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Abstract. This paper presents a brief historical survey of iterative methods

for solving linear systems of equations. The journey begins with Gauss who

developed the first known method that can be termed iterative. The early 20th
century saw good progress of these methods which were initially used to solve

least-squares systems, and then linear systems arising from the discretization
of partial differential equations. Then iterative methods received a big impetus

in the 1950s - partly because of the development of computers. The survey

does not attempt to be exhaustive. Rather, the aim is to bring out the way
of thinking at specific periods of time and to highlight the major ideas that

steered the field.

1. It all started with Gauss

A big part of the contributions of Carl Friedrich Gauss can be found in the vo-
luminous exchanges he had with contemporary scientists. This correspondence has
been preserved in a number of books, e.g., in the twelve “Werke” volumes gathered
from 1863 to 1929 at the University of Göttingen1. There are also books special-
ized on specific correspondences. One of these is dedicated to the exchanges he had
with Christian Ludwig Gerling [67]. Gerling was a student of Gauss under whose
supervision he earned a PhD from the university of Göttingen in 1812. Gerling
later became professor of mathematics, physics, and astronomy at the University
of Marburg where he spent the rest of his life from 1817 and maintained a relation
with Gauss until Gauss’s death in 1855. We learn from [73] that there were 388
letters exchanged between the two from 1810 to 1854 (163 written by Gauss and
225 by Gerling).

It is in one of these letters that Gauss discusses his method of indirect elim-
ination which he contrasted with the method of direct elimination or Gaussian
elimination in today’s terminology. Gauss wrote this letter to Gerling on Dec.
26th, 1823. Gerling was a specialist of geodesy and the exchange in this letter was
about the application of the method of least-squares, which Gauss invented in the
early 1800s, to geodesy. An English translation of this letter was published in 1951
by George Forsythe [25]. The historical context of this translation is interesting
in itself. In the forward, Forsythe begins by stating that his specific aim was to
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find whether or not the reference in a book by Zurmühl on matrices [88] that men-
tioned the method of relaxation described by Southwell [75, 76] is the same as the
one given in “Dedekind’s report on Gauss’s Lectures” (see references in [25]) “...It
is believed by some computers2 however, that Gauss’s method is a different one,
namely the related method given by Seidel [69]. In the interest of giving Gauss his
proper credit as a proponent of relaxation, the following translation of a letter by
Gauss is offered.”

Let us take a look at the content of the letter. After some manipulations of
data, Gauss arrives at a least-squares system for determining angles formed by
certain directions for 4 German cities. For this he states that he will describe an
“indirect” method for solving the normal equations. The equations of the resulting
least-squares system are then combined so that the entries of each column sum-up
to zero. This results in a linear system which is written in the following form:

0 = +6 + 67a− 13b− 28c − 26d(1.1)

0 = −7558 − 13a+ 69b− 50c − 6d(1.2)

0 = −14604− 28a− 50b+ 156c− 78d(1.3)

0 = +22156− 26a− 6b − 78c + 110d(1.4)

As can be verified all column sums are equal to zero. The preliminary step to
produce a system of this type is a ‘trick’ which helps get a better convergence
and provides what we may call today an invariant, i.e., a property that is always
satisfied and can therefore be useful in detecting calculation errors. Gauss mentions
that without this trick “you lose the great convenience of always having as a control
the sum of the absolute terms = 0”. The absolute terms are the terms of the first
column of the above system, which is the negative of what we now call the right-
hand side.

In the iterative scheme proposed, the coordinates of the solution change and
the right-hand side, which is in fact the residual vector, is updated each time. The
mechanical nature of the procedure is at the same time simple and appealing. So
for example, all coordinates of the solution are set to zero, and in the first step, he
selects to modify the 4th coordinate because it would lead to the biggest decrease
in the residual. The letter then shows the progress of the algorithm in the following
table:

d = −201 b = +92 a = −60 c = +12 a = +5 b = −2 a = −1
+6 +5232 +4036 +16 −320 +15 +41 −26

−7558 −6352 −4 +776 +176 +111 −27 −14
−14604 +1074 −3526 −1846 +26 −114 −14 +14
+22156 +46 −506 +1054 +118 −12 0 +26

The first column is just the initial residual (corresponding to the initial guess x = 0
in today’s terminology). The largest entry is the 4th, and so Gauss selects to up-
date d which now has the value d = −201 (obtained by making the last equation
satisfied). Note that all values are rounded and this is one of the important attrac-
tions of this method. The second column shows the next modification to be added
this time to b. In today’s notation we would write something like ∆b = +92. At
the end of the 7 steps above, we have a = −56, b = +90, c = 12, d = −201. The

2In the 1950s a ‘computer’ often referred to someone who specialized in numerical computing,
i.e., whose job was to carry out a calculation given a certain algorithm, or set of formulas.
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corresponding residual is shown in the last column. Note here that in Step 6, Gauss
changes b instead of c while in fact the the 3rd residual component (-114) has a
bigger magnitude than the second (-111). We can only speculate that this is done
for convenience since the 3rd equation has more big terms than the first and 111
and 114 are not too far apart. It turns out for this example, nothing changes after
the 7 steps shown above: “Insofar as I carry the calculation only to the nearest
2000-th of a second, I see that now there is nothing more to correct...” and the
final solution is displayed. Gauss ends the letter with the words: “ ... Almost every
evening I make a new edition of the tableau, wherever there is easy improvement.
Against the monotony of the surveying business, this is always a pleasant entertain-
ment; one can also see immediately whether anything doubtful has crept in, what
still remains to be desired, etc. I recommend this method to you for imitation. You
will hardly ever again eliminate directly, at least not when you have more than 2
unknowns. The indirect procedure can be done while half asleep, or while thinking
about other things.”

Gauss recommends this iterative scheme (indirect elimination) over Gaussian
elimination for systems of order > 2. We will contrast this with other recommen-
dations later.

This appears to be the first known reference to a use of an iterative method
for solving linear systems. Later, in 1845 Jacobi [40] developed a relaxation type
method in which the latest modification is not immediately incorporated into the
system. In that same paper he introduces a way of modifying a linear system by
using what we now know as “Jacobi rotations” to annihilate large diagonal en-
tries before performing relaxations. This is in order to speed-up convergence of
the iteration, and so one can say that Jacobi introduced the first known form of
preconditioning 3 That same technique that uses cleverly selected rotations, was ad-
vocated in a paper that appeared a year later [41] for solving symmetric eigenvalue
problems.

Though this letter to Gerling dealt with a 4 × 4 linear system, Gauss solved
bigger systems with the same method. Bodewig [11, p. 145] describes the state
of the art with this method in its early stages as follows: Gauss had systems
of 20—30—40 unknowns, later still higher systems were met, for instance, in the
triangulation of Saxony by NAGEL in 1890: 159 unknowns, H. BOLTZ at Potsdam
670 unknowns and in the present triangulation of Central Europe several thousands
of unknowns.

2. Solution by relaxation

The term relaxation which is in common use today to describe the general
process first invented by Gauss, seems to have been introduced by Southwell [75,
76]. Suppose we have a linear system of the form

(2.1) Ax = b.

which can be viewed as a collection of equations:

(2.2) aix = βi, i = 1, · · · , n

3Note that this would not be called preconditioning in today’s terminology as the condition

number of the system does not change. It is a preprocessing step in which the matrix is explicitly
modified so as to achieve better diagonal dominance. However, the idea of modifying a system to

achieve better convergence is of the same essence as that of preconditioning.
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where ai ∈ R1×n is the i-th row of A and βi the i-th component of b. We will
denote by r the residual vector:

(2.3) r = b−Ax.

The relaxation process is then as follows, where we set r(new) = b−Ax(new):

Modify i-th component of x into x
(new)
i := xi + δ so that: r

(new)
i = 0.

This means that we should have

ai(x+ δei) = βi −→ δ =
ri
aii
.

This is done in a certain order. In the original approach by Gauss, the method is to
select i to be the coordinate of the residual that has the largest entry. The newly
computed component of x is substituted into x and the new associated residual is
then computed. In the Jacobi method, all n components are updated using the
same r.

In 1874, Seidel [69] described a relaxation method that was again geared toward
solving normal equations. His method can be viewed as a relaxation for the system
ATAx = AT b of normal equations, and because of this specificity he was able to
argue for convergence. He also mentions that unknowns need not be processed
from 1 to n cyclically. Instead, convergence is improved by making each dominant
residual into zero, which is the same scheme as the one initially proposed by Gauss.
In the same paper Seidel also developed a block method whereby a few unknowns
are processed at the same time. Often in the literature that followed, “relaxation”
became synonymous with Seidel’s method and the method was often called Seidel’s
method. It is now called the Gauss-Seidel method in an effort to give credit to
Gauss who invented the non-cyclic variant almost 50 years before him. The fact
that Seidel recommends against processing the unknown cyclically prompted Gorge
Forsythe to remark that “the Gauss-Seidel method was not known to Gauss and
not recommended by Seidel” according to Householder, see [39, p. 115]. In the
same notes, Householder also mentions that Nekrasov, a Russian author (see [39]
for the reference) defined the exact same method as Seidel in 1884 and that “the
method is called Nekrasov’s method in the Russian literature.” In fact, to this
day the method is referred to as the method of Seidel-Nekrasov by some Russian
authors. Nekrasov analyzed the method theoretically [53] and the paper [47] shows
a convergence result.

One of the main attractions of the cyclic version of Gauss-Seidel iteration is
that it can easily programmed or “mechanized” as was said in the early days of
computing. David Young recounts the following anecdote in [86]: “Not too long
after I began my work, Sir Richard Southwell visited Birkhoff at Harvard. One day
when he, Birkhoff and I were together, I told him what I was trying to do. As near
as I can recall, his words were ‘any attempt to mechanize relaxation methods would
be a waste of time.’ This was somewhat discouraging, but my propensity of making
numerical errors was so strong that I knew that I would never be able to solve
significant problems except by machines. Thus, though discouraged, I continued to
work.”

Relaxation-type methods can be written in the form of fixed point iterations
and this makes it easy to analyze their convergence. Consider the decomposition
A = D−E−F where D is a diagonal matrix having the same (diagonal) entries as
those of A, −E is the strictly lower triangular part of A and −F its strictly upper
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triangular part. Then the method of Gauss-Seidel generates the iterates defined by

(2.4) x(k+1) = (D − E)−1
(
Fx(k) + b

)
.

Here one can write Ax = b as (D−E)x = F+b, using the splitting A = (D−E) − F ,
from which the above iteration follows. Similarly, the Jacobi iteration is of the form
x(k+1) = D−1[(E + F )x(k) + b] and is based on the splitting: A = D − (E + F ).

In addition to the original paper by Seidel mentioned above, convergence of the
standard Gauss-Seidel process was studied early on by several authors, see, e.g.,
[83]. A number of these results can found in a chapter of Bodewig’s book [11,
Chap. 7] that starts with the warning: “But, first, let us note that these theorems
are more or less superfluous in practical computation. For the iteration methods
will only be applied when the convergence is evident at first sight, that is, when
the diagonal dominates strongly whereas in other cases convergence will be too slow
even for modern computing machines so that it is better to apply a direct procedure
(Gauss or variants).”

3. Early 20th century

The early 20th century was marked by the beginning of the application of
iterative methods to problems modeled by partial differential equations. Up to
that period, iterative methods were mainly utilized to solve linear systems that
originated from normal equations. On the other hand, a method proposed by
Liebmann [45] was geared specifically toward solving discretized Poisson equations.
The method is nothing but what we term today the Gauss-Seidel method, and for
this reason the Gauss-Seidel iteration when applied to Partial Differential Equations
was often called the Liebmann method. It is known as Nekrasov’s method in the
Russian literature [53].

In a remarkable paper published in 1910, Richardson [58] put together a number
of techniques for solving simple PDEs (Laplace, Poisson, Bi-Harmonic, ..) by finite
differences. He then describes an iterative scheme for solving the linear system
that results from discretizing these equations. The PDEs addressed in the paper
are all of a homogeneous type, e.g., Laplace, or ∆u = 0, with boundary conditions.
This results in a linear system that can be written as Ax + b = 0 where A acts
on interior points only and b reflects the action of the discretized operator on the
boundary points. Thus, for an arbitrary x, the vector Ax+b represents the residual
of the system under consideration. With this notational point in mind, the method
introduced by Richardson in this paper can be written in the form:

(3.1) xj+1 = xj −
1

αj
Arj

and results in a polynomial iteration scheme whose residual at step k satisfies

(3.2) rk =

(
I − A

αk

)
· · ·
(
I − A

α2

)
· · ·
(
I − A

α1

)
r0.

Thus, rk is of the form:

(3.3) rk = pk(A)r0

where pk is a polynomial of degree k satisfying the constraint pk(0) = 1 that depends
on the free coefficients α1, · · ·αk. This is what we would call a polynomial iteration
today. What comes as a surprise is that Richardson identifies exactly the problem
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he has to solve in order to get a small residual, namely to find a set of αi’s for which
pk(t) deviates the least from zero, but then does not invoke Chebyshev’s work to
find the solution. He arrives at a certain solution “by trial” for a polynomial of
degree 7. If we know that the eigenvalues are in an interval [a, b] with a > 0, the
best solution can be expressed in terms of a Chebyshev polynomial of the first kind,
see, e.g., [64, Sec. 12.3]. Chebyshev introduced his polynomials in 1854, [78], or
56 years prior to Richardson’s article, but his paper addressed completely different
issues from those with which we are familiar today when analyzing convergence
of certain algorithms or when defining iterative schemes such as the Chebyshev
iteration. Equally surprising is the fact that Richardson does not seem to be aware
of the work by Gauss [25] and Seidel [69] on iterative schemes. His work is truly
original in that it defines a completely new method, the method of polynomial
iteration, but misses Chebyshev acceleration as we know it today.

It was much later that the missing part was completed in the work of Short-
ley [71], Sheldon [70], and finally Golub and Varga [37] and von Neumann in an
Appendix of [10]. This work also lead to a second-order Richardson iteration to
accelerate the “basic” iteration u(k+1) = Gu(k) + f which takes the following form:

u(k+1) = ρ
[
γ(Gu(k) + f) + (1− γ)u(k)

]
+ (1− ρ)u(k−1)

where, unlike the Chebyshev method, the parameters ρ and γ are fixed throughout
the iteration.

4. 1930s-1940s: Southwell

Iterative methods were popularized by a series of papers, e.g., [38, 28, 1,
17, 75], and books [76, 77] by Richard Southwell and co-workers who put these
methods to use for solving a wide range of problems in mechanical engineering and
physics. A good survey of developments with relaxation methods with a summary
of the problems successfully solved by these methods up to the late 1940s is given by
Fox [27]. Southwell defined various refinement techniques to standard relaxation,
including block-relaxation (called group relaxation [75]) for example. However,
his biggest contribution was to put these techniques in perspective and to show
their effectiveness for handling a large variety of realistic engineering and physical
problems, thus avoiding the use of direct solution methods. Many of the problems
tackled were challenging for that period.

5. The SOR era

Later toward the mid-20th century the observation was made that the conver-
gence of a relaxation procedure could be significantly accelerated by including an
over-relaxation parameter. In the language of the iteration (2.4) Over-relaxation
(Young and others) is based on the splitting

ωA = (D − ωE)− (ωF + (1− ω)D),

resulting in a scheme known as the Successive Over-Relaxation (SOR) method.
The 1950s and early 1960s marked a productive era for iterative methods that saw
an in-depth study of this class of techniques initiated by David Young and Stanley
Frankel. In a 1950 article, Frankel [29] described the “Liebmann” method, which
was just the cyclic relaxation process described by Seidel, along with an “extrapo-
lated Liebmann method” which is nothing but the SOR scheme. He discusses the
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parameter ω (called α in his paper) and obtains an optimal value for standard finite
difference discretizations of the Laplacean. This particular topic received a rather
comprehensive treatment by David Young in his PhD thesis [84] who generalized
Frankel’s work to matrices other than those narrowly targeted by Frankel’s paper.
The SOR method and its variants, became quite successful, especially with the
advent of digital computing and they enjoyed a popularity that lasted until the
1980s when preconditioned Krylov methods started replacing them. Here is what
Varga [81] said about the capabilities of these methods in the year 1960: “As an
example of the magnitude of problems that have been successfully solved by cyclic
iterative methods, the Bettis Atomic Power Laboratory of the Westinghouse Electric
Corporation had in daily use in 1960 a 2-dimensional program which would treat
as a special case Laplacean-type matrix equations of order 20,000.”

He then adds in a footnote: (paraphrase) that the program was written for the
Philco-2000 computer which had 32,000 words of core storage (32Kwords!) and
“Even more staggering”: Bettis had a 3-D code which could treat coupled matrix
equations of order 108,000. This reflects the capability of iterative methods and
indeed of linear system solvers (direct methods could not handle such systems) at
that point in time.

Up to the early 1980s, this was the state of the art in iterative methods. These
methods are still used in some applications either as the main iterative solution
method or in combination with recent techniques (e.g. as smoothers for multigrid
or as preconditioners for Krylov methods).

What I call the SOR era culminated with the production of two major books
that together give a complete view of the state of the art in iterative methods up
to the late 1960s early 1970s. The first is by Richard Varga [81] which appeared in
1962 and the second by David Young [85] which appeared in 1971.

6. A turning point: The Forsythe article

In 1953, George Forsythe published a great survey article [26] in the Bulletin
of the American Mathematical Society, with the title: “Solving linear algebraic
equations can be interesting”. The paper is rather illuminating as much by the
breadth of its content as by its vision. In it Forsythe mentions a new method,
called the Conjugate Gradient method, that appeared on the horizon. “It is my
hope, on the other hand, to arouse the mathematician’s interest by showing (sec.
2) the diversity of approaches to the solution of (1), and by mentioning (secs. 3
to 6) some problems associated with selected iterative methods. The newest process
on the roster, the method of conjugate gradients, is outlined in sec. 7. Sec. 8
touches on the difficult general subject of errors and ”condition,” while a few words
are hazarded in sec. 9 about the effect of machines on methods.” The title of the
article is intriguing but what it is even more so when one reads the comment by
the author that the title of the submitted manuscript was “Solving linear systems
is not trivial”. We will probably never know the reason for the change, but it seems
clear that in those days, solving linear systems of equations could be thought to be
“trivial” from some angle. 4

4When I was working for my PhD in France, I was once asked about the topic of my thesis

and when I replied that it was about sparse matrix methods I was told “..but the problem of
solving linear systems of equations is solved. Isn’t that just tinkering?” Just like Young in [86],

“though discouraged I continued to work.”
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George Forsthye (1917-1972) joined Stanford in 1957 (Mathematics) and founded
the computer science department, one of the first in the nation, in 1965. Knuth
discusses this era in [43] illustrating the fact that it was not an easy task to start
a computer science department at the time and praising Forsythe’s vision. George
Forsythe is now considered one of the fathers of modern numerical analysis.

7. In Brief: Chaotic Iterations

In the early days of electronic computing many people started to see the poten-
tial of parallel processing. Chaotic relaxation was viewed as a way of exploiting this
avenue. It is interesting to see how early this vision of parallelism emerged. Two
papers introduced the term “free steering” for a relaxation method in which the
components to be relaxed are chosen freely, one by Ostrowski in 1955 [54] and the
other by Schechter in 1959 [68]. Both studied convergence for H-matrices. The ar-
ticle by Chazan and Miranker [13] in 1969 introduced the term “chaotic relaxation”
which was adopted for a while until it was replaced later by the term “asynchronous
relaxation”.

Here is a quote from this paper by Chazan and Miranker that explains the moti-
vation and context of their work: “The problem of chaotic relaxation was suggested
to the authors by J. Rosenfeld who has conducted extensive numerical experiments
with chaotic relaxation [J. Rosenfeld (1967)]. Rosenfeld found that the use of more
processors decreased the computation time for solving the linear system. (...) The
chaotic form of the relaxation eliminated considerable programming and computer
time in coordinating the processors and the algorithm. His experiments also exhib-
ited a diminution in the amount of overrelaxation allowable for convergence in a
chaotic mode.” The article [62] by Rosenfeld, mentioned above, seems to be the
first to actually implement chaotic iterations on a parallel machine and show their
effectiveness and potential.

The Chazan-Miranker article prompted a group from the French school to study
the convergence of chaotic iterations, leading to two articles that appeared at the
same time: One by Miellou [49] and the other by Robert et al. [59]. A notable
difference between the two papers is that the analysis by Miellou incorporated “de-
lays” in the algorithm which take into account communication times for example.
Other than this, both papers dealt with nonlinear equations and both exploited the
tool of “vectorial pseudo-norms” (vector functions whose components are norms)
which was quite popular at the time. Later, Miellou published a series of articles in
the Comptes Rendus de l’Academie des Sciences (Proceedings of the French Acad-
emy of Sciences), see, e.g., [51, 52]. The work by Miellou generated an important
following in France, with papers that focused on convergence as well as parallel
implementations, see, e.g., [7, 21, 20, 9, 35, 6, 50]. Some of the work done in
France in those days was truly visionary. Discussions that I attended as a student in
Grenoble could be tense sometimes, with one camp claiming that the methods were
utopian. They were not necessarily utopian but certainly ahead of their time by a
few decades. In fact this work has recently staged a strong come back with the ad-
vent of very large high-performance computers where communication is expensive,
see, for example, [46, 32, 22, 2, 14] among many others.
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8. Meanwhile, on the opposite camp

At this point, the reader may be led to believe that direct methods, or direct
elimination methods using Gauss’ terminology, were about to be abandoned as the
success of iterative methods was spreading to more areas of engineering and science.
In fact, quite the opposite happened. Developers of direct methods for sparse linear
systems became very active starting in the 1960s and the whole area witnessed an
amazing progression in the few decades that followed. Here, it is good to begin
by mentioning the survey article by Iain Duff [18] which had over 600 references
already in 1977. Major advances were made for general sparse matrices – as opposed
to those matrices with regular structure that came from finite difference techniques
applied to PDEs on simple regions. When a sparse linear system is solved by
Gaussian elimination, some zero entries will become nonzero and because of the
repetitive linear combination of rows the final matrix may loose sparsity completely.
A new non-zero entry created by the process is called a “fill-in” and the number of
fill-ins created depends enormously on the way the equations and rows are ordered.
Then, a big part of the know-how in sparse direct methods is to try to find orderings
that minimize fill-in.

The discovery of sparse matrix techniques began with the link made between
graph theory and sparse Gaussian elimination by Seymour Parter [55] in 1961. This
paper gave a model of the creation of fill-in that provided a better understanding of
the process. Graphs played a major role thereafter but it took some time before a
major push was made to exploit this link in the form of a theorem that guarantees
the non-creation of fill-ins by judicious reordering [60, 61]. One important feature
of sparse direct methods that distinguishes them from iterative methods, is that
they are rather complex to implement. Today, it takes man-years of effort to develop
a good working code with all the optimized features that have been gathered over
years of steady progress. In contrast, it would take a specialist a few days or
weeks of work to develop a small set of preconditioners (e.g., of ILU-type) with
one or two accelerators. This distinction has had an impact on available software.
In particular, sparse direct solvers (SPARSPAK, YSMP, ..) were all commercial
packages at the beginning.

A major contribution, and boost to the field, was made in 1981 by Alan George
and Joseph Liu who published an outstanding book [34] that layed out all that
had been learned on sparse direct solution techniques for solving symmetric linear
systems up to that point. The book also included FORTRAN routines and this lead
to the first package, called SPARSPAK [15], for solving sparse symmetric positive
definite linear systems5.

The speed with which progress was made at the early stages of research on
sparse direct solvers is staggering. Table 1, reproduced from [33], shows the evolu-
tion of the performance of the minimum degree algorithm, a reordering technique
to reduce fill-in in Gaussian elimination from its inception to 1989. With each dis-
covery, or new trick, there is a gain, often quite substantial, in performance, both
in the reduction of the number of nonzero entries and the time of the procedure.
Since 1989, many more new ingredients have been found that make sparse direct
solvers hard to beat for certain types of problems.

5As was just mentioned SPARSPACK was a commercial package but the book included
listings of the main routines.
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Version Minimum Degree Algorithm Off-diagonal Ordering
Factor Nonz Time

Md#1 Final minimum degree 1,180,771 43.90
Md#2 Md# 1 without multiple elimination 1,374,837 57.38
Md#3 Md# 2 without element absorption 1,374,837 56.00
Md#4 Md# 3 without incomplete deg update 1,374,837 83.26
Md#5 Md# 4 without indistinguishable nodes 1,307,969 183.26
Md#6 Md# 5 without mass elimination 1,307,969 2289.44

Table 1. Evolution of the minimum degree algorithm up to 1989
according to [33]. Note that the methods are labeled backward
with the most advanced one (Md # 1)at the top and the original
one (Md # 6) at the bottom. The test matrix comes the discretiza-
tion of a Laplacean on a 180 by 180 regular grid using a 9-point
finite difference scheme. Its size is n = 32, 400 and it has a total
of 289, 444 non-zero entries.

The merits and disadvantages of direct and iterative methods have been com-
pared since the earliest paper of Gauss, see Section 1. In his 1959 book [11, p.
173] Bodewig states that “Compared with direct methods, iteration methods have
the great disadvantage that, nearly always, they converge too slowly and, therefore,
the number of operations is large”. Then he continues that in fact “For most sys-
tems the iteration does not converge at all. The methods for making convergent an
arbitrary system are circumstantial.”

The only potential advantage of iterative methods over direct methods he saw
was that “Rounding errors cannot accumulate, for they are restricted to the last
operation. So, without doubt, this is an advantage compared with direct methods.
Yet this advantage costs probably more than it is worth.”

Later, David M. Young [85] states in the first chapter of his book (1971): “The
use of direct methods even for solving very large problems has received increased
attention recently (see for example Angel, 1970). In some cases their use is quite
appropriate. However, there is the danger that if one does not properly apply
iterative methods in some cases one will incorrectly conclude that they are not
effective and that direct methods must be used. It is hoped that this book will provide
some guidance (...)” A comparison from the opposite camp (George & Liu’s book
[34]) warns that: “(...) Unless the question of which class of methods should be
used is posed in a quite narrow and well defined context, it is either very complicated
or impossible to answer.” The authors then give reference to Varga and Young
and say that there are no books on direct solvers and “In addition, there are
situations where it can be shown quite convincingly that direct methods are far
more desirable than any conceivable iterative scheme.” Surprisingly, this section of
the book does not mention the relative ineffectiveness of direct solvers for large 3D
problems (though this was clearly known by the authors at the time, see below).

The debate has somewhat diminished recently with the consensus that iterative
methods are competitive for 3-D problems but that for 2-D problems the benefits
may be outweighed by the lack of robustness of these methods for indefinite prob-
lems. The common argument that is given to illustrate this fact is to compare the
result of one of the best orderings for regular grids in the 2-D and 3-D cases, as



ITERATIVE METHODS FOR LINEAR SYSTEMS: A BRIEF HISTORY 11

illustrated in [34]. Consider a standard Poisson equation on an n× n regular grid
in 2-D, and then on an n × n × n regular grid in 3-D. We call N the size of the
resulting system, so N = nd where d is the space dimension, i.e., d = 2, 3. The
order of the cost is given by the following table:

2-D 3-D

space (fill) O(N logN) O(N4/3)

time (flops) O(N3/2) O(N2)

The table shows a significant difference in complexity between the 2-D and the 3-D
cases.

A widespread misconception is that 3-D problems are harder just because they
are bigger. In fact they are just intrinsically harder as is suggested in the above
table. When I teach sparse matrix techniques in a numerical linear algebra course,
I often give a demonstration in Matlab to illustrate direct solution methods. I
show a live illustration of using the back-slash operation 6 in Matlab to solve a
linear system involving a coefficient matrix that comes from a centered difference
discretization of Poisson’s equation on a 2-D or a 3-D mesh. The idea is to show
that for the same size problem, e.g., 350×350 grid in 2-D versus 50×50×49 grid in
3-D (leading to a problem of size N = 122, 500 in each case), the 3-D problem takes
much longer to solve. For this example it can take 11 seconds for the 3-D problem
and 0.7 second for the 2-D problems on my laptop. What I also tell the audience
is that in past years I was gradually increasing the size of these problems as times
went down. A decade ago for example, I would have a demo with a problem of
size approximately N = 20, 000 if I wanted not to have students wait too long for
the answer. Of course, this gain in speed reflects progress in both hardware and
algorithms.

9. One-dimensional projection processes

The method of steepest descent was introduced by Cauchy in 1829 as a means
of solving a nonlinear equation related to a problem of the approximation of an
integral. A detailed account of the origin of the steepest descent method is given in
[56] where we learn that Riemann, Nekrasov, and later Debye were also associated
with the method. In 1945 Kantorovitch introduced the method in the form we
know today for linear systems for SPD matrices:

(9.1) min
x

f(x) ≡ 1

2
xTAx− bTx.

The gradient of the above function is ∇f(x) = Ax− b which is the negative of the
residual b− Ax and so the steepest descent method will just generate an iteration
of the form

xk+1 = xk + ωkrk

where rk = b−Axk and ωk is selected to minimize (9.1) at each step. Convergence
can easily shown for matrices that are symmetric positive definite. Methods of this
type are one-dimensional projection methods in the sense that they produce a new
iterate x(new) from a current iterate x by a modification of the form x(new) = x+ δ
where δ belongs to a subspace of dimension 1. In the case of the steepest descent

6In Matlab a sparse linear system Ax = b can be solved by the command x = A\b. This
back-slash operation will invoke a sparse direct solver to produce the answer.
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method we can write δ = α∇f(x) = α(b − Ax) and it is easy to calculate α if we
wish to minimize (9.1).

Simple projection methods of this type for solving linear systems were proposed
earlier. For example, in a short paper [42], Kaczmarz described a method in which
at each step δ is selected to be the vector ai = AT ei, the i-th row of A written as
a column vector. In this case,

(9.2) x(new) = x+ αai α =
ri
‖ai‖22

in which ri is the i-th component of the current residual vector b − Ax. Equation
(9.2) is written in a form that avoids clutter but we note that the indices i of the
components that are modified are cycled from 1 to n and this is repeated until

convergence. We can rewrite (9.2) as x(new) = x+
eTi r

‖AT ei‖22
AT ei. If x∗ is the exact

solution and we write x(new) = x+ αai then we have

‖x∗ − x(new)‖22 = ‖(x∗ − x)− αai‖22
= ‖x∗ − x‖22 + α2‖ai‖22 − 2α〈x∗ − x, ai〉.(9.3)

This is a quadratic function of α and the minimum is reached when

α =
〈x∗ − x, ai〉
‖ai‖2

=
〈x∗ − x,AT ei〉
‖ai‖2

=
〈A(x∗ − x), ei〉

‖ai‖2
=
〈r, ei〉
‖ai‖2

which is the choice made in the algorithm. In addition, Kaczmarz was able to show
convergence. Indeed, with the optimal α, equation (9.3) yields

(9.4) ‖x∗ − x(new)‖22 = ‖x∗ − x‖22 −
r2i
‖ai‖22

,

showing that the error must decrease. From here there are a number of ways of
showing convergence. The simplest is to observe that the norm of the error ‖x∗ −
x(j)‖ must have a limit and therefore (9.4) implies that each residual component
ri converges to zero, which in turn implies that x(j) converges to the solution. The
method is motivated by a simple interpretation. The solution x is located at the
intersection of the n hyperplanes represented by the equations aix− bi = 0 and the
algorithm projects the current iterate on one of these hyperplanes in succession,
bringing it closer to the solution each time.

At almost the same time, in 1938, Cimmino [16] proposed a one-dimensional
process which has some similarity with the Kaczmarz algorithm. Instead of project-
ing the solution onto the various hyperplanes, Cimmino generates n intermediate
solutions each of which is a mirror image of the current iterate with respect to
the hyperplanes. Once these are available then he takes their convex combination.
Specifically, Cimmino defines intermediate iterates in the form

(9.5) x(j) = x+ 2rjaj

where rj is the j-th component of the residual r = b−Ax, and then takes as a new
iterate a convex combination of these points:

(9.6) xnew =
∑

µjx
(j).

Details on this method and on the life and contributions of Cimmino can be found
in Michele Benzi’s article [8].
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10. Krylov methods take off: The CG algorithm

One-dimensional projection methods and Richardson iteration are of the form
xk+1 = xk +βkdk, where dk is a certain direction that is generated from the current
iterate only.

It was Frankel who in 1950 had the idea to extend these to a second-order
iteration of the form [29]

(10.1) xk+1 = xk + βkdk where dk = rk − αkdk−1.

Frankel was inspired by the solution of time-dependent partial differential equations
such as the heat equation which allowed him to add a parameter. We can recover
the Chebyshev iteration by using constant coefficients αk and βk as we saw before.
A method of the type represented by (10.1) with constant coefficients αk, βk was
termed semi-iterative method. In his 1957 article Varga [80] uses this term for any
polynomial method and mentions earlier work by Lanczos and Stiefel. The 1961
paper by Golub and Varga [37] explains how Chebyshev polynomials can be used
effectively and stably.

The understanding and development of semi-iterative methods is deeply rooted
in approximation theory. The residual of the approximation xk+1 obtained from
Richardson type iteration of the form xk+1 = xk + ωkrk, can be shown to be equal
to

rk+1 = (I − ωkA)(I − ωk−1A) · · · (I − ω0A)r0 ≡ pk+1(A)r0

where pk+1 is a polynomial of degree k + 1 satisfying the conditin pk+1(0) = 1.
One can therefore design effective iterative schemes by selecting polynomials of
this type that are small on a set that contains the spectrum of A. Many papers
adopted this approximation theory viewpoint. This is most apparent in Lanczos’
work. Thus, the remarkable 3-term recurrence obtained by Lanczos to generate an
orthogonal basis of the Krylov subspace is a consequence of the Stieljes procedure for
generating orthogonal polynomials. Magnus Hestenes [UCLA] and Eduard Stiefel
[ETH, Zürich] developed the method of Conjugate Gradient independently. The
article [66] describes how the two authors discovered that they both developed the
exact same method independently at the occasion of a conference held at UCLA in
1951. Lanczos developed another method that exploited what we now call Lanczos
vectors, to obtain the solution from the Krylov subspace that has the smallest
residual norm. His paper [44] appeared within 6 months of the one by Hesteness
and Stiefel. The method developed by Lanczos is mathematically equivalent to
what we would call the Minimal Residual method today, but it is implemented
with the Lanczos procedure.

Though not perceived this way at the time, the conjugate gradient method was
the single most important advance made in the 1950s. One of the main issues with
Chebyshev semi-iterative methods is that they require fairly accurate estimates of
extremal eigenvalues, since these define the interval in which the residual polynomial
is minimized. The conjugate gradient method bypassed this drawback – but it was
viewed as an unstable, direct method. Engeli et al. [23] were the first to view the
method as an iterative process and indicated that this process can take 2n to 3n
steps to “converge.”

The method laid dormant until the early 1970s when a paper by John Reid
[57] showed the practical interest of this iterative viewpoint when considering large
sparse linear systems. With the advent of incomplete Cholesky preconditioners
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developed by Meijerink and van der Vorst in 1977 [48], the method gained tremen-
dous popularity and ICCG (Incomplete Cholesky Conjugate Gradient) became the
de facto iterative solver for the general Symmetric Positive Definite case.

11. Krylov methods: The nonsymmetric period

Nonsymmetric linear systems were given less attention right from the early days
of iterative methods. In his 1952 paper, Lanczos [44] discusses a method that is
essentially equivalent to what we now call the BiCG algorithm and then drops the
method by stating: “... let us restrict our attention to the symmetric case (Normal
equations.)”.

However, the demand for nonsymmetric solvers started to strengthen when
applications in aerospace engineering for example gained in importance. Thus, the
success of the CG method led researchers to investigate Krylov subspace methods
for the nonsymmetric case.

It was only in 1976 that Fletcher [24] introduced the BiCG method, which was
based on the Lanczos process. BiCG uses two matrix-vector products: one with
A and the other with AT . However, the operations with AT are only needed to
generate the coefficients used for the projection and these operations were therefore
viewed as wasteful. A number of methods later appeared whose goal was to avoid
these products. The first of these was the Conjugate Gradient Squared (CGS) [74]
developed by Sonneveld in 1984. Then came BiCGSTAB [79] in 1992, along with
variants, e.g., [72], and QMR [31], TFQMR [30], QMRSTAB, [12] and several
others. In the methods just listed no attempt was made to exploit orthogonal
bases. In parallel to these efforts, a second class of methods was unraveled that ex-
ploited orthogonality, allowing in particular to extract the solution from the Krylov
subspace that has the smallest residual norm. The first among these, ORTHOMIN,
motivated by problems in reservoir simulation was introduced in 1976 by Vinsome
[82]. A flurry of activity followed and a number of methods were introduced among
which we can cite: the GCG and GCG-LS methods [5, 4], ORTHODIR [87], FOM
[63], GCR [19], and GMRES [65]. Though GMRES is mathematically equivalent
to some of the other techniques developed, it has a few practical advantages both
in terms of its memory usage and its numerical behavior and it has therefore been
the preferred approach among this second class of methods. These contributions
to accelerators for the nonsymmetric case are described in detail in the earlier
paper [66] which covers the period of the twentieth century. In fact research on
accelerators has been less active since 2000 while preconditioners have attracted
continued attention.

12. Present and future

Modern numerical linear algebra started with the influence of George Forsythe
and one could view his 1953 survey paper [26] as a sort of road-map. Since then, the
field has changed directions several times, often to respond to new demands from
applications. So the natural question to ask is “what next?” For iterative methods,
research is still active in the area of preconditioners for some types of problems
(Helmholtz, Maxwell, Structures,...), as well in developing efficient parallel algo-
rithms. For example, it was noted earlier that asynchronous iterations are back.
On the other hand research on accelerators has subsided. Another observation is
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that the fields of numerical analysis and numerical Linear Algebra are gradually dis-
appearing from computer science graduate programs. This is unfortunate because
some research topics fit better in computer science than in mathematics. Among
these topics we can mention: sparse matrix techniques and sparse direct solvers,
preconditioning methods, effective parallel solvers, and graph-based methods. Some
of these topics may reappear in other areas, e.g. computational statistics, and ma-
chine learning, but if they are no longer represented in either computer science or
mathematics, there will be a lack of students trained in them.

When trying to answer the questions “What next?” we need to remember that
for the bigger part of the 20th century, solution techniques (iterative and direct)
were aimed primarily at solving certain types of PDEs, and this was driven in
part by demand in some engineering applications, most notably the aerospace, the
automobile, and the semi-conductor industries. Therefore, a related question to
ask is “What new demands are showing up at the horizon?” Currently, the answer
to this question is without a doubt related to the emergence of data mining and
machine learning. Conferences that used to bear the title “computational X” in
the past are now often replacing this title, or augmenting it, by “machine learning
X.” Linear algebra is gradually addressing tasks that arise in the optimization
problems and the computational statistics problems of machine learning. The new
linear algebra specialist encounters such problems as evaluating matrix functions,
computing and updating the SVD, fast low-rank approximation methods, random
sampling methods, etc. An important new consideration in all of these topics is the
pre-eminence of randomness and stochastic approaches. In this context, methods
such as the conjugate gradient or GMRES, that are based on global optimality
are not adapted to randomness and it may be time to look for alternatives or
to reformulate them. There are opportunities also in adapting various techniques
learned in linear algebra, and more broadly in numerical analysis, to solve various
problems in machine learning. Thus, one can echo the title of Forsythe’s 1953
paper [26] by saying that “Solving matrix problems in machine learning can be
interesting.”
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Modélisation Mathématique et Analyse Numérique 25 (1991), no. 5, 579–606. MR 1111656
36. G. H. Golub and D. P. O’Leary, Some history of the conjugate gradient and Lanczos algo-

rithms: 1948-1976, SIAM Review 31 (1989), 50–102.

37. Gene H. Golub and Richard S. Varga, Chebyshev semi-iterative methods, successive overrelax-
ation iterative methods, and second order Richardson iterative methods, Numerische Mathe-

matik 3 (1961), no. 1, 157–168.

38. J. R. Green and R. V. Southwell, Relaxation methods applied to engineering problems ix. high-
speed flow of compressible fluid through a two-dimensional nozzle, Philosophical Transactions

of the Royal Society of London. Series A, Mathematical and Physical Sciences 239 (1944),

367–386.
39. A. S. Householder, The theory of matrices in numerical analysis, Blaisdell Pub. Co., 1964,

Reprinted by Dover publishing Inc., NY, 1975.
40. C. G. J. Jacobi, Ueber eine neue Auflösungsart der bei der Methode der kleinsten Quadrate

vorkommende linearen Gleichungen, Astronomische Nachrichten (1845), 297–306.

41. , Ueber ein leichtes Verfahren, die in der Theorie der Säcularstörungen vorkommenden
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