eigenvalue problem, see Zienkiewicz & Newton

(1969); Craggs (1971); the velocity potential formulation (Everstine 1981; Olson & Bathe 1985) leads to a

quadratic eigenvalue problem.

In the engineering community, several approaches have been designed to solve this issue. A penalty

method (Hamdi et al. 1978) has been applied by imposing an irrotational constraint. However, the study by

Olson & Bathe (1983) has shown that this penalty method has issues dealing with a solid vibrating in the

fluid cavity, which is the case in this paper. A four-node element with a reduced integration with a mass

matrix projection technique (Chen & Taylor 1990) has been designed to eliminate the spurious modes. A

method using different elements for solid and fluid regions was proposed for two-dimensional (Bermúdez

& Rodŕıguez 1994) and for three-dimensional cases (Bermúdez et al. 1999) while non-physical spurious

modes appear (Bermúdez et al. 1995). The displacement/pressure formulation (Wang & Bathe 1997) has

been developed via introducing mixed elements; still, the fluid-solid coupling needs additional consideration

(Bermúdez & Rodŕıguez 1994; Bermúdez et al. 1999).

Compared with the above-mentioned engineering problems, we encounter a more complicated system

(6) with different boundary conditions (cf. Table 2). Due to the presence of reference gravitational field and

self-gravitation, the essential spectrum of the elastic-gravitational system is more complicated than that of

the purely elastic systems with fluid structures in the engineering problems. In the geophysical community,

the pressure formulation (Komatitsch & Tromp 2002; Nissen-Meyer et al. 2008) was used for replacing the



6 Shi J., et al

displacement fields in the fluid regions. It results in non-symmetric stiffness and mass matrices. Another

approach used several additional variables to represent the fluid displacement (Chaljub et al. 2003, 2007),

which also leads to a non-symmetric system.

To preserve the symmetry and guarantee the correct orthonormality condition for the eigenfunctions or

normal modes, we must keep the fluid displacement in the formulation. In Subsection 2.3.2, we introduce a

proper weak form of (6) for the hydrostatic Earth model as well as the proper relevant function spaces. We

introduce an additional variable that is related to the pressure in Subsection 2.3.4 and a constraint for this

new variable. We show that this new variable leads us to a symmetric system with displacements only since

this new variable can later be substituted using a standard transformation. In Subsections 2.3.4 and 2.3.5,

we discuss the proper formulations for both fluid and solid regions, respectively. In Subsection 2.3.3, we

discuss the reason why the additional variable helps us to restrict the fluid displacement to the proper

space. In Subsection 2.3.6, we restrict the computation of S(u) in (2) within the computation domain. In

Subsection 2.3.7, we combine all the derivations and construct our augmented weak form for numerical

discretization.

2.3.2 The mass term and sesquilinear form

We let us denote the displacement in the solid regions and uf denote the displacement in the fluid regions.

We treat the solid and fluid parts differently and then deal with S(u) globally. We use v to denote test

functions and denote vs and vf for the solid and fluid test displacements, respectively. The mass term takes

the form (with the summation convention)

bH(u, v) =

∫
ΩS

vsju
s
jρ

0 dx+

∫
ΩF

vfj u
f
j ρ

0 dx. (7)

We note that the original weak form of the right-hand side of (6), identified as aoriginal(u, v) in (de Hoop

et al. 2015, (3.5)), is not coercive. In the work of de Hoop et al. (2015), a proper form, a2(u, v), for the weak

formulation is introduced. The coercivity of a2(u, v) is established in (de Hoop et al. 2015, Sections 5.2 and

6). The equivalence, that is, a2(u, v) = aoriginal(u, v) under the boundary conditions (cf. Table 1), is proven

in (de Hoop et al. 2015, Lemma 4.1).

To set up our formulation for the numerical discretization, we start from a2(u, v). Since the original

expression for a2(u, v) is derived from the first Piola-Kirchhoff stress tensor TPK1, upon applying the hy-

drostatic assumption, integrations in a2(u, v) related to σN , ΣSS, ΣFF and ∂X̃ will vanish. We substitute

s̃ = ∇ρ0 − κ−1g(ρ0)2 and then obtain

a2(u, v) =

∫
ΩS

(∂xiv
s
j )(cijkl∂xku

s
l ) dx+

∫
ΣFS

S{vsjgjνs→f
i us

i [ρ0]f}dΣ

+

∫
ΩS

S
{

(∂xjv
s
j )giu

s
iρ

0 − us
i (∂xigj)v

s
jρ

0 − us
i (∂xiv

s
j )gjρ

0}dx

+

∫
ΩF

ρ0N2 gjv
f
j giu

f
i

‖g‖2 dx+

∫
ΩF

κ(∂xjv
f
j + ρ0κ−1gjv

f
j )(∂xiu

f
i + ρ0κ−1giu

f
i ) dx

− 1

4πG

∫
R3

[∂xiS(v)][∂xiS(u)] dx, (8)

where κ is the bulk modulus, N2 = (∇ρ0/ρ0− gρ0/κ) · g signifies the square of the Brunt-Väisälä frequency,

and νs→f denotes the normal vector at the fluid-solid boundary pointing from the solid to the fluid side.

The symmetrization operation S is defined as S{L(u, v)} := 1
2
(L(u, v) + L(v, u)), for any bilinear form

L(u, v).

Following the work of (de Hoop et al. 2015, Definition 5.4), we introduce the space for the displacement

field

E =

u ∈ L2(X̃, ρ0 dx) :


us = u|ΩS ∈ H1(ΩS)

uf = u|ΩF ∈ H(Div,ΩF, L2(∂ΩF))

[u · ν]+− = 0, along ΣFS

 , (9)
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where

H(Div,ΩF, L2(∂ΩF)) = {uf ∈ L2(ΩF) : ∇ · uf ∈ L2(ΩF), u|∂ΩF · ν ∈ L2(∂ΩF)}.

The definitions of the other relevant function spaces can be found in (de Hoop et al. 2015, Sections 5 and

7). The solution space H = L2(X̃, ρ0 dx) subjects to the constraint
∫
X̃
uρ0 dx = 0 removing rigid-body

translations, and in which E is densely embedded, can be decomposed as (de Hoop et al. 2019)

H = H1 ⊕H2, (10)

where space H2 is associated with the essential spectrum. We define operator T as

Tuf = ρ0[∇ · uf + ρ0κ−1g · uf ]. (11)

The adjoint, T ∗, of T is given by

T ∗ϕ = − 1

ρ0
∇(ρ0ϕ) + ρ0κ−1gϕ, (12)

where ϕ has the interpretation of potential. Then H2 is defined by the constraints,

us = 0, Tuf = 0 and uf · ν = 0 on ΣFF ∪ ΣFS ∪ ∂X̃F.

In fact, uf can be decomposed according to Ran(T ∗) ⊕ Ker(T ), following the decomposition according to

H1⊕H2. In the following, we consider a2(u, v) for u, v ∈ H1, again, to eventually compute the seismic point

spectrum.

2.3.3 Restricting uf to H1

We will enforce that uf lies in Ran(T ∗) by augmenting the system of equations (cf. (8)) and introducing an

additional variable, p, according to

− pκ−1 = ∇ · uf + ρ0κ−1g · uf in ΩF. (13)

We augment the space E in (9) with the space Ep,

Ep = H1(ΩF). (14)

The essence is that uf is enforced to have the representation uf = T ∗ϕ for some ϕ ∈ H1(ΩF). Here,

ϕ = (TT ∗)−1Tuf ,

while

Tuf = −ρ0κ−1p.

Indeed, we will use p instead of ϕ in the process of removing any component of uf in Ker(T ).

Imposing the fluid-solid boundary condition [νf→s
j uf

j − ν
f→s
j us

j ]|ΣFS = 0, we obtain the weak form for

(13),

0 =

∫
ΩF

vp[−pκ−1 − ∂xju
f
j − ρ

0κ−1gju
f
j ] dx

= −
∫

ΩF

vppκ−1 dx+

∫
ΩF

[(∂xjv
p)uf

j − v
pgju

f
j ρ

0κ−1] dx−
∫

ΣFS

vpνf→s
j us

j dΣ (15)

=: cg([u, p], vp) (16)

for all vp ∈ H1(ΩF) with vp|∂X̃F = 0, where νf→s denotes the normal vector at the fluid-solid boundary

pointing from the fluid to the solid side. We will employ the short-hand notation, cg([u, p], vp), in the further

analysis.
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2.3.4 Fluid regions

We use (13) in (8) and obtain∫
ΩF

κ(∂xjv
f
j + ρ0κ−1gjv

f
j )(∂xiu

f
i + ρ0κ−1giu

f
i ) dx

=

∫
ΩF

[vfj (∂xjp)− v
f
j gjpρ

0κ−1] dx−
∫

ΣFS

vfj ν
f→s
j p dΣ. (17)

We have

−
∫

ΣFS

vfj ν
f→s
j p dΣ =

∫
ΣFS

vsjν
s→f
j p dΣ. (18)

We include the right-hand side of (18) in the contributions from the solid regions. We thus obtain the

contributions to a2(u, v) in (8) from the fluid regions,

af2 (u, v) =

∫
ΩF

ρ0N2 gjv
f
j giu

f
i

‖g‖2 dx+

∫
ΩF

vfj [∂xjp− gjpρ
0κ−1] dx, (19)

where we identify ∇p− ρ0κ−1gp with −ρ0T ∗((ρ0)−1p).

2.3.5 Solid regions

For the solid regions, we include the right-hand side of (18) to the terms related to the solid regions in (8)

and obtain

as2(u, v) =

∫
ΩS

(∂xiv
s
j )(cijkl∂xku

s
l ) dx+

∫
ΣFS

S{vsjgjνs→f
i us

i [ρ0]f}dΣ

+

∫
ΣFS

vsjν
s→f
j p dΣ +

∫
ΩS

S{(∂xjv
s
j )giu

s
iρ

0 − ρ0us
i (∂xigj)v

s
j − ρ0us

i (∂xiv
s
j )gj}dx. (20)

Combining (16), (19) and (20) we obtain a complex symmetric bilinear form for a non-rotating hydrostatic

planet, not including the incremental gravitational terms.

2.3.6 Incremental gravitational potential

Here, we discuss the contribution of the perturbation of the gravitational potential S(u),

− 1

4πG

∫
R3

[∂xiS(v)][∂xiS(u)] dx =

∫
X̃

vi[∂xiS(u)]ρ0 dx (21)

Since we decompose the test functions into test functions on solid and fluid regions, we rewrite (21) as∫
X̃

vi[∂xiS(u)]ρ0 dx =

∫
ΩS

vsi [∂xiS(u)]ρ0 dx+

∫
ΩF

vfi [∂xiS(u)]ρ0 dx =

−
∫

ΩS

[∂xi(ρ
0vsi )]S(u) dx−

∫
ΣSS∪∂X̃S

νiv
s
iS(u)[ρ0]+− dΣ−

∫
ΣFS

νf→s
i vsiS(u)[ρ0]s dΣ

−
∫

ΩF

[∂xi(ρ
0vfi )]S(u) dx−

∫
ΣFF∪∂X̃F

νiv
f
i S(u)[ρ0]+− dΣ−

∫
ΣFS

νs→f
i vfi S(u)[ρ0]f dΣ, (22)

where [ρ0]s denotes the solid density along the fluid-solid boundary. One can set up S(u) as an independent

variable and apply the finite-infinite element method to approximate (2), but here we follow a different

approach.

Making use of the Green’s function (Dahlen & Tromp 1998, Chapter 3, (3.98)), we have

S(u) = G

∫
X̃

∇′ · (ρ0(x′)u(x′))

‖x− x′‖ dx′ +G

∫
Σ∪∂X̃

ν(x′) · u(x′)[ρ0(x′)]+−
‖x− x′‖ dΣ′. (23)
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Again, we separate the displacement field u into us and uf , and rewrite (23) as

S(u) = G

∫
ΩS

∇′ · (ρ0(x′)us(x′))

‖x− x′‖ dx′ +G

∫
ΩF

∇′ · (ρ0(x′)uf (x′))

‖x− x′‖ dx′

+G

∫
ΣSS∪∂X̃S

ν(x′) · us(x′)[ρ0(x′)]+−
‖x− x′‖ dΣ′ +G

∫
ΣFS

[ρ0(x′)]sνf→s(x′) · us(x′)

‖x− x′‖ dΣ′

+G

∫
ΣFF∪∂X̃F

ν(x′) · uf (x′)[ρ0(x′)]+−
‖x− x′‖ dΣ′ +G

∫
ΣFS

[ρ0(x′)]fνs→f (x′) · uf (x′)

‖x− x′‖ dΣ′. (24)

Although we impose νs→f · uf = νs→f · us along the fluid-solid boundaries, we keep the construction of

the incremental gravitational potential S(u) as described in (24). This is to preserve the symmetry of the

bilinear form as we substitute (24) into (22).

Since the fundamental solution is known, we apply the FMM to evaluate S(u) for a given displacement

u via (24). Utilization of this approach is computationally attractive but requires that the eigensolver can

solve for the interior eigenmodes via matrix-vector multiplications.

2.3.7 Summary

We combine the weak formulations in fluid and solid regions (19), (20), the constraint in the fluid regions

(16) and the perturbation of the gravitational potential (21) in rewriting a2(u, v) in (8)

a2([u, p, S(u)], v) =

∫
ΩS

(∂xiv
s
j )(cijkl∂xku

s
l ) dx+

∫
ΣFS

S{vsjgjνs→f
i us

i [ρ0]f}dΣ

+

∫
ΣFS

vsjν
s→f
j p dΣ +

∫
ΩS

S{(∂xjv
s
j )giu

s
iρ

0 − us
i (∂xigj)v

s
jρ

0 − us
i (∂xiv

s
j )gjρ

0} dx

+

∫
ΩF

ρ0N2 gjv
f
j giu

f
i

‖g‖2 dx+

∫
ΩF

vfj [∂xjp− gjpρ
0κ−1] dx− 1

4πG

∫
R3

[∂xiS(v)][∂xiS(u)] dx. (25)

To restrict the domain of integration in the term (4πG)−1
∫
R3 [∂xiS(v)][∂xiS(u)] dx in (25) to the computa-

tional domain, we use relation (21) and obtain

a2([u, p, S(u)], v) =

∫
ΩS

(∂xiv
s
j )(cijkl∂xku

s
l ) dx+

∫
ΣFS

S{vsjgjνs→f
i us

i [ρ0]f}dΣ

+

∫
ΣFS

vsjν
s→f
j p dΣ +

∫
ΩS

S{(∂xjv
s
j )giu

s
iρ

0 − us
i (∂xigj)v

s
jρ

0 − us
i (∂xiv

s
j )gjρ

0}dx

−
∫

ΩS

[∂xi(ρ
0vsi )]S(u) dx−

∫
ΣSS∪∂X̃S

νiv
s
iS(u)[ρ0]+− dΣ−

∫
ΣFS

νf→s
i vsiS(u)[ρ0]s dΣ

+

∫
ΩF

ρ0N2 gjv
f
j giu

f
i

‖g‖2 dx+

∫
ΩF

vfj [∂xjp− gjpρ
0κ−1] dx

−
∫

ΩF

[∂xi(ρ
0vfi )]S(u) dx−

∫
ΣFF∪∂X̃F

νiv
f
i S(u)[ρ0]+− dΣ−

∫
ΣFS

νs→f
i vfi S(u)[ρ0]f dΣ. (26)

We find the complete linear system from (7), (26) and constraint (16):{
a2([u, p, S(u)], v) = ω2bH(u, v),

cg([u, p], vp) = 0,
(27)

where S(u) satisfies (24).

We will evaluate the normal modes of the A11 component in the space H1 (de Hoop et al. 2019) via

solving (27) and obtain the seismic point spectrum, strictly asymptotically. In the presence of an essential

spectrum with N2 6= 0, the normal mode summation (that is, the resolution of the identity) is not exact

and holds asymptotically correct.

We note that bH/2 in (7) and a2/2 in (26) correspond with the kinetic and elastic-gravitational energies,

respectively. Combining these and using p(uf , us|ΣFS) in (26) as the solution of (16), we obtain the action

L of our proposed system (Dahlen & Tromp 1998, (4.26))

L =
1

2

(
ω2bH(u, u)− a2([u, p(uf , us|ΣFS), S(u)], u)

)
. (28)
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In the Cowling approximation, one replaces a2 by aC , where

aC([u, p], v) = a2([u, p, S(u)], v) +
1

4πG

∫
R3

[∂xiS(v)][∂xiS(u)] dx. (29)

where aC denotes the weak form for the so-called Cowling approximation. Then{
aC([u, p], v) = ω2bH(u, v),

cg([u, p], vp) = 0.
(30)

We first consider the Cowling approximation, in Section 3, while introducing the mixed FEM. We then add

the incremental gravitational potential in Section 4, while introducing the FMM leading to a discretization

of (27).

3 THE CONTINUOUS GALERKIN MIXED FINITE-ELEMENT METHOD

In this section, we employ the Continuous Galerkin mixed finite-element method, see Zienkiewicz & Taylor

(2005); Bathe (2006); Hughes (2012); Brezzi & Fortin (2012); Ern & Guermond (2013), for discretizing our

system (30) assuming the Cowling approximation. We thus obtain a matrix representation for (30). The

incremental gravitational potential will be introduced in the discretization in Subsection 4.2.

3.1 The Continuous Galerkin mixed finite-element approximation

Given a shape regular finite-element partitioning Th of the domain X̃, we denote an element of the mesh by

Kk ∈ Th and a boundary element by El ⊂ ∂Kk and have

X̃ ≈
NK⋃
k=1

Kk, Σ ∪ ∂X̃ ≈
NE⋃
l=1

El ⊆
NK⋃
k=1

∂Kk,

where NK denotes the total number of volume elements and NE denotes the total number of interior and

exterior boundary elements. Furthermore, we let KS
k and KF

k be elements in the solid and fluid regions,

respectively. Similarly, ES
l , EF

l and EFS
l denote boundary elements on the solid ΣSS∪∂X̃S, fluid ΣFF∪∂X̃F

and fluid-solid ΣFS discontinuities, respectively. We have

ΩS ≈
NS

K⋃
k=1

KS
k , ΩF ≈

NF
K⋃

k=1

KF
k ,

ΣFS ≈
NFS

E⋃
l=1

EFS
l , ΣSS ∪ ∂X̃S ≈

NS
E⋃

l=1

ES
l , ΣFF ∪ ∂X̃F ≈

NF
E⋃

l=1

EF
l

with

NK = NS
K +NF

K , NE = NS
E +NF

E +NFS
E ,

where NS
K and NF

K denote the total number of volume elements in the solid and fluid regions, respectively,

and NS
E , NF

E and NFS
E denote the total number of boundary elements on the (interior/exterior) solid, fluid

and fluid-solid boundaries, respectively. In the above, h signifies the maximum value of diameters of all the

elements.

Since we separate out the fluid and solid regions, we divide the finite-element partitioning accordingly

into

Th = T S
h + T F

h , ΣFS
h = T S

h ∩ T F
h ,

where T S
h , T F

h and ΣFS
h denote the partitioning of the domain ΩS, ΩF and ΣFS, respectively. We then

introduce Eh as the finite-element space corresponding with E in (9),

Eh =

uh :


us
h ∈ Vs

h :=
{
vsh ∈ H1(ΩS) : vsh|K ∈ Pps(K), K ∈ T S

h

}
,

uf
h ∈ Vf

h :=
{
vfh ∈ H(Div,ΩF, L2(∂ΩF) : vfh|K ∈ Ppf (K), K ∈ T F

h

}
,∫

EFS

[uh · ν]+−v
p
h dΣ = 0 for all EFS ⊂ ΣFS

h

 (31)
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and Vp
h as the finite-element space for p,

Vp
h :=

{
vph ∈ H

1(ΩF) : vph|K ∈ Ppp(K), K ∈ T F
h

}
.

Here, Pps(K) and Ppf (K) are the spaces of polynomials of degrees ps and pf , respectively; Ppp(K) is

the space of polynomials of degree pp. By the Galerkin method, the finite-element solutions, uh, and test

functions, vh, both lie in Eh and Vp
h. We note that the polynomial degree pp does not need to be equal to

pf .

We apply non-conforming finite elements across fluid-solid boundaries. The fluid-solid transmission

condition in the definition of E has been replaced by the condition
∫
EFS [uh · ν]+−v

p
h dΣ = 0 in the definition

of Eh. The fluid-solid transmission condition holds in the form of a boundary integration. For low-degree

polyomials we show, in the next subsection, that these conditions are compatible through our formulation.

Such a compatibility was analyzed and discussed by Bermúdez & Rodŕıguez (1994); Bermúdez et al. (1995);

Brezzi & Fortin (2012). Several numerical studies (Kiefling & Feng 1976; Zienkiewicz & Bettess 1978; Olson

& Bathe 1985; Chen & Taylor 1990; Bermúdez et al. 1999) have been performed using similar non-conforming

schemes along the fluid-solid boundaries. For the general theory and analysis of the mixed FEM, we refer

to Brezzi & Fortin (2012).

3.2 Fluid-solid transmission condition

Here, we discuss the realization of the fluid-solid transmission condition using the mixed FEM. In a2 of

(26), we utilize the additional variable p to impose continuity of the normal stress across the fluid-solid

boundaries.

We insert any vph in ΩF with vph|ΣFS
h

= 0 to in the system (30) and then evaluate the integration over

all the elements and obtain

0 =

NF
K∑

k=1

∫
KF

k

[
− vphphκ

−1 + (∇ · vph)uf
h − v

p
h(g · uf

h)ρ0κ−1
]

dx

=

NF
K∑

k=1

∫
KF

k

vph

[
− κ−1ph −∇ · uf

h − ρ
0κ−1(g · uf

h)
]

dx ∀vph with vph|ΣFS
h

= 0,

Since the above equation holds for any basis with vph|ΣFS
h

= 0, constraint (13) is then satisfied in the integral

over each element. We then insert any basis element for vph with vph|ΣFS
h
6= 0 in system (30) and obtain

0 =

NF
K∑

k=1

∫
KF

k

[
− vphphκ

−1 + (∇ · vph)uf
h − v

p
h(g · uf

h)ρ0κ−1
]

dx+

NF
E∑

l=1

∫
EFS

l

−vph(νf→s · us
h) dΣ

=

NF
K∑

k=1

∫
KF

k

vph

[
− κ−1ph −∇ · uf

h − ρ
0κ−1(g · uf

h)
]

dx+

NF
E∑

l=1

∫
EFS

l

vph(νf→s · uf
h − ν

f→s · us
h) dΣ

=

NF
E∑

l=1

∫
EFS

l

vph(νf→s · uf
h − ν

f→s · us
h) dΣ ∀vph with vph|ΣFS

h
6= 0.

We probe this equation with a local basis that is non-vanishing on elements indexed by k1, . . . , k4 as il-

lustrated in Fig. 3. For simplicity of explanation, we choose a description in 2D in Fig. 3. We obtain the

integration over boundary elements indexed by l1 and l2,∫
EFS

l1

⋃
EFS

l2

vph(νf→s · uf
h − ν

f→s · us
h) dΣ = 0.

Similarly, if we apply a local basis that is non-vanishing on elements indexed by k4 and k5, we obtain the

integration over boundary elements indexed by l2 and l3,∫
EFS

l2

⋃
EFS

l3

vph(νf→s · uf
h − ν

f→s · us
h) dΣ = 0.
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Σ
FS
h

Ω
F
h

k1

k2

l1
l2

l3

k3

k4 k5

Ω
S
h

Figure 3. Illustration of the partition on the fluid-solid boundary. Elements k1 – k5 and boundary elements l1 – l3
are marked.

It is apparent that∫
EFS

l1

vph(νf→s · uf
h − ν

f→s · us
h) dΣ =

∫
EFS

l3

vph(νf→s · uf
h − ν

f→s · us
h) dΣ = 0 ∀EFS

l1 ∈ ΣFS
h .

Thus, the non-conforming scheme converges on the barycenters of the boundary elements if low-order poly-

nomials are utilized as local basis functions for the fluid regions and fluid-solid boundaries (Bermúdez et al.

1995, 1999).

3.3 Matrix formulae

We use mixed finite-element bases to build up each submatrix derived from (30). We introduce nodal

based Lagrange polynomials, {`si}, {`fi }, {`
p
i }, on the respective volume elements K ∈ T S

h , T F
h . We set

Nps = (ps + 1)(ps + 2)(ps + 3)/6, where Nps is the number of nodes on a tetrahedron for the ps-th order

operations physical relations corresponding formulae∫
ΩS
∇vsh : (c : ∇ush) dx

+

∫
ΣFS

S
{

(vsh · g)(ν
s→f · ush)[ρ0]f

}
dΣ

(ṽs)TAsgũ
s solid stiffness matrix with g +

∫
ΩS

S
{

(∇ · vsh)(g · ush)ρ0

−ush · (∇g) · v
s
hρ

0 − ush · (∇v
s
h) · gρ0

}
dx

(ṽf )TAf ũ
s Brunt-Väisälä frequency

∫
ΩF

ρ0N2 (g · vfh)(g · ufh)

‖g‖2
dx

(ṽp)TApp̃ fluid potential

∫
ΩF
−vphphκ

−1 dx

(ṽf )TAdgp̃ fluid stiffness matrix with g

∫
ΩF

vfh ·
[
(∇ph)− gphρ0κ−1

]
dx

(ṽp)TAT
dgũ

f constraint with g

∫
ΩF

[
∇vph · u

f
h − v

p
h(g · ufh)ρ0κ−1

]
dx

(ṽs)TEFSp̃ fluid-solid boundary condition

∫
ΣFS

(vsh · ν
s→f )ph dΣ

(ṽp)TET
FSũ

f fluid-solid boundary condition

∫
ΣFS
−vph(νf→s · ush) dΣ

(ṽs)TMsũ
s solid mass matrix

∫
ΩS

vsh · u
s
hρ

0 dx

(ṽf )TMf ũ
f fluid mass matrix

∫
ΩF

vfh · u
f
hρ

0 dx

Table 3. Implicit definition of the matrices for the Cowling approximation. In the above,
∫
ΩS =

∑NS
K

k=1

∫
KS

k
,
∫
ΩF =∑NF

K
k=1

∫
KF

k
and

∫
ΣFS =

∑NFS
E

l=1

∫
EFS

l
.
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polynomial approximation. We have likewise expressions for Npf and Npp . We write

(us
h)j(x) =

Nps∑
i=1

(us
h)j(xi)`

s
i (x), (32)

(uf
h)j(x) =

N
pf∑

i=1

(uf
h)j(xi)`

f
i (x), (33)

ph(x) =

Npp∑
i=1

p(xi)`
p
i (x), (34)

for x ∈ K; similar representations hold for vsh, vfh, vph, respectively. We collect the values of us
h, uf

h, ph and

vsh, vfh, vph at all the nodes, {xi}, in the vectors ũs, ũf , p̃ and ṽs, ṽf , ṽp, respectively. We then assemble

local matrices that represent the discretized system with respect to the mentioned Lagrange polynomials

following Table 3. We obtain Asg 0 EFS

0 Af Adg

ET
FS AT

dg Ap


 ũs

ũf

p̃

 = ω2

 Ms 0 0

0 Mf 0

0 0 0


 ũs

ũf

p̃

 . (35)

We introduce submatrices

AG =

(
Asg 0

0 Af

)
, EG =

(
EFS

Adg

)
, M =

(
Ms 0

0 Mf

)
and write

ũ =

(
ũs

ũf

)
.

In fact, matrices AG, Ap, EG, and M are sparse. Because Ap is symmetric positive definite, we can substitute

p̃ = −A−1
p ET

Gũ in (35) and obtain

(AG − EGA
−1
p ET

G)ũ = ω2Mũ. (36)

If the planet does not contain fluid regions, we can simplify (36) to

Asgũ
s = ω2Msũ

s. (37)

3.4 Construction of orthonormal bases and local matrices

Here, we introduce three-dimensional polynomial bases {ψs
n}

Nps

n=1, {ψf
n}

N
pf

n=1 and {ψp
n}

Npp

n=1 while addressing

the fact that the Lagrange polynomials are not orthogonal to one another. We suppress superscripts s, f ,

p in the notation in the remainder of this subsection. To simplify the computations, we introduce reference

volume and boundary elements. That is, we introduce a mapping that connects any element K to the

reference tetrahedron defined by

I = {r = (r1, r2, r3) : r1 ≥ −1, r2 ≥ −1, r3 ≥ −1, r1 + r2 + r3 ≤ −1}.

Likewise, we introduce a mapping that connects any boundary element E to the reference triangle is defined

by

I2D = {t = (t1, t2) : t1 ≥ −1, t2 ≥ −1, t1 + t2 ≤ 0}.

We note that any two tetrahedra are connected through an affine transformation, x → r, with a constant

Jacobian, J say, which is the determinant of (∂rx). For the local approximation on the reference element I,

we have

uj(r) =

Np∑
n=1

(ûj)nψn(r) =

Np∑
i=1

uj(ri)`i(r).

The vector fields are treated component-wise in our discretization. This yields the expression Vûj = uj ,

where the generalized Vandermonde matrix takes the form of Vin = ψn(ri) with i, n as indices of nodal
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points. Here, {ψn} is a polynomial basis that is orthonormal on I. We later introduce submatrices of V. We

then evaluate derivatives and mass matrices according to

∂xi = (∂xirj)Dj , Dj = (∂rjV)V−1, M = V−TV−1,

where Dj andM are the derivative matrix and the mass matrix on the reference tetrahedron. More details

of the constructions of J , V, Dj and M can be found in (Hesthaven & Warburton 2007, Chapter 10.1).

Thus, we introduce

Vs, Vf , Vp, Ms, Mf , Mp and Ds
j , Df

j , D
p
j .

We employ the notation

Ds
i = (∂xirj)D

s
j , Df

i = (∂xirj)D
f
j , Dp

i = (∂xirj)D
p
j ,

reflecting the mapping of the derivatives from the reference tetrahedron to the target element. We follow a

likewise approach for boundary elements and introduce

M2D
s , M2D

f and J2D,

whereM2D
s andM2D

f are the mass matrices for solid and fluid boundary elements, respectively; J2D denotes

the Jacobian, which is the determinant of (∂tx) on the boundary element. The construction of the mass

matricesM2D
s andM2D

f on the reference triangle I2D is similar to the one ofM (Hesthaven & Warburton

2007, Chapter 6.1).

3.4.1 Local matrices: Asg, Af , Ap, Ms and Mf

We extract ũs|Kk , ũf |Kk and p̃|Kk from ũs, ũf and p̃, respectively, by restricting the nodes to the ones of

element Kk. In a smimilar fashion, we extract ṽs|Kk , ṽf |Kk and ṽp|Kk on any element Kk. For the evaluation

of matrix Asg in Table 3 we need to evaluate the local matrices on element Kk through∫
KS

k

∂xi(v
s
h)j(cijmn∂xm(us

h)n) dx = (ṽsj |Kk )T [Jk(Ds
i )TckijmnMsD

s
m]ũs

n|Kk , (38)∫
KS

k

∂xi(v
s
h)igj(u

s
h)jρ

0 dx = (ṽsi |Kk )T [Jk(Ds
i )Tρ0

kMsDgj ]ũs
j |Kk , (39)∫

KS
k

−(us
h)i∂xigj(v

s
h)jρ

0 dx = (ṽsi |Kk )T [−Jkρ0
kD∂xi

gjMs]ũs
j |Kk , (40)∫

KS
k

−(us
h)j(∂xj (vsh)i)giρ

0 dx = (ṽsi |Kk )T [−JkDs
jMsρ

0
kDgi ]ũ

s
j |Kk , (41)

where ckijmn, ρ0
k and Jk denote the stiffness tensor, density and Jacobian on element Kk, respectively; Dgi

and D∂xi
gj denote the diagonal matrices whose diagonal entries are gi and ∂xigj , respectively. For the

evaluation of the boundary integration in Asg, we need to evaluate the local matrix on element EFS
l through∫

EFS
l

(vsh)igiν
s→f
j (us

h)j [ρ
0]f dΣ = (ṽsi |El)

T [J2D
l ρ0

lDgiM
2D
s νs→f

j |El ]ũ
s
j |El , (42)

where ρ0
l and νs→f

j |El denote the density and normal vector on the boundary element EFS
l , respectively,

upon extracting ṽsi |El and ũs
i |El .

We then evaluate the local matrices for Af , Ap, Ms and Mf in Table 3 and obtain∫
KF

k

ρ0N2 gi(v
f
h)igj(u

f
h)j

‖g‖2 dx = (ṽfi |Kk )T [JkDgi/‖g‖ρ
0
kN

2
kMfDgj/‖g‖]ũ

f
j |Kk , (43)∫

KF
k

−vphphκ
−1 dx = (ṽp|Kk )T [−Jkκ−1

k Mp]p̃|Kk , (44)∫
KS

k

(vsh)i(u
s
h)iρ

0 dx = (ṽsi |Kk )T [Jkρ
0
kMs]ũs

i |Kk , (45)∫
KF

k

(vfh)i(u
f
h)iρ

0 dx = (ṽfi |Kk )T [Jkρ
0
kMf ]ũf

i |Kk , (46)
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where Dgj/‖g‖ denotes a diagonal matrix whose diagonal entries are gj/‖g‖; N2
k denotes the square of the

Brunt-Väisälä frequency on element Kk.

3.4.2 Local matrices: Adg and AT
dg

Here, we discuss the integration between different variables. For the inner products between uf
h and ph for

Adg and AT
dg in Table 3, we evaluate the mass matrices Mpf and Mfp,

Mpf = (V−1
p (If ))TV−1

f (Ip), Mfp = (V−1
f (Ip))TV−1

p (If ),

where we refine the notation to indicate submatrices of V; V(I) denotes the submatrix of V formed by

columns indexed by I ⊆ {1, . . . , Np}. The selection of submatrix is based on the polynomial construction

(Hesthaven & Warburton 2007, (10.6)). For instance, if the polynomial orders used for both uf
h and ph are

the same, i.e., pf = pp, If = Ip = {1, . . . , Npf }; if pp = 1 and pf = 2, we have Npp = 4, Npf = 10 and

If = {1, 2, 3, 4}, Ip = {1, 2, 4, 7}. It is apparent that Mpf =MT
fp.

Evaluating Adg in Table 3 requires the evaluation of the local matrices on element Kk through∫
KF

k

(vfh)j(∂xjph) dx = (ṽfj |Kk )T [JkMfpD
p
j ]p̃|Kk , (47)∫

KF
k

(vfh)jgjphρ
0κ−1 dx = (ṽfj |Kk )T [JkDgjρ

0
kκ
−1
k Mfp]p̃|Kk , (48)

where κ−1
k denotes the inverse of the bulk modulus on element Kk. To evaluate AT

dg in Table 3, we also need

to evaluate the local matrices on element Kk through∫
KF

k

(∂xjv
p
h)(uf

h)j dx = (ṽp|Kk )T [Jk(Dp
j )TMpf ]ũf

j |Kk , (49)∫
KF

k

vphgj(u
f
h)jρ

0κ−1 dx = (ṽp|Kk )T [Jkρ
0
kκ
−1
k MpfDgj ]ũf

j |Kk . (50)

3.4.3 Local matrices: EFS and ET
FS

For EFS and ET
FS , similar to Section 3.4.2, we introduce two new indices to construct M2D

ps and M2D
sp on

the boundary elements associated with the fluid-solid boundary. The selection of the submatrix is based on

(Hesthaven & Warburton 2007, Chapter 6). M2D
ps =M2D

sp
T

holds true as well. To evaluate ET
FS in Table 3,

we need to compute the local matrix on boundary element EFS
l through∫

EFS
l

(vsh)jν
s→f
j ph dΣ = (ṽsj |El)

T[J2D
l νs→f

j M2D
sp ]p̃|El , (51)

upon extracting p̃|El on boundary element EFS
l . To evaluate EFS in Table 3, we need to evaluate the local

matrix on boundary element EFS
l through∫

EFS
l

vphν
f→s
j (us

h)j dΣ = (ṽp|El)
T[J2D

l νf→s
j M2D

ps ]ũs
j |El , (52)

upon extracting ṽp|El on EFS
l .

We now are able to build all the local matrices for the evaluation of the integrals in Table 3. We then assemble

the global matrices from all these local matrices using similar standard techniques in Bathe (2006); Hughes

(2012).

4 SELF-GRAVITATION AS AN N-BODY PROBLEM

We may treat the problem for solving self-gravitation as an N-body problem. We discretize the entire planet

with many elements and consider them as individual bodies. The gravitational potential and field are then

computed through the interaction between these bodies. We note that FMM is an ideal candidate for solving
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an N-body problem. FMM reduces the complexity of the N-body problem from O(N2) to O(N logN) or even

O(N) (Greengard & Rokhlin 1987). We apply the FMM (Greengard & Rokhlin 1997; Gimbutas & Greengard

2011) to calculate the reference gravitional potential. In Section 6.1, we illustrate the high computational

accuracy of such an approach. We employ ExaFMM (Yokota 2013), a massively parallel N-body problem

solver, to solve for the incremental gravitational potential.

4.1 Reference gravitational potential

For calculating the reference gravitational potential and field, we need to evaluate two integrals (Dahlen &

Tromp 1998, (3.2) and (3.3)). The N-body problem of gravitation requires the evaluation of

Φ0(xi) = −G
NK∑
k=1

1

‖xi − rk‖

∫
Kk

ρ0
k dx (53)

for the potential and

g(xi) = −G
NK∑
k=1

xi − rk
‖xi − rk‖3/2

∫
Kk

ρ0
k dx (54)

for the field. Here, xi denotes the location of the target vertex and rk denotes the barycenter of element

Kk.

4.2 Incremental gravitational potential

For calculating the incremental gravitational potential, we need to evaluate (23) containing both volume

and boundary integral terms. Given the finite-element partitioning, Th, we approximate S(uh) in (2) via

Sk2(uh) = G

∫
Kk2

∇ · (ρ0
k2

(x)uh(x))

‖rk2 − x‖
dx+

NK∑
k1=1
k1 6=k2

G

‖rk2 − rk1‖

∫
Kk1

∇ · (ρ0
k1
uh) dx

+

NE∑
l1=1

G

‖rk2 − rl1‖

∫
El1

ν · uh [ρ0
l1 ]+−

∣∣
El1

dΣ (55)

and

Sl2(uh) = G

∫
El2

ν(x) · uh(x) [ρ0
l2

(x)]+−
∣∣
El2

‖rl2 − x‖
dΣ +

NE∑
l1=1
l1 6=l2

G

‖rl2 − rl1‖

∫
El1

ν · uh [ρ0
l1 ]+−

∣∣
El1

dΣ

+

NK∑
k1=1

G

‖rl2 − rk1‖

∫
Kk1

∇ · (ρ0
k1
uh) dx, (56)

where k1 and k2 label the elements Kk1 and Kk2 , Sk2(uh) is the incremental gravitational potential S(uh) at

the barycenter of Kk2 , l1 and l2 label the triangular elements El1 and El2 , rl1 and rl2 denote the barycenters

of El1 and El2 , and [ρ0
l1

]+−
∣∣
El1

denotes the initial density jump across El1 . The first terms in (55) and (56)

indicate the self contribution.

Since the variation of ∇ · (ρ0
k2

(x)uh(x)) is small on element Kk2 , we simplify the first term in (55)

according to

G

∫
Kk2

∇ · (ρ0
k2

(x)uh(x))

‖rk2 − x‖
dx ' G

∫
Kk2
∇ · (ρ0

k2
uh) dx

|Kk2 |

∫
Kk2

1

‖rk2 − x‖
dx,

where |Kk2 | denotes the volume of element Kk2 . We let

1

Rk2

=
1

|Kk2 |

∫
Kk2

1

‖rk2 − x‖
dx,
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operations physical interpretations corresponding formulae∫
ΩS
∇ · (ρ0ush) dx,∫

ΣFS
νf→s · ush

[
ρ0
]s

dΣ,

Csũ
s N bodies in ΩS

∫
ΣSS∪∂X̃S

ν · ush
[
ρ0
]+
− dΣ∫

ΩF
∇ · (ρ0ufh) dx,∫

ΣFS
νs→f · uf

[
ρ0
]f

dΣ,

Cf ũ
f N bodies in ΩF

∫
ΣFF∪∂X̃F

ν · ufh
[
ρ0
]+
− dΣ

S solution for Poisson’s equation (23)∫
ΩS
∇ · (ρ0vsh)Sk(uh) dx

+

∫
ΣFS

νf→s · vshSl(uh)[ρ0]s dΣ

(ṽs)TCT
s (SCũ) incremental gravitational field in ΩS +

∫
ΣSS∪∂X̃S

ν · vshSl(uh)[ρ0]+− dΣ∫
ΩF
∇ · (ρ0vfh)Sk(uh) dx

+

∫
ΣFS

νs→f · vfhSl(uh)[ρ0]f dΣ

(ṽs)TCT
f (SCũ) incremental gravational field in ΩF +

∫
ΣFF∪∂X̃F

ν · vfhSl(uh)[ρ0]+− dΣ

Table 4. Implicit definition of the matrices. In the above,
∫
ΩS =

∑NS
K

k=1

∫
KS

k
,
∫
ΩF =

∑NF
K

k=1

∫
KF

k
,
∫
ΣFS =

∑NFS
E

l=1

∫
EFS

l
,∫

ΣSS∪∂X̃S =
∑NS

E
l=1

∫
ES

l
, and

∫
ΣFF∪∂X̃F =

∑NF
E

l=1

∫
EF

l
.

and obtain

G

∫
Kk2

∇ · (ρ0
k2

(x)uh(x))

‖rk2 − x‖
dx ' G

Rk2

∫
Kk2

∇ · (ρ0
k2
uh) dx. (57)

Similarly, we simplify the first term in (56) according to

G

∫
El2

ν(x) · uh(x) [ρ0
l2

(x)]+−
∣∣
El2

‖rl2 − x‖
dΣ ' G

Rl2

∫
El2

ν · uh [ρ0
l1 ]+−

∣∣
El1

dΣ, (58)

with

1

Rl2

=
1

|El2 |

∫
El2

1

‖rl2 − x‖
dΣ,

where |El2 | denotes the area of the boundary element El2 . Note that Rk2 in (57) and Rl2 in (58) can be

precomputed on each element and surface. The second and third terms in (55) and (56) may be evaluated

via FMM.

4.2.1 Solid planets

For the solid planets, we substitute (57) and (58) into (55) and (56), respectively. To evaluate (22) for a

solid planet, we need to compute∫
ΩS

vsh · ∇S(us
h)ρ0 dx = −

NK∑
k2=1

∫
KS

k2

(
∇ · (ρ0

k2
vsh)
)
Sk2(us

h) dx

−
NE∑
l2=1

∫
ES

l2

ν · vshSl2(us
h) [ρ0

l2 ]+−
∣∣
El2

dΣ. (59)

We add (59) into the matrix representation (37) and obtain(
Asg − CT

s SsCs

)
ũs = ω2Msũ

s, (60)
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where Csũ
s evaluates Sk2(us

h) and Sl2(us
h), Ss solves the N-body problem for the solid planet, and CT

s SsCsũ
s

evaluates (59). The matrices Cs, C
T
s , S and their corresponding weak formulae are shown in Table 4. Here,

of course, Cs and CT
s do not include terms related the fluid-solid boundaries ΣFS.

4.2.2 Planets with fluid regions

For a planet with fluid regions, we also substitute (57) and (58) into (55) and (56), respectively. To ensure

the Hermitian property of the system, we carefully treat the fluid-solid boundary terms and evaluate the

incremental gravitational potential S(uh) via (24) and obtain the volume integral contributions

Sk2(uh) =
G

Rk2

∫
Kk2

∇ · (ρ0
k2
uh) dx+

NS
E∑

l1=1

G

‖rk2 − rl1‖

∫
ES

l1

ν · us
h [ρ0

l1 ]+−
∣∣
El1

dΣ

+

NS
K∑

k1=1
k1 6=k2

G

‖rk2 − rk1‖

∫
KS

k1

∇ · (ρ0
k1
us
h) dx+

NFS
E∑

l1=1

G

‖rk2 − rl1‖

∫
EFS

l1

νf→s · us
h [ρ0

l1 ]s
∣∣
El1

dΣ

+

NF
K∑

k1=1
k2 6=k2

G

‖rk2 − rk1‖

∫
KF

k1

∇ · (ρ0
k1
uf
h) dx+

NFS
E∑

l1=1

G

‖rk2 − rl1‖

∫
EFS

l1

νs→f · uf
h [ρ0

l1 ]f
∣∣∣
El1

dΣ

+

NF
E∑

l1=1

G

‖rk2 − rl1‖

∫
EF

l1

ν · uf
h [ρ0

l1 ]+−
∣∣
El1

dΣ, (61)

and boundary integral contributions

Sl2(uh) =
G

Rl2

∫
El2

ν · uh [ρ0
l2 ]+−

∣∣
El2

dΣ +

NS
E∑

l1=1
l1 6=l2

G

‖rl2 − rl1‖

∫
ES

l1

ν · us
h [ρ0

l1 ]+−
∣∣
El1

dΣ

+

NS
K∑

k1=1

G

‖rl2 − rk1‖

∫
KS

k1

∇ · (ρ0
k1
us
h) dx+

NFS
E∑

l1=1

G

‖rl2 − rl1‖

∫
EFS

l1

νf→s · us
h [ρ0

l1 ]s
∣∣
El1

dΣ

+

NF
K∑

k1=1

G

‖rl2 − rk1‖

∫
KF

k1

∇ · (ρ0
k1
uf
h) dx+

NFS
E∑

l1=1

G

‖rl2 − rl1‖

∫
EFS

l1

νs→f · uf
h [ρ0

l1 ]f
∣∣∣
El1

dΣ

+

NF
E∑

l1=1
l1 6=l2

G

‖rl2 − rl1‖

∫
EF

l1

ν · us
h [ρ0

l1 ]+−
∣∣
El1

dΣ. (62)

With (61) and (62), we have the full solution for the incremental gravitational potential. To evaluate (22)

for a planet with fluid regions, we need to compute∫
X̃

vh · ∇S(uh)ρ0 dx =

∫
ΩS

vsh · ∇S(uh)ρ0 dx+

∫
ΩF

vfh · ∇S(uh)ρ0 dx =

−
NS

K∑
k2=1

∫
KS

k2

(
∇ · (ρ0

k2
vsh)
)
Sk2(uh) dx−

NF
K∑

k2=1

∫
KF

k2

(
∇ · (ρ0

k2
vfh)
)
Sk2(uh) dx

−
NS

E∑
l2=1

∫
ES

l2

ν · vshSl2(uh) [ρ0
l2 ]+−

∣∣
El2

dΣ−
NF

E∑
l2=1

∫
EF

l2

ν · vfhSl2(uh) [ρ0
l2 ]+−

∣∣
El2

dΣ

−
NFS

E∑
l2=1

∫
EFS

l2

νf→s · vshSl2(uh) [ρ0
l2 ]s
∣∣
El2

dΣ−
NFS

E∑
l2=1

∫
EFS

l2

νs→f · vfhSl2(uh) [ρ0
l2 ]f
∣∣∣
El2

dΣ. (63)
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We add (63) into the matrix representation (36) and obtain(
AG − EGA

−1
p ET

G − CTSC
)
ũ = ω2Mũ, (64)

with

C =
(
Cs Cf

)
(65)

where Cũ = Csũ
s +Cf ũ

f evaluates (61) and (62) to get Sk2(uh) and Sl2(uh), S solves the N-body problem,

and CTSCũ evaluates (63). The matrices Cs, C
T
s , Cf , C

T
f , S and their corresponding weak formulae are shown

in Table 4.

4.3 Construction of the local matrices

Similar to Section 3.4, we list the local matrices in Cs,∫
KS

k

∂xi(ρ
0(us

h)i) dx = (1|Kk )T[JkMsD
s
iρ

0
k]ũs

i |Kk , (66)∫
EFS

l

νf→s
i (us

h)i
[
ρ0]s dΣ = (1|El)

T[J2D
l νf→s

i [ρ0]slM2D
s ]ũs

i |El , (67)∫
ES

l

νi(u
s
h)i
[
ρ0]+
− dΣ = (1|El)

T[J2D
l νi([ρ

0]+−)lM2D
s ]ũs

i |El , (68)

and the local matrices in CT
s ,∫

KS
k

[∂xi(ρ
0(vsh)i)]Sk(uh) dx = (ṽsi |Kk )T[Jkρ

0
k(Ds

i )TMsSk(ũ)]1|Kk , (69)∫
EFS

l

νf→s
i (vsh)iSl(uh)

[
ρ0]s dΣ = (ṽsi |El)

T[J2D
l νf→s

i M2D
s [ρ0]slSl(ũ)]1|El , (70)∫

ES
l

νi(v
s
h)iSl(uh)

[
ρ0]+
− dΣ = (ṽsi |El)

T[J2D
l νiM2D

s ([ρ0]+−)lSl(ũ)]1|El , (71)

where 1 denotes a vector of all ones. The construction of the local matrices in Cf and CT
f is the same.

We now are able to build all the local matrices for the evaluation of the integrals in Table 4.

5 DETERMINING THE SEISMIC POINT SPECTRUM AND NORMAL MODES

Without loss of generality, we write (36) and its pure solid planet version (37) or (60) and (64) in the form

of generalized eigenvalue problems:

Aũ = λMũ, (72)

where M contains the relevant inner produtcs, and λ stands for ω2. Since the explicit formation of A with

self-gravitation requires excessive storage, it is mandatory to solve (72) via a matrix-free scheme, where A,

M and M−1 are only accessed through matrix-vector multiplications. We combine several efficient parallel

approaches to solve (72) with a matrix-free scheme.

Standard approaches for computing interior eigenpairs usually resort to exploiting spectral transforma-

tions, that is, shift-and-invert strategies (Parlett 1998). These require solving a linear system with A− σM
when applying the filtered matrix, where σ denotes the pole. In practice, however, solving such linear

systems often leads to a computational bottleneck on modern supercomputers with distributed memory.

When computing interior eigenpairs, the shifted matrix A − σM is indefinite, and this significantly limits

the applicability of iterative methods. Finding efficient parallel preconditioners can be a highly challenging

task. For this reason, sparse direct methods are usually employed in this context to provide robust linear

solvers. However, using direct solvers lowers the overall performance of the outer eigensolver substantially.

We exemplify this issue in Shi et al. (2018).

Polynomial filtering techniques (Saad 2006; Fang & Saad 2012; Li et al. 2016) can be appealing as these
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# of elements 116,085 1,136,447 2,019,017 3,081,551 4,035,022
MSE of Φ0 2.133e-6 7.452e-8 1.784e-8 1.545e-8 1.430e-8

MSE of g 1.102e-3 1.848e-4 1.156e-4 8.781e-5 7.363e-5

Table 5. Errors in the gravitational calculation of a constant density ball.

do not involve solving linear systems with the indefinite matrices. Here, the bulk of the computations is

carried out in the form of matrix-vector products. It has been shown that the polynomial filtering technique

is ideally suited for solving large-scale 3D interior eigenvalue problems while it significantly enhances the

memory and computational efficiency without loss of accuracy (Shi et al. 2018). In this paper, we adopt the

polynomial filtering algorithms recently developed in Li et al. (2016, 2018); Shi et al. (2018) due to their

simplicity and robustness. The details about our parallel algorithms and their performance can be found in

Shi et al. (2018).

6 COMPUTATIONAL EXPERIMENTS

In this section, we first show the computational accuracy of our algorithm for the reference gravitational

field using FMM. We then illustrate computational experiments yielding planetary normal modes with or

without incremental gravitational potential using two supercomputers, Stampede2 (an Intel cluster) at the

Texas Advanced Computing Center and Abel (a Cray XC30 cluster) at Petroleum Geo-Services. We show

the convergence of our numerical formulation and approach for a constant elastic ball and PREM. The

constant balls have a radius of 6,371 km, density ρ0 = 5.51 × 103 kg/m3, P-wave speed VP = 10.0 km/s

and S-wave speed VS = 5.7735 km/s. PREM used in our tests is modified in an isotropic model without

attenuation, with VP = (VPV + VPH)/2 and VS = (VSV + VSH)/2. The ocean layer in PREM is replaced

by crust. We compare our results with other one-dimensional solutions (Masters et al. 2011; Ye 2018). For

the constant elastic balls, we compute normal modes with MINEOS. Since MINEOS has accuracy issues while

dealing with fluid-solid boundaries, we utilize a radial FEM code to compute the normal modes (Ye 2018) of

PREM as our reference. The discretization of the radial FEM code enables us to achieve high accuracy across

the fluid-solid boundaries. While using radial FEM (Ye 2018), we use 2,550 elements with 11,900 degrees

of freedom for the radial displacement. We also note that other normal modes computed from MINEOS may

not be very accurate as shown in Section 6.3.2 since these normal modes need to be reorthogonalized with

the modes related to the fluid-solid boundaries. The use of only 185 points by default in MINEOS may result

in relatively larger errors in surface wave modes.

In our experiments, we show that the convergence tests are successful for all different normal modes in

the frequency band considered up to 3.0 mHz. The modes computed in PREM are visualized in Appendix B.

We then compute 3D normal modes directly in two different fully heterogeneous Earth models. Mode

splitting and coupling are apparent and illustrated in Fig. 5.

6.1 Computational accuracy for the reference gravitational field

In this subsection, we illustrate the computational accuracy for the reference gravitational field using FMM.

We begin with a simple constant-density ball. In Table 5, we show the FMM solution for a gravitational

field of a constant density ball and a comparison with the closed-form solution. We note that FMM provides

an accurate solution for this example.

We use PREM to build our Earth models on unstructured meshes with different sizes. In Table 6,

we show the approximation errors of different three-layer models, which contain two major discontinuities

(CMB and ICB) when comparing with the semi-analytical solution. In Fig. 4, we show the comparison of

the gravitational field computed via FMM with the semi-analytical solution in PREM.

In Table 7, we show the approximation errors of different seven-layer models which contain six major

discontinuities (Moho, top of Low Velocity Zone (LVZ), bottom of LVZ, 660, CMB and ICB) with the

semi-analytical solution.
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# of elements 5,800 57,490 503,882 1,136,447 2,093,055 5,549,390 7,825,918
MSE of Φ0 3.604e-3 2.635e-4 4.071e-5 2.092e-5 1.354e-5 4.059e-6 2.396e-9

MSE of g 5.805e-2 5.479e-3 7.320e-4 3.218e-4 2.068e-4 9.524e-5 5.609e-5

Table 6. Errors of three-layer approximations in the gravitational calculation.

6.2 Computational accuracy for self-gravitation

Here, we show a convergence analysis for computing normal modes of a non-rotating and self-gravitating

planet.

6.2.1 Solid models

We present our results for purely solid models with self-gravitation. In Tables 8 and 10, we list the number

of elements ‘#elm.’ as well as the problem sizes (labeled as ‘size of A’ for the solid cases and ‘size of AG’ and

‘size of Ap’ for the Earth examples), the number of surfaces ‘#surf.’, the size of Ss or S, a tight bound of

the smallest and the largest eigenvalues (λmin, λmax), the degree of the polynomial filter ‘deg’, the number

of the Lanczos iterations required ‘#it’, and the number of the normal modes computed ‘#eigs’.

Since the pure solid models do not generate any essential spectra, we can directly compute the lowest-

frequency normal modes. We note that the length (λmax − λmin) of the spectrum grows with the size of the

problem determined by the discretization.

-99196

-86905

-74614

-111486.578

-62323.539

Potential

(a1) (a2)

2.6905

5.3811

8.0716

0.000

10.762

Field

(b1) (b2)

Figure 4. Comparison between the semi-analytical and FMM solutions: (a1) FMM gravitational potential; (a2)
comparison in the radial direction; (b1) FMM gravitational field; (b2) comparison in the radial direction.
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# of elements 2,031,729 5,018,249 8,043,617 12,479,828 16,560,615
MSE of Φ0 2.333e-7 4.485e-8 1.286e-8 9.785e-9 5.548e-9

MSE of g 1.926e-4 8.606e-5 5.186e-5 4.036e-6 3.394e-5

Table 7. Errors of seven-layer approximations in the gravitational calculation.

In Table 9, we show convergence results for different solid models using P1 elements, that is, the finite-

element polynomial orders ps = pf = pp = 1 are used throughout this work. Comparing with 1D results,

we observe that our computational results do converge. We accept relative errors of about 0.1%.

In Table 10, we list test cases for different solid models using P2 elements , that is, the finite-element

polynomial orders ps = pf = pp = 2 are used throughout this work. From experiments C1p2 to C5p2, we

double the number of elements and obtain proper convergence results in Table 11. We show that even with

about 330,000 elements, we are able to achieve four digits of accuracy.

6.2.2 PREM

Here, we include a liquid outer core using PREM and the presence of the essential spectrum. Because the

degree of the polynomial order is quite high when using P2 elements, we perform our convergence test using

P1 elements only.

In Table 12, we show test cases for PREM. We roughly double the number of elements from E1p1 to

E7p1. In Table 13, we argue convergence by comparing with 1D results. For PREM with self-gravitation,

we accept relative errors of around 0.1%.

6.3 Computational accuracy for the Cowling approximation

Here, we only include the reference gravitational field. Without including the computation of the perturbed

gravitational potential, the computational costs are significantly reduced. We, again, show computational

tests for different models.

6.3.1 Solid models

For tests for the solid models in Table 14, we here compute the interior normal modes with the reference

gravitational field only.

In Table 15, we note that experiments C9p1 and C6p2 have similar numbers of degrees of freedom but

the numerical accuracy of C6p2 is clearly higher. We have achieved five digits of accuracy in these tests

using P2 elements.

We compare frequencies of different spheroidal modes from experiment C7p2 in Tables 17 and 19.

Frequencies of different toroidal modes from experiment C7p2 are compared in Tables 18 and 20. Both tests

show that we are able to achieve five digits of accuracy for all the modes in the range of [2.0, 3.0]mHz.

6.3.2 PREM

For the tests presented in Table 21, we compute the interior normal modes with the reference gravitational

field as before.

Exp. #elm. size of A #surf. size of Ss (λmin, λmax) (deg,#it) #eigs

C1p1 5,123 2,727 392 5,515 (-1.02e-7,5.01e-3) (14,192) 70

C2p1 21,093 10,644 956 22,049 (-5.66e-8,1.20e-2) (25,232) 92

C3p1 39,273 19,131 956 40,229 (-5.74e-8,1.97e-2) (34,252) 92
C4p1 105,115 51,933 3,608 108,723 (-2.51e-8,3.47e-2) (50,252) 92

C5p1 495,099 242,721 14,888 509,987 (-7.58e-8,1.04e-1) (108,272) 92

Table 8. Test cases for different solid models with self-gravitation using P1 elements for the frequency range
[0.1, 1.0]mHz.
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Exp. 0T2 0S2 1S1 0S0 0T3 0S3 1S2 0T4 0S4

C1p1 0.3724 0.4178 0.4600 0.5105 0.5881 0.6322 0.6900 0.7973 0.8359

C2p1 0.3653 0.4112 0.4511 0.5053 0.5692 0.6052 0.6708 0.7587 0.7791
C3p1 0.3643 0.4103 0.4502 0.5053 0.5665 0.6017 0.6680 0.7527 0.7721

C4p1 0.3622 0.4089 0.4472 0.5035 0.5612 0.5932 0.6622 0.7424 0.7526

C5p1 0.3612 0.4086 0.4460 0.5035 0.5587 0.5899 0.6596 0.7374 0.7445

mineos1D 0.3607 0.4087 0.4456 0.5040 0.5574 0.5885 0.6582 0.7348 0.7406

Table 9. Convergence tests for different solid models in Table 8 with self-gravitation for P1 elements.

Exp. #elm. size of A #surf. size of Ss (λmin, λmax) (deg,#it) #eigs

C1p2 19,073 75,888 956 20,029 (-2.12e-7,1.60e-1) (44,512) 92
C2p2 40,378 170,025 3,608 43,986 (-6.37e-9,2.36e-1) (58,492) 92

C3p2 80,554 335,103 5,924 86,478 (-2.25e-8,3.73e-1) (81,492) 92

C4p2 152,426 645,687 14,888 167,314 (-3.04e-9,7.14e-1) (129,492) 92
C5p2 334,193 1,360,140 14,888 349,081 (-3.74e-8,1.30e0) (200,492) 92

Table 10. Test cases for different solid models with self-gravitation using P2 elements for the frequency range
[0.1, 1.0]mHz.

Exp. 0T2 0S2 1S1 0S0 0T3 0S3 1S2 0T4 0S4

C1p2 0.3619 0.4100 0.4473 0.5094 0.5594 0.5908 0.6605 0.7376 0.7439

C2p2 0.3610 0.4090 0.4459 0.5042 0.5579 0.5889 0.6587 0.7355 0.7413
C3p2 0.3609 0.4089 0.4463 0.5042 0.5577 0.5888 0.6585 0.7352 0.7410

C4p2 0.3608 0.4088 0.4456 0.5041 0.5575 0.5886 0.6583 0.7349 0.7408

C5p2 0.3608 0.4087 0.4456 0.5041 0.5575 0.5885 0.6583 0.7349 0.7407

mineos1D 0.3607 0.4087 0.4456 0.5040 0.5574 0.5885 0.6582 0.7348 0.7406

Table 11. Convergence tests for the solid models in Table 10 with self-gravitation using P2 elements.

Exp. #elm. size of AG size of Ap #surf. size of Ss (λmin, λmax) (deg,#it) #eigs

E1p1 9,721 7,590 887 2,304 12,025 (-8.70e-5,5.04e-2) (187,392) 64
E2p1 20,466 14,736 974 4,956 25,422 (-7.69e-5,5.20e-2) (182,372) 72

E3p1 42,828 30,384 3,171 8,172 51,000 (-8.27e-5,1.74e-1) (342,452) 83

E4p1 83,354 63,225 5,298 22,104 105,458 (-1.26e-4,5.81e-1) (745,452) 88
E5p1 157,057 96,852 6,771 22,104 179,161 (-1.18e-4,6.15e-1) (747,492) 88

E6p1 303,218 164,673 10,077 22,104 325,322 (-1.05e-4,5.75e-1) (685,492) 88
E7p1 639,791 361,587 21,824 60,288 700,079 (-1.12e-4,6.18e-1) (685,492) 88

E8p1 1,972,263 1,086,702 70,429 150,288 2,122,551 (-1.10e-4,2.87e0) (1565,492) 88

Table 12. Test cases for different Earth models with self-gravitation using P1 elements for the frequency range
[0.1, 1.0]mHz.

Exp. 0S2 0T2 2S1 0S3 0T3

E1p1 0.3284 0.3953 0.4179 0.5242 0.6241

E2p1 0.3229 0.3921 0.4149 0.5077 0.6146
E3p1 0.3177 0.3884 0.4113 0.4932 0.6062

E4p1 0.3166 0.3842 0.4090 0.4903 0.5980
E5p1 0.3137 0.3845 0.4085 0.4863 0.5962

E6p1 0.3126 0.3840 0.4080 0.4768 0.5945

E7p1 0.3116 0.3834 0.4073 0.4742 0.5933
E8p1 0.3112 0.3829 0.4067 0.4721 0.5920

FEM1D 0.3110 0.3826 0.4063 0.4713 0.5912

mineos1D 0.3107 0.3823 0.4062 0.4709 0.5908

Table 13. Convergence tests for different Earth models in Table 12 with self-gravitation using P1 elements.
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Exp. #elm. size of A (λmin, λmax) range (deg,#it) #eigs

C9p1 16,036,734 7,954,392 (-9.63e-6,3.52e0) [1.5, 2.0] (991,1152) 323

C6p2 2,067,539 8,419,194 (-1.38e-5,4.55e0) [1.5, 2.0] (790,1692) 323
C7p2 4,133,442 16.771,833 (-1.78e-5,8.55e0) [1.5, 2.0] (1108,1692) 323

C7p2 4,133,442 16.771,833 (-1.78e-5,8.55e0) [2.0, 2.5] (1057,2572) 482

C7p2 4,133,442 16.771,833 (-1.78e-5,8.55e0) [2.5, 3.0] (1056,3792) 723

Table 14. Test cases for different solid models with the reference gravitational field. The first three and the last two

tests compute normal modes in the range of [1.5, 2.0]mHz and [2.0, 2.5]mHz, [2.5, 3.0]mHz, respectively.

In Tables 22 and 23, we show results computed in a frequency range [1.5, 2.0]mHz. Experiments E9p1 and

E6p2 have the same number of degrees of freedom, but E6p2 provides more accurate solutions for different

modes using P2 elements. We note that in experiment E7p2 we have achieved five digits of accuracy.

In Tables 24 and 25, we provide eigenfrequencies associated with spheroidal and toroidal modes com-

puted in the frequency range [2.0, 2.5]mHz. In Tables 26 and 27, we provide eigenfrequencies associated

with spheroidal and toroidal modes computed in the frequency range [2.5, 3.0]mHz. In our experiments, the

relative errors of such a calculation are around 10−4.

6.4 Fully heterogeneous models

We construct two other, 3D Earth models using MIT’s mantle tomographic results (Burdick et al. 2017) and

crust 1.0 (Laske et al. 2013). The core model is based on PREM. The mantle seismic reference wave speeds

are based on AK135 (Kennett et al. 1995). One model is obtained by combining MIT’s mantle tomographic

model and PREM for the core and density. The other one replaces PREM’s crust by crust 1.0, which is

shown in Fig. 2. In Table 28, we show the information of three different tests for these three different

Earth models. Since with similar degrees of freedom, the largest eigenvalue of the MIT model with the 3D

crust is much larger than the ones of the other two models, we expect that significant mode coupling and

splitting occur (Deuss & Woodhouse 2001; Romanowicz et al. 2008; Beghein et al. 2008; Irving et al. 2009;

Koelemeijer et al. 2012; Nader et al. 2015; Yang & Tromp 2015; Akbarashrafi et al. 2017; Al-Attar et al.

2018).

We visualize the eigenfunctions of different modes for observation. The normal modes computed in the

two MIT models are non-degenerate. In Fig. 5, we compare different modes computed in the three models

in the frequency range [2.0, 2.5]mHz. Since the background models have only slight differences, some of

the eigenfrequencies are similar amongst PREM and the MIT models. We illustrate most of the modes

computed in PREM in Appendix B. In Fig. 5(a), we observe that, even at low frequencies, weak mode

splitting occurs for surface wave modes, including 2S8, 0S13, 0T14 and 1T7. We also report that no coupled

modes are observed in [2.0, 2.18]mHz. In Figs. 5(b-d), we show the different modes in [2.18, 2.28], [2.28, 2.38]

and [2.38, 2.48]mHz, respectively. The splitting of most surface wave modes becomes larger with increasing

frequency. However, since modes like 1S10 (strong at the core-mantle boundary) in Fig. 5(a), 0c4 (an inner

core toroidal mode) and 3S5 (an ICB Stoneley mode) in Fig. 5(c), are not sensitive to the crust and upper

mantle structure, no clear splitting is observed. We observe coupled modes in Figs. 5(b-d) computed in the

MIT model with the 3D crust. The eigenfunction of one mode in Fig. 5(b) shows that 0S14 and 2T2 are

coupled. The 0T15 and 8S1 near 0S14 and 2T2 are isolated multiplets. The eigenfunctions of the two modes in

Fig. 5(c) show that 1S11 and 0T16 are coupled. The 0S15 near 1S11 and 0T16 is an isolated multiplet. These

coupled modes are interesting because 1S11 illustrated in Fig. B.2 is clearly sensitive to the core-mantle

Exp. 4S1 0S10 2S4 1S6 3S3 0S11 4S2 2S5 1S7 0S12 5S1

C9p1 1.5431 1.5830 1.5917 1.6252 1.7002 1.7190 1.7534 1.7829 1.8388 1.8551 1.8708

C6p2 1.5413 1.5784 1.5898 1.6240 1.6992 1.7131 1.7508 1.7803 1.8368 1.8476 1.8701
C7p2 1.5413 1.5783 1.5898 1.6240 1.6992 1.7131 1.7507 1.7803 1.8368 1.8476 1.8701

mineos1D 1.5412 1.5783 1.5898 1.6239 1.6991 1.7130 1.7507 1.7802 1.8367 1.8475 1.8700

Table 15. Comparison of different spheroidal modes for different solid models with the reference gravitational field
in [1.5, 2.0]mHz.
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Exp. 2T2 0T9 1T5 0T10 2T3 1T6 3T1 0T11 2T4 1T7

C9p1 1.5184 1.5469 1.5823 1.7035 1.7164 1.7576 1.7803 1.8592 1.9091 1.9314

C6p2 1.5166 1.5449 1.5795 1.7008 1.7138 1.7548 1.7774 1.8558 1.9055 1.9277
C7p2 1.5165 1.5448 1.5794 1.7008 1.7137 1.7548 1.7774 1.8557 1.9054 1.9276

mineos1D 1.5165 1.5448 1.5794 1.7008 1.7137 1.7547 1.7773 1.8556 1.9054 1.9276

Table 16. Comparison of different spheroidal modes for different solid models with the reference gravitational field
in [1.5, 2.0]mHz.

boundary and the fundamental Love mode 0T16 illustrated in Fig. B.6 can be measured at the surface. The

left mode in Fig. 5(d) is a 0S16 and 1T9 coupled mode. The right mode in Fig. 5(d) is a 6S2 and 0T17

coupled mode. This mode is also very interesting because 6S2 illustrated in Fig. B.4 is an inner core mode

and the fundamental Love mode 0T17 illustrated in Fig. B.6 can be detected at the surface. Since the relative

wave speed variations of the MIT tomographic model vary roughly from -1.4% to 1.4% in the upper mantle

and the crust’s thickness is small, strong mode coupling occurs only to two modes. In this frequency range

[2.0, 2.5]mHz, the width of each multiplet is small and no significant coupling between three and more modes

is observed.

7 CONCLUSION

We developed and exploited a novel weak formulution as well as a massively parallel algorithm to compute

the seismic point spectrum of the elastic-gravitational system describing the normal modes of terrestrial

planets. The system is discretized with a Continuous Galerkin method, more precisely, with the mixed

FEM on unstructured tetrahedral meshes on the fluid and solid regions. We included self-gravitation via a

FMM. We used several computational experiments to demonstrate the achievable accuracy of our proposed

approach. We performed convergence tests for constant elastic ball models and PREM. We carried out

computational experiments in fully heterogeneous Earth models accounting for a 3D crust. There is no clear

computational barrier for our algorithm to further increase the degrees of freedom (Shi et al. 2018) and,

hence, we expect that modes at yet higher frequencies may be computed. Our algorithm allows different

discretization methods such as the spectral element method (Komatitsch & Tromp 2002). Our algorithm

enables the further study of seismic normal modes in models far from spherically symmetric structures.
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Exp. 6S1 1S8 0S14 2S7 5S2 4S4 3S5 1S9 0S15 6S2 2S9

C7p2 2.0132 2.0384 2.1162 2.1709 2.1720 2.1867 2.1961 2.2299 2.2502 2.2691 2.3729

mineos1D 2.0131 2.0383 2.1161 2.1708 2.1719 2.1866 2.1960 2.2299 2.2501 2.2691 2.3728

Table 17. Different spheroidal modes from experiment C7p2 with the reference gravitational field in [2.0, 2.5]mHz.
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Exp. 0T12 2T5 1T8 0T13 3T3 4T1 1T9 2T6 0T14 3T4 1T10

C7p2 2.0098 2.0929 2.0984 2.1633 2.1888 2.2237 2.2674 2.2771 2.3161 2.3863 2.4350

mineos1D 2.0098 2.0929 2.0983 2.1632 2.1887 2.2237 2.2673 2.2770 2.3161 2.3862 2.4349

Table 18. Different toroidal modes from experiment C7p2 with the reference gravitational field in [2.0, 2.5]mHz.

Exp. 0S17 2S9 6S3 1S11 5S4 3S7 0S18 4S6 7S2 1S8 1S12 2S10

C7p2 2.5181 2.5783 2.5786 2.5906 2.6027 2.6077 2.6519 2.6725 2.6775 2.6862 2.7631 2.7851

mineos1D 2.5179 2.5782 2.5785 2.5905 2.6026 2.6076 2.6517 2.6725 2.6776 2.6861 2.7630 2.7850

Table 19. Different spheroidal modes from experiment C7p2 with the reference gravitational field in [2.5, 3.0]mHz.

Exp. 3T5 1T11 0T16 2T8 4T3 5T1 1T11 3T6 0T16 2T9 4T4 5T2

C7p2 2.5797 2.6013 2.6204 2.6376 2.6556 2.6956 2.7665 2.7699 2.7719 2.8148 2.8572 2.9095

mineos1D 2.5796 2.6012 2.6203 2.6375 2.6556 2.6955 2.7664 2.7698 2.7718 2.8146 2.8571 2.9093

Table 20. Different toroidal modes from experiment C7p2 with the reference gravitational field in [2.5, 3.0]mHz.

Exp. #elm. size of AG size of Ap (λmin, λmax) range (mHz) (deg,#it) #eigs

E9p1 16,436,247 9,037,671 658,285 (-9.13e-7,3.10e+1) [1.5, 2.0] (2852,1232) 326

E6p2 1,972,263 8,400,630 522,705 (-4.52e-7,2.00e+1) [1.5, 2.0] (2250,1252) 345
E7p2 4,094,031 17,469,666 1,181,103 (-1.77e-6,5.37e+1) [1.5, 2.0] (2540,1172) 320

E7p2 4,094,031 17,469,666 1,181,103 (-1.77e-6,5.37e+1) [2.0, 2.5] (4054,1892) 528

E8p2 8,000,777 34,282,806 2,299,704 (-5.03e-6,1.26e+2) [2.5, 3.0] (5709,2712) 754

Table 21. Test cases for different Earth models with the reference gravitational field.

Exp. 2S5 1S6 0S9 1S7 2S6 0S10 4S2 6S1 1S8 0S11 2S7

E9p1 1.5356 1.5437 1.5920 1.6774 1.7039 1.7408 1.7544 1.7642 1.8233 1.8775 1.8907

E6p2 1.5335 1.5402 1.5880 1.6719 1.7019 1.7359 1.7509 1.7556 1.8153 1.8727 1.8883
E7p2 1.5333 1.5398 1.5884 1.6715 1.7016 1.7365 1.7513 1.7552 1.8149 1.8726 1.8880

FEM1D 1.5335 1.5400 1.5884 1.6718 1.7018 1.7366 1.7513 1.7550 1.8152 1.8727 1.8882

mineos1D 1.5312 1.5398 1.5863 1.6715 1.6987 1.7339 1.7512 1.7550 1.8148 1.8696 1.8845

Table 22. Tests of spheroidal modes for different Earth models in Table 21 with the reference gravitational field in

[1.5, 2.0]mHz.

Exp. 1T4 0T10 0T11 1T5 0T12 1T6 0T13

E9p1 1.6013 1.6298 1.7550 1.7683 1.8775 1.9458 1.9981

E6p2 1.5983 1.6266 1.7509 1.7645 1.8718 1.9411 1.9923

E7p2 1.5975 1.6268 1.7513 1.7637 1.8732 1.9401 1.9931

FEM1D 1.5972 1.6269 1.7515 1.7633 1.8735 1.9397 1.9934

mineos1D 1.5968 1.6234 1.7473 1.7629 1.8686 1.9391 1.9877

Table 23. Tests of toroidal modes for different Earth models in Table 21 with the reference gravitational field in

[1.5, 2.0]mHz.

Exp. 0S12 7S1 2S8 4S3 5S2 0S13 1S10 5S3 0S14 8S1 2S9 3S5

E7p2 2.0008 2.0189 2.0741 2.0765 2.1133 2.1237 2.1647 2.1892 2.2426 2.2524 2.2555 2.2855

FEM1D 2.0009 2.0186 2.0743 2.0760 2.1127 2.1239 2.1650 2.1886 2.2429 2.2518 2.2556 2.2846

mineos1D 1.9974 2.0183 2.0702 2.0759 2.1121 2.1200 2.1647 2.1878 2.2386 2.2513 2.2511 2.2846

Table 24. Computation of spheroidal modes for experiment E7p2 with the reference gravitational field in

[2.0, 2.5]mHz.
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Exp. 0T14 1T7 2T1 0T15 2T2 1T8 2T3 0T16 2T4 0T17 1T9

E7p2 2.1112 2.1198 2.2072 2.2282 2.2496 2.2975 2.3148 2.3432 2.4001 2.4576 2.4711

FEM1D 2.1115 2.1192 2.2064 2.2278 2.2504 2.2970 2.3141 2.3437 2.3992 2.4582 2.4706

mineos1D 2.1050 2.1185 2.2059 2.2209 2.2490 2.2960 2.3134 2.3355 2.3985 2.4491 2.4694

Table 25. Computation of toroidal modes for experiment E7p2 with the reference gravitational field in [2.0, 2.5]mHz.

Exp. 7S2 3S6 1S12 0S17 2S11 4S6 0S18 3S7 5S5 2S12 1S13 0S19

E8p2 2.5550 2.5673 2.5725 2.5832 2.6033 2.6850 2.6905 2.7042 2.7272 2.7701 2.7850 2.7952

FEM1D 2.5554 2.5676 2.5731 2.5808 2.6026 2.6842 2.6879 2.7044 2.7181 2.7695 2.7855 2.7926

mineos1D 2.5551 2.5659 2.5727 2.5755 2.5972 2.6842 2.6822 2.7022 2.7277 2.7636 2.7851 2.7866

Table 26. Computation of spheroidal modes for experiment E8p2 with the reference gravitational field in
[2.5, 3.0]mHz.

Exp. 2T5 0T18 2T6 1T10 0T19 2T7 0T20 1T11 2T8 1T12

E8p2 2.5041 2.5754 2.6296 2.6391 2.6888 2.7739 2.8016 2.8036 2.9348 2.9647

FEM1D 2.5050 2.5718 2.6304 2.6394 2.6848 2.7746 2.7971 2.8039 2.9355 2.9649

mineos1D 2.5041 2.5617 2.6295 2.6397 2.6738 2.7736 2.7851 2.8022 2.9344 2.9630

Table 27. Computation of toroidal modes for experiment E8p2 with the reference gravitational field in [2.5, 3.0]mHz.

Exp. #elm. size of AG size of Ap (λmin, λmax) range (mHz) (deg,#it) #eigs

E7p2 4,094,031 17,469,666 1,181,103 (-1.77e-6,5.37e+1) [2.0, 2.5] (4054,1892) 528

MIT 4,048.932 16,578,945 879,067 (-2.55e-5,2.47e+1) [2.0, 2.5] (2674,1912) 520

MIT+3D crust 4,044,225 16,550,922 878,808 (-6.02e-5,1.45e+2) [2.0, 2.5] (6984,1912) 550

Table 28. Test cases for three different Earth models with the reference gravitational field.
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Figure 5. Comparisons amongst different Earth models. The results from PREM without ocean, MIT model, and
MIT model with the 3D crust are shown using blue +, red ◦ and yellow ×, respectively. The upper scripts P , M on

the mode symbols (nSl, nTl) denote PREM and MIT models, respectively. (a-d) Comparison for different modes in

[2.0, 2.18], [2.18, 2.28], [2.28, 2.38] and [2.38, 2.48]mHz, respectively. The mode in (b) couples 0S14 with 2T2. The two
modes in (c) couple 1S11 with 0T16. The left mode in (d) couples 0S16 with 1T9. The right mode in (d) couples 6S2

with 0T17.
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Bermúdez, A., Hervella-Nieto, L., & Rodriguez, R., 1999. Finite element computation of three-dimensional elastoa-

coustic vibrations, Journal of Sound and Vibration, 219(2), 279–306.
Brezzi, F. & Fortin, M., 2012. Mixed and hybrid finite element methods, vol. 15, Springer Science & Business Media.

Buland, R. & Gilbert, F., 1984. Computation of free oscillations of the Earth, Journal of Computational Physics,

54(1), 95–114.
Burdick, S., Vernon, F. L., Martynov, V., Eakins, J., Cox, T., Tytell, J., Mulder, T., White, M. C., Astiz, L., Pavlis,

G. L., & van der Hilst, R. D., 2017. Model update May 2016: Upper-mantle heterogeneity beneath North America
from travel-time tomography with global and USArray data, Seismological Research Letters, 88(2A), 319–325.

Burnett, D. S., 1994. A three-dimensional acoustic infinite element based on a prolate spheroidal multipole expansion,

The Journal of the Acoustical Society of America, 96(5), 2798–2816.
Chaljub, E., Capdeville, Y., & Vilotte, J.-P., 2003. Solving elastodynamics in a fluid–solid heterogeneous sphere:

a parallel spectral element approximation on non-conforming grids, Journal of Computational Physics, 187(2),

457–491.
Chaljub, E., Komatitsch, D., Vilotte, J.-P., Capdeville, Y., Valette, B., & Festa, G., 2007. Spectral-element analysis

in seismology, Advances in geophysics, 48, 365–419.

Chen, H. C. & Taylor, R. L., 1990. Vibration analysis of fluid–solid systems using a finite element displacement
formulation, International Journal for Numerical Methods in Engineering, 29(4), 683–698.

Craggs, A., 1971. The transient response of a coupled plate-acoustic system using plate and acoustic finite elements,

Journal of Sound and Vibration, 15(4), 509–528.
Dahlen, F. A. & Tromp, J., 1998. Theoretical global seismology, Princeton University press.

de Hoop, M. V., Holman, S., & Pham, H., 2015. On the system of elastic-gravitational equations describing the
oscillations of the earth, arXiv preprint arXiv:1511.03200 .

de Hoop, M. V., Holman, S., Jimbo, S., & Nakamura, G., 2019. Characterization of the spectrum of the earth and

normal modes, in preparation.
Deuss, A. & Woodhouse, J., 2004. Iteration method to determine the eigenvalues and eigenvectors of a target

multiplet including full mode coupling, Geophysical Journal International , 159(1), 326–332.

Deuss, A. & Woodhouse, J. H., 2001. Theoretical free-oscillation spectra: the importance of wide band coupling,
Geophysical Journal International , 146(3), 833–842.

Ern, A. & Guermond, J.-L., 2013. Theory and practice of finite elements, vol. 159, Springer Science & Business

Media.
Everstine, G. C., 1981. A symmetric potential formulation for fluid-structure interaction, Journal of Sound and

Vibration, 79(1), 157–160.
Fang, H. & Saad, Y., 2012. A Filtered Lanczos Procedure for Extreme and Interior Eigenvalue Problems, SIAM

Journal on Scientific Computing, 34(4), A2220–A2246.

Gharti, H. N., Tromp, J., & Zampini, S., 2018. Spectral-infinite-element simulations of gravity anomalies, Geophysical
Journal International , 215(2), 1098–1117.

Gimbutas, Z. & Greengard, L., 2011. FMMLIB3D 1.2, FORTRAN libraries for fast multiple method in three

dimensions.
Greengard, L. & Rokhlin, V., 1987. A fast algorithm for particle simulations, Journal of Computational Physics,

73(2), 325–348.

Greengard, L. & Rokhlin, V., 1997. A new version of the fast multipole method for the Laplace equation in three
dimensions, Acta numerica, 6, 229–269.

Hamdi, M. A., Ousset, Y., & Verchery, G., 1978. A displacement method for the analysis of vibrations of coupled

fluid-structure systems, International Journal for Numerical Methods in Engineering, 13(1), 139–150.
Hesthaven, J. S. & Warburton, T., 2007. Nodal discontinuous Galerkin methods: algorithms, analysis, and applica-



3D normal modes 31

tions, vol. 54, Springer Science & Business Media.

Hughes, T. J., 2012. The finite element method: linear static and dynamic finite element analysis, Courier Corpo-
ration.

Irving, J., Deuss, A., & Woodhouse, J., 2009. Normal mode coupling due to hemispherical anisotropic structure in

Earth’s inner core, Geophysical Journal International , 178(2), 962–975.
Kennett, B., Engdahl, E., & Buland, R., 1995. Constraints on seismic velocities in the earth from traveltimes,

Geophysical Journal International , 122(1), 108–124.

Kiefling, L. & Feng, G., 1976. Fluid-structure finite element vibrational analysis, AIAA Journal , 14(2), 199–203.
Koelemeijer, P., Deuss, A., & Trampert, J., 2012. Normal mode sensitivity to Earth’s D” layer and topography on

the core-mantle boundary: what we can and cannot see, Geophysical Journal International , 190(1), 553–568.

Komatitsch, D. & Tromp, J., 2002. Spectral-element simulations of global seismic wave propagation–II. Three-
dimensional models, oceans, rotation and self-gravitation, Geophysical Journal International , 150(1), 303–318.

Laske, G., Masters, G., Ma, Z., & Pasyanos, M., 2013. Update on CRUST1. 0A 1-degree global model of Earths
crust, in Geophys. Res. Abstr , vol. 15, p. 2658, EGU General Assembly Vienna, Austria.

Li, R., Xi, Y., Vecharynski, E., Yang, C., & Saad, Y., 2016. A Thick-Restart Lanczos algorithm with polynomial

filtering for Hermitian eigenvalue problems, SIAM J. Sci. Comput., 38(4), A2512–A2534.
Li, R., Xi, Y., Erlandson, L., & Saad, Y., 2018. The Eigenvalues Slicing Library (EVSL): Algorithms, Implementation,

and Software, arXiv preprint arXiv:1802.05215 .
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APPENDIX A: FULL MODE COUPLING

Concerning the Galerkin approximation, we may use different bases of functions in the appropriate energy

space. In this appendix, we consider the use of eigenfunctions of a spherically symmetric, non-rotating,

perfectly elastic and isotropic (SNREI) reference model as a basis. This was proposed by Woodhouse &

Dahlen (1978); Woodhouse (1980); Deuss & Woodhouse (2001, 2004). An immediate drawback of using this

basis, however, is that the fluid-solid boundaries need to be spherically symmetric as these are encoded in

these basis functions.

We let ukm represent the eigenfunctions associated with eigenfrequencies, ωk, in terms of spherical

harmonics, Y m
l , that is,

ukm = UkmPlm + VkmBlm +WkmClm (no summation over m),

where k is the multi-index for the eigenfrequency; m = −l,−l+ 1 . . . , l−1, l is the index corresponding with

the degeneracy with l denoting the spherical harmonic degree; Ukm, Vkm and Wkm are the three components

of eigenfunctions and are functions of the radial coordinate; Plm, Blm and Clm are the vector spherical

harmonics, see (Dahlen & Tromp 1998, (8.36)) for their definition. In addition, pkm needs to be introduced

to constrain the solution, cf. (13) (de Hoop et al. 2019, Subsection 3.3). Since ∇ · ukm(x) can be expended

using Y m
l (x) (Dahlen & Tromp 1998, (8.38)) and ukm(x) · g(r) can also be expended using Y m

l (x) for the

radial models, we let pkm = PkmY
m
l with

Pkm = −κ(r)

[
∂rUkm + r−1(2Ukm −

√
l(l + 1)Vkm)

]
+ ρ0

(r)g(r)Ukm,

where ρ0
(r), κ(r) and g(r) denote the radial profiles of the density, bulk modulus and reference gravitational

field of a radial model, respectively. Similarly, the incremental gravitational potential of the radial models

takes the form, skm = SkmY
m
l , where Skm is also a function in the radial coordinate. In the following, l and

m are fixed.

In an SNREI model, for the computation of the toroidal modes, we only need to consider a solid annulus

comprising the mantle and the crust. We exemplify the computations with the spheroidal modes and let

U ′km, P ′km and S′km be test functions for Ukm, Pkm and Skm following the Galerkin method. We let the X̃(r)

be the 1D interval of the radial planet and have X̃(r) = ΩS
(r) ∪ ΩF

(r), where ΩS
(r) and ΩF

(r) denote the 1D

intervals for the solid and fluid regions, respectively. Given a regular finite-element partitioning T (r)
h of the

interval X̃(r), we denote an element of the mesh by Lq ∈ T (r)
h and have X̃(r) =

⋃NL
q=1 Lq, where NL denotes

the total number of 1D elements. Furthermore, we let LS
q and LF

q specifically be elements in the solid and

fluid regions and have

ΩS
(r) =

NS
L⋃

q=1

LS
q , ΩF

(r) =

NF
L⋃

q=1

LF
q ,

where NS
L and NF

L denote the numbers of 1D elements in the solid and fluid regions, respectively. We let

ΣFS
(r) denote the fluid-solid boundary points in the radial interval. We introduce the finite-element solutions,

Us
km;h, Uf

km;h, V s
km;h, V f

km;h, Pkm;h and Skm;h, and test functions, Us′
km;h, Uf ′

km;h, V s′
km;h, V f ′

km;h, P ′km;h and

S′km;h. We set NpU = (pU + 1)/2, where NpU is the number of nodes on a 1D element for the pU -th order

polynomial approximation. We have likewise expressions for NpV , NpP and NpS . Similar to Subsection 3.3,

we introduce nodal based Lagrange polynomials, `Ui , `Vi , `Pi , `Si , on the resepctive 1D elements L ∈ T (r)
h ,
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and write

Us
km;h(x) =

N
pU∑

i=1

Us
km;h(xi)`

U
i (x), Uf

km;h(x) =

N
pU∑

i=1

Uf
km;h(xi)`

U
i (x), (A.1)

V s
km;h(x) =

N
pV∑

i=1

V s
km;h(xi)`

V
i (x), V f

km;h(x) =

N
pV∑

i=1

V f
km;h(xi)`

V
i (x), (A.2)

Pkm(x) =

N
pP∑

i=1

Pkm(xi)`
P
i (x), Skm(x) =

N
pS∑

i=1

Skm(xi)`
S
i (x), (A.3)

for x ∈ LS and x ∈ LF, respectively; similar representations hold for Us′
km;h, Uf ′

km;h, V s′
km;h, V f ′

km;h, P ′km;h and

S′km;h, respectively. We note that the fluid-solid boundary points coincide with nodes.

Similarly to Subsection 3.4 and Section 4, we collect the “values” of Us
km;h, Uf

km;h, V s
km;h, V f

km;h, Pkm;h

and Skm;h at all the nodes, in vectors Ũs
km, Ũf

km, Ṽ s
km, Ṽ f

km, Ṽkm and S̃km, respectively, and collect the

values of Us′
km;h, Uf ′

km;h, V s′
km;h, V f ′

km;h, P ′km;h and S′km;h at all the nodes, in “vectors” Ũs′
km, Ũf ′

km, Ṽ s′
km, Ṽ f ′

km,

P̃ ′km and S̃′km, respectively. We let

ũ
(r)
km = ((Ũs

km)T, (Ṽ s
km)T, (Ũf

km)T, (Ṽ f
km)T)T,

ũs
km = ((Ũs

km)T, (Ṽ s
km)T)T, ũf

km = ((Ũf
km)T, (Ṽ f

km)T)T,

and obtain the resulting eigenvalue problem (cf. (64))

(A
(r)
G − E

(r)
G A(r)

p

−1
E

(r)
G

T
− C(r)T(S(r))−1C(r))ũ

(r)
km = ω2

kM
(r)ũ

(r)
km, (A.4)

where

A
(r)
G =

(
A

(r)
sg 0

0 A
(r)
f

)
, E

(r)
G =

(
E

(r)
FS

A
(r)
dg

)
, C(r)T =

(
C

(r)
s

T

C
(r)
f

T

)
,

M (r) =

(
M

(r)
s 0

0 M
(r)
f

)
, E

(r)
G

T
=
(
E

(r)
FS

T
A

(r)
dg

T
)
, C(r) =

(
C

(r)
s C

(r)
f

)
,

in which A
(r)
sg , A

(r)
f , A

(r)
p , E

(r)
FS , E

(r)
FS

T
, A

(r)
dg , A

(r)
dg

T
, M

(r)
s , M

(r)
f , C

(r)
s

T
, C

(r)
f

T
, S(r), C

(r)
s and C

(r)
f , are given

in Tables A.1 and A.2. We note that the matrices in (A.4) are obtained using separation of variables with

spherical harmonics in (64); We substitute

P̃km = −A(r)
p

−1
E

(r)
G

T
ũ

(r)
km

upon solving (16) and

S̃km = (S(r))−1C(r)ũ
(r)
km

upon solving (2). We only need to invoke a finite-element basis in the radial coordinate. We note that the

resulting system can be solved via a standard eigensolver, such as LAPACK (Anderson et al. 1999).

As mentioned above, we may consider the finite-element solution denoted as {ukm;h} as an alterna-

tive basis. Since {ukm;h} is a global basis for the general problem, we have no separation in the solid and

fluid components and no longer have the fluid-solid boundary terms in the system. Following the Galerkin

method, we then consider an expansion for the general solution uc =
∑

km ykmukm;h and the correspond-

ing test functions vc =
∑

k′m′ y
′
k′m′uk′m′;h. We introduce sc and their corresponding test functions vsc for

self-gravitation. We have sc =
∑

km zkmSkm;h and vsc =
∑

k′m′ z
′
k′m′Sk′m′;h. Assuming that all the discon-

tinuities in a fully heterogeneous model coincide with the ones in the reference radial model and the fluid

outer core, the eigenfuncions represented by the mentioned expansions lie in H1 ⊂ E (cf. (10)) for the fully

heterogeneous problem while the constraint equation disappears. We let y, y′, z and z′ be the “vectors”

with components ykm, y′k′m′ , zkm and z′k′m′ , respectively, and obtain

(A
(c)
G − C

(c)TS(c)−1
C(c))y = ω2M (c)y, (A.5)

as the counterpart of (64). Here, A
(c)
G , M (c), C(c)T, S(c) and C(c) obtained via substituting the above-

mentioned expansion of uc in (64), are given in Tables A.3 and A.4.
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operations physical relations corresponding formulae

(Ũs′
km)TA

(r)
sg Ũ

s
km solid stiffness matrix (Ye 2018, (3.1))

(Ũf ′

km)TA
(r)
f Ũf

km Brunt-Väisälä frequency

∫
ΩF

(r)

Uf ′

km;hU
f
km;hN

2
(r)ρ

0
(r)r

2 dr

(P̃ ′km)TA
(r)
p P̃km fluid potential

∫
ΩF

(r)

P ′km;hPkm;hκ
−1
(r)
r2 dr∫

ΩF
(r)

Uf ′

km;h(∂rPkm;h + ρ0
(r)g(r)κ

−1
(r)
Pkm;h)r2 dr

(ũf
′

km)TA
(r)
dg P̃km fluid stiffness matrix +

∫
ΩF

(r)

√
l(l + 1)Pkm;hV

f ′

km;hr dr∫
ΩF

(r)

(
∂rP

′
km;h + ρ0

(r)g(r)κ
−1
(r)
P ′km;h

)
Uf
km;hr

2 dr

(P̃ ′km)TA
(r)
dg

T
ũfkm constraint +

∫
ΩF

(r)

√
l(l + 1)P ′km;hV

f
km;hr dr

(Ũs′
km)TE

(r)
FS P̃km fluid-solid boundary condition −Pkm;hU

s′
km;hr

2|ΣFS
(r)

(P̃ ′km)TE
(r)
FS

T
Ũs
km fluid-solid boundary condition −P ′km;hU

s
km;hr

2|ΣFS
(r)

(Ũs′
km)TM

(r)
s Ũs

km solid mass matrix

∫
ΩS

(r)

(
Us′
km;hU

s
km;h + V s′

km;hV
s
km;h

)
ρ0

(r)r
2 dr

(Ũf ′

km)TM
(r)
f Ũf

km fluid mass matrix

∫
ΩF

(r)

(
Uf ′

km;hU
f
km;h + V f ′

km;hV
f
km;h

)
ρ0

(r)r
2 dr

Table A.1. Implicit definition of the matrices in (A.4) (no summations over k and m). Since the construction of A
(r)
sg

is standard, we refer to (Dahlen & Tromp 1998, (8.43) & (8.44)) and (Ye 2018, (3.1)). In the above,
∫
ΩS

(r)
=
∑NS

L
q=1

∫
LS

q

and
∫
ΩF

(r)
=
∑NF

L
q=1

∫
LF

q
.

operations physical relations corresponding formulae∫
ΩS

(r)

(∂rS
′
km;h)Us

km;hρ
0
(r)r

2 dr

(S̃′km)TC
(r)
s ũskm density changes in ΩS

(r)
+

∫
ΩS

(r)

√
l(l + 1)S′km;hV

s
km;hρ

0
(r)r dr∫

ΩF
(r)

(∂rS
′
km;h)Uf

km;hρ
0
(r)r

2 dr

(S̃′km)TC
(r)
f ũfkm density changes in ΩF

(r)
+

∫
ΩF

(r)

√
l(l + 1)S′km;hV

f
km;hρ

0
(r)r dr

(4πG)−1

∫ ∞
0

(∂rS
′
km;h∂rSkm;hr

2

(S̃′km)TS(r)S̃km Poisson’s equation +l(l + 1)S′km;hSkm;h) dr∫
ΩS

(r)

Us′
km;h(∂rSkm;h)ρ0

(r)r
2 dr

(ũs
′

km)TC
(r)
s

T
S̃km incremental gravitational field in ΩS

(r)
+

∫
ΩS

(r)

√
l(l + 1)V s′

km;hSkm;hρ
0
(r)r dr∫

ΩF
(r)

Uf ′

km;h(∂rSkm;h)ρ0
(r)r

2 dr

(ũf
′

km)TC
(r)
f

T
S̃km incremental gravitational field in ΩF

(r)
+

∫
ΩF

(r)

√
l(l + 1)V f ′

km;hSkm;hρ
0
(r)r dr

Table A.2. Implicit definition of the matrices in (A.4) (no summation over k and m). In the above,
∫
ΩS

(r)
=
∑NS

L
q=1

∫
LS

q

and
∫
ΩF

(r)
=
∑NF

L
q=1

∫
LF

q
. In the Poisson’s equation, the computation of the integral

∫∞
0 requires special treatment,

see (Ye 2018, Chapter 3.2.2).
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operations physical relations corresponding formulae∑
km

∑
k′m′

y′k′m′

{∫
ΩS
∇uk′m′;h :

(
c : ∇ukm;h

)
dx

+

∫
ΣFS

S
{(
g · uk′m′;h

) (
νs→f · ukm;h

)
[ρ0]f

}
dΣ

+

∫
ΩS

S

{(
∇ · uk′m′;h

) (
ρ0ukm;h · g

)
− ρ0uk′m′;h · (∇g) · ukm;h

−ρ0ukm;h ·
(
∇uk′m′;h

)
· g
}

dx

+

∫
ΩF

ρ0N2

(
g · uk′m′;h

) (
g · ukm;h

)
‖g‖2

dx

+

∫
ΩF

κ
(
∇uk′m′;h + ρ0κ−1uk′m′;h · g

)
(y′)TA

(c)
G y stiffness matrix

(
∇ukm;h + ρ0κ−1ukm;h · g

)
dx

}
ykm∑

km

∑
k′m′

y′k′m′

{∫
ΩS

uk′m′;h · ukm;hρ
0 dx

(y′)TM(c)y mass matrix +

∫
ΩF

uk′m′;h · ukm;hρ
0 dx

}
ykm

Table A.3. Implicit definition of the matrices in (A.5).

If all the discontinuities in a fully heterogeneous model with a fixed fluid outer core coincide with

the reference radial model, we note that the matrix elements in (A.5), Tables A.3 and A.4 are similar

to (Woodhouse 1980, (A1)), which describe mode coupling in non-radial models. However, (Woodhouse

1980, (A1)) includes additional terms accounting for changes in the fluid-solid boundaries; this violates the

condition that normal modes need to remain in E and in H1.

operations physical relations corresponding formulae∑
km

∑
k′m′

z′k′m′

{∫
ΣSS∪∂X̃S

sk′m′;hν · ukm;h

[
ρ0
]+
− dΣ

+

∫
ΩS

sk′m′;h∇ ·
(
ρ0ukm;h

)
dx

+

∫
ΣFS

sk′m′;hν
f→s · ukm;h

[
ρ0
]s

dΣ

+

∫
ΣFF∪∂X̃F

sk′m′;hν · ukm;h

[
ρ0
]+
− dΣ

+

∫
ΩF

sk′m′;h∇ · (ρ0ukm;h) dx

(z′)TC(c)y density changes in X̃ +

∫
ΣFS

sk′m′;hν
s→f · ukm;h

[
ρ0
]f

dΣ

}
ykm

(z′)TS(c)z Poisson’s equation
∑
km

∑
k′m′

z′k′m′

{∫
R3

(∇sk′m′;h) · (∇skm;h) dx

}
zkm∑

km

∑
k′m′

y′k′m′

{∫
ΣSS∪∂X̃S

[ρ0]+−ν · uk′m′;hskm;h dΣ

+

∫
ΩS
∇ · (ρ0uk′m′;h)skm;h dx

+

∫
ΣFS

[ρ0]sνf→s · uk′m′;hskm;h dΣ

+

∫
ΣFF∪∂X̃F

[ρ0]+−ν · uk′m′;hskm;h dΣ

+

∫
ΩF
∇ · (ρ0uk′m′;h)skm;h dx

(y′)TC(c)Tz incremental gravitational field in X̃ +

∫
ΣFS

[ρ0]fνs→f · uk′m′;hskm;h dΣ

}
zkm

Table A.4. Implicit definition of the matrices in (A.5).
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Figure B.1. Illustration of different spheroidal modes with n = 0.

APPENDIX B: VISUALIZATION OF NORMAL MODES OF PREM

In this appendix, to gain some insight in their properties, we illustrate the spheroidal and toroidal modes

computed in PREM in Figs. B.1 to B.5 and Figs. B.6 to B.8, respectively. The sizes of the arrows indicate

the magnitudes of the scaled displacements and the color denote the x, y or radial component. The scaling

factor is the square root of the diagonal of the mass matrix M in (72). The visualization is based on around

50,000 evenly distributed displacement vectors on vertices of the finite-element partition Th.

In Figs. B.1 to B.5, we illustrate spheroidal modes with radial orders n = 0, 1, 2, 3−6, 7−8, respectively.

In Figs. B.6 to B.8, we show toroidal modes with radial orders n = 0, 1, 2 − 3, respectively. We note that

1S1 is the Slichter mode (Slichter 1961); 2S2, 3S3, 3S4, 3S5, 4S6, 4S7, and 4S8 are ICB Stoneley modes; 6S1,

6S2 and 7S3 are inner core modes.
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Figure B.2. Illustration of different spheroidal modes with n = 1. 1S1 is the Slichter mode.
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Figure B.3. Illustration of different spheroidal modes with n = 2. Note that 2S2 is an ICB Stoneley mode.
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Figure B.4. Illustration of different spheroidal modes with n = 3, . . . , 6. Note that 3S3, 3S4, 3S5, 4S6, 4S7 and 4S8

are ICB Stoneley modes. 6S1 and 6S2 are inner core modes.
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Figure B.5. Illustration of different spheroidal modes with n = 7, 8. Note that 7S3 is an inner core mode.

-0.000607

0.00  

0.000607

-9.378e-04

8.823e-04

Mag. X

0T2

-0.000383

0.000313

-1.079e-03

1.009e-03

Mag. X

0T3

-0.000457

0.000366

-1.281e-03

1.190e-03

Mag. Y

0T4

-0.000388

0.000385

-1.162e-03

1.159e-03

Mag. X

0T5

-0.000739

0.00  

0.000739

-9.591e-04

1.257e-03

Mag. X

0T6

-0.00101

0.00  

0.00101

-1.533e-03

1.502e-03

Mag. Y

0T7

-0.000734

0.000475

-1.942e-03

1.684e-03

Mag. Y

0T8

-0.000746

0.000574

-2.066e-03

1.894e-03

Mag. X

0T9

-0.000795

0.000503

-2.093e-03

1.801e-03

Mag. Y

0T10

-0.000870

0.00  

0.000870

-0.001

0.001

Mag. Y

0T11

-0.000683

0.000670

-2.037e-03

2.024e-03

Mag. Y

0T12

-0.000711

0.000701

-2.123e-03

2.114e-03

Mag. Y

0T13

-0.000964

0.000845

-2.772e-03

2.654e-03

Mag. Y

0T14

-0.000782

0.000907

-2.470e-03

2.596e-03

Mag. Y

0T15

-0.00133

0.00  

0.00133

-1.904e-03

2.100e-03

Mag. Y

0T16

-0.000913

0.00104

-2.870e-03

3.001e-03

Mag. Y

0T17

Figure B.6. Illustration of different toroidal modes with n = 0.
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Figure B.7. Illustration of different toroidal modes with n = 1.
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Figure B.8. Illustration of different toroidal modes with n = 2, 3.
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