Find the dimension that counts: Fast dimension estimation and Krylov PCA
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Abstract

High dimensional data and systems with many degrees of
freedom are often characterized by covariance matrices. In
this paper, we consider the problem of simultaneously esti-
mating the dimension of the principal (dominant) subspace
of these covariance matrices and obtaining an approxima-
tion to the subspace. This problem arises in the popular
principal component analysis (PCA), and in many applica-
tions of machine learning, data analysis, signal and image
processing, and others. We first present a novel method for
estimating the dimension of the principal subspace. We then
show how this method can be coupled with a Krylov sub-
space method to simultaneously estimate the dimension and
obtain an approximation to the subspace. The dimension es-
timation is achieved with no additional cost. The proposed
method operates on a model selection framework, where the
novel selection criterion is derived based on random matrix
perturbation theory ideas. We present theoretical analyses
which (a) show that the proposed method achieves strong
consistency (i.e., yields optimal solution as the number of
data-points n — 00), and (b) analyze conditions for exact di-
mension estimation in the finite n case. Using recent results,
we show that our algorithm also yields near optimal PCA.
The proposed method avoids forming the sample covariance
matrix (associated with the data) explicitly and computing
the complete eigen-decomposition. Therefore, the method is
inexpensive, which is particularly advantageous in modern
data applications where the covariance matrices can be very
large. Numerical experiments illustrate the performance of
the proposed method in various applications.

1 Introduction

In many applications, for a given set of data observa-
tions, covariance matrices are used to capture the in-
teractions in high dimensions, among the many degrees
of freedom. A popular approach to analyze such high
dimensional data is to look for the principal (compo-
nents) subspace of the covariance matrix, which is of
much lower dimension. For this, it is often required
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to first estimate the dimension of this principal (domi-
nant) subspace of the covariance matrix associated with
the observations [33] I8, 5], (19, [3I]. These observations
can be treated as high dimensional random quantities
embedded in noise.

Low rank approximation is a popular tool used in
applications to reduce high dimensional data [16], 10, 17,
30]. Determining the lower dimension (rank k) remains
a principal problem in these applications, see [31],82] for
discussions. In statistical signal and array processing,
detecting the number of signals in the observations of an
array of passive sensors is a fundamental problem [33]
19, 23], which can be posed as the above dimension
estimation problem. Similar estimation problems occur
in many other fields such as chemo-metrics [20, [I§],
econometrics and statistics [5], population genetics [24],
and reduced rank regression models [4]. Moreover,
in most of these applications, once the dimension of
the principal subspace (approximate rank) is estimated,
it is also desired to obtain an approximation for this
principal subspace, e.g., in principal component analysis
(PCA) [16,[17], subspace tracking [7] and others. Krylov
subspace based methods [27] are the most popular and
effective methods used in the literature to compute an
approximation for the principal subspace, see [34] 28]
13), 22, 25] for examples.

Prior Work: The problem of estimating the rank
or the dimension of the principal subspace has been
studied in various fields, and a few different meth-
ods have been proposed in the literature. In signal
processing, information theory criteria based methods
have been proposed for the detection of number of sig-
nals [33, 23]. A few hypothesis testing based meth-
ods have also been proposed for dimension estimation,
see [34, 24, [18, M9]. In econometrics and statistics,
various tests and methods have been proposed to es-
timate the rank and the rank statistic of a matrix, see,
e.g., [26, @, [B].

However, most of these methods require computing
the complete eigen-decomposition of the sample covari-
ance matrix, which becomes impractical for large di-
mensional matrices, e.g., in modern data applications
and for large aperture arrays in array signal processing.
Even forming the covariance matrix is inviable in many
cases. The information criteria based methods are not
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applicable when the data dimension p is larger than the
number of observations n, i.e., when p > n. Recently, a
set of inexpensive methods were proposed for numerical
rank estimation of data matrices [31} B2]. These meth-
ods combine ideas such as stochastic trace estimator,
eigen-projectors and spectral densities to compute the
rank inexpensively without any matrix decomposition.
However, methods that simultaneously estimate the di-
mension and obtain an approximation to the principal
subspace are lacking.

Contributions: In this work, we present a novel
method for estimating the dimension of the principal
subspace of covariance matrices. The method can be
combined with the Krylov subspace methods (Krylov
PCA) to compute an approximation to the principal
subspace, simultaneously. The method operates on a
model selection framework, and the proposed selection
criterion requires computing only the top k eigenvalues
of the sample covariance matrix S,, = %XXT7 where X
is the matrix containing n observed data of dimension
p, for a given integer k < {n,p}. In order to compute
these eigenvalues, we can use the popular Lanczos algo-
rithm [27] which requires only matrix-vector products
with S,,. Hence, we do not have to form the sample co-
variance matrix S,, = %XXT, explicitly. Our approach
can be viewed as a stopping criterion for the Krylov
subspace methods, and we can simultaneously estimate
the dimension and compute the principal subspace at
no additional cost.

The proposed selection criterion is derived using
random matrix perturbation theory results [21], see sec-
tion The criterion also includes a penalty (func-
tion) term which under mild assumptions yields us a
strongly consistent estimator, i.e., the method estimates
the exact dimension as the number of data observations
n — oo. We establish this strong consistency for the
proposed method and also present performance analysis
in section[d We derive conditions on the signal strength
and the noise level for avoiding incorrect dimension es-
timation in the finite n case, using random matrix the-
ory results [I4]. Using the recent results in [22], we also
show that the method yields near optimal PCA, and the
consistency results and the performance analysis hold
for eigenvalues computed by the Krylov subspace meth-
ods. Numerical experiments illustrate the performance
of the proposed method in the number of signals detec-
tion application, numerical rank estimation of general
data matrices, and in video foreground detection, an
application of PCA.

2 Preliminaries

We begin by presenting the problem formulation for
dimension estimation of the principal subspace.

Notation: We use lowercase and uppercase bold
letters, x and A for vectors and matrices, respectively.
The Gaussian distribution with mean p and covariance
¥ is denoted by N (p, X). Identity matrix is depicted
as I,, where p is the order. Convergence in distribution
is denoted by —4.

Problem Formulation: The data observations
which form the matrix X are typically modeled as high
dimensional random quantities embedded in noise. We
assume the standard Gaussian random model for the set
of n data observations each of dimension p. We denote
the p-dimensional data as {x;}!_; described as

(2.1)

where M is a p X ¢ mixing matrix with ¢ independent
columns, s; are ¢ x 1 vectors containing the zero
mean relevant data and n; are p-dimensional Gaussian
(white) noise vectors with parameter o as the unknown
noise variance. This is a standard assumption made
in PCA [16], probabilistic PCA [29], signal detection
and subspace tracking [33 [34], and in modern data
analysis [3] and neural networks [II] methods. The
true covariance matrix X associated with the underlying
data is then assumed to be a low rank matrix of rank g,
perturbed by noise of variance o. That is,

x;i=Ms; ++on;,i=1,....,n

¥ = BB’ + 01,

where B € RP*? ¢ <« p and span(B) is the principal
subspace. The top ¢ eigenvalues \; for i = 1,...,q of
3 will correspond to the ¢ dimensional relevant data
and the remaining p — q eigenvalues are related to noise
and are equal to 0. Hence, the subspace associated with
the top ¢ eigenvectors (eigenvalues) forms the principal
subspace, which is of interest.

The exact covariance matrix of the underlying data
will not be available, and hence we consider the sample
covariance matrix S,, = % Z?=1 xl-xiT, using the n
(noisy) observations of the data. We wish to estimate
g, the dimension of (relevant) data in the observations,
using the eigenvalues of the sample covariance matrix
S, denoted by £1 > {5 > ... > {,.

3 Proposed Method

In this section, we first present the proposed method for
the principal subspace dimension estimation and derive
it. We then discuss the Krylov subspace methods for
computing partial eigen-decomposition of matrices, and
present the proposed algorithm for simultaneous esti-
mating the dimension and computing an approximation
to the principal subspace.

The novel method is based on model selection
technique and the proposed criterion is the following:
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(3.2)
p
. 2 (p—k)p—k-1)
argmin | o i§1(€i —0)—-C, 5
where ¢;, for ¢ = 1,...,p are the eigenvalues of the

sample covariance matrix S, = %XXT, o is the noise
variance, and C,, is a parameter that depends on n
(see sec. 4| for details). Note that the first term in the
criterion depends on the sum of bottom p—k eigenvalues
of S,,, which can be written as

P k
D (ti—0) =|Sn—oL|F - > (ti—0)*
i=k—+1 i=1

Thus, the method requires computing only the top &
eigenvalues of S,,. We can compute the norm as ||S,, —
ol ||% = L|IX||% — 22||X||% + po?. Therefore, if Krylov
subspace method such as the Lanczos algorithm [27] is
used for computing these eigenvalues, then we do not
need to form S,, = LXX” explicitly.

The Krylov subspace methods will also yield us an
approximation to the eigenvectors corresponding to the
computed eigenvalues. Therefore, we can use the above
method as a stopping criterion for the Krylov subspace
methods, and hence, estimate the dimension and ap-
proximate the principal subspace of the covariance ma-
trix, simultaneously. We present the resulting algorithm
in the latter part of this section. First, we derive the
above criterion using concepts from random matrix per-
turbation theory.

3.1 Derivation We start the derivation of the pro-
posed selection criterion using the following key concept
from random matrix theory [2I]: The sample covariance
matrix S,, approaches the true covariance matrix X only
in the expectation, i.e., E[S,,] — X. More importantly,
the sample covariance matrix S,, is a \/n consistent es-
timator of X.

PROPOSITION 3.1. S,, is a \/n consistent estimator of
3. That is,

vVnvec(S, — ) =4 N(0,Q),

where @ = (I 4 Pyee(s,))(X @ ) is a p* x p* co-
variance matriz with @ denoting the Kronecker product
and Pyec(s,,) the transposition-permutation matriz asso-
ciated to vec(Sy,,).

The proof of this proposition can be found in most stan-
dard multivariate statistical theory textbooks, e.g., [2|
21).

Next, we consider the eigen-decomposition of the
covariance matrix ¥ = UAU”. Let us write U =

[Ug, Up—y], where U, is a matrix containing the top
q eigenvectors (principal subspace) of 3 as columuns.
Similarly, let us consider the eigen-decomposition of
the sample covariance matrix S, = GLGT, with G,
containing the top ¢ eigenvectors of S,, as columns. We
can then prove the consistency of G, using the random
matrix perturbation approach on S,,.

PROPOSITION 3.2. Let q be the numerical rank of %
and we assume that the smallest eigenvalue correspond-
ing to data is well above zero, i.e., Ay > ¢ > 0 for a
small e. Then as n — oo,

Gq —d Uq.

A version of proof of this proposition is given in supple-
mentary, which was first derived in [I]. We then have
the following result (proof in supplementary).

COROLLARY 3.1. The orthogonal projector onto the
space spanned by the eigenvectors corresponding to the
noise related eigenvalues satisfy

1
_ T _ T
Qe=G)—G, ,=U,_ U, +0, (\/ﬁ) .
We next have the following result that gives the asymp-
totic behavior of the bottom p — ¢ eigenvalues of S,,.

ProprosITION 3.3. The asymptotic distribution of

vnvec(Qa (S, — al)Qg) is given by
vivee(Qg(Sy — 01,)Qq) — N(0,9),

where @ = (Qu ® Qu)Qu ® Qu), where Qu =
Up,qufq and €2 is as Proposition .

We defer the proof to supplementary. This leads to the
following result.

LEMMA 3.1. Let L be defined as

P
" , 2
E_ﬁ Z(€2_0)7

1=q+1
where £; are the eigenvalues of S,, and o is the noise
variance. Then L follows asymptotically a x? chi-square
distribution with n = (p — q)(p — ¢ — 1) degrees of
freedom.

Proof. Suppose L,_, is a diagonal matrix with the
bottom p — ¢ eigenvalues of S,, — oI, as entries, then we
have

P

n Yy (li—o)?

i=q+1

ntr(Lf,fq)

= ntr(Qg(S» — 01,)’°Qq)
IVn(Qc(Sn — 01,)Qc) |1
= ||\/EVGC(QG(Sn - UIP)QG>||§
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From Proposition the above sum follows asymptot-
ically a m = 1(p — q)(p — ¢ — 1) weighted x? distribu-
tion [2], where the n weights correspond to the first 7
eigenvalues of £ = (Qu e Qu)R(Qu ® Qu). Note that
7 is the degree of freedom in Q¢ (S, — 01,)Qq¢.

Given the eigenpairs of X to be (A\;,w;),i =1,...,p,
the eigenpairs of Q will be (A\;*A\;, u;Qu;),4,j=1,...,p
from the property of Kronecker products, see [12, Thm.
4.2.12]. Qu is a projector onto the span of eigenvectors
corresponding to the bottom p — ¢ eigenvalues of X,
which are all equal to o. Hence, the top n eigenvalues of
Q will be all equal to o2, since (Qu®Qyu) is a projector
onto space spanned by the eigenvectors corresponding
to the bottom (p — ¢)? eigenvalues of Q. Hence, the
weights of the weighted x? are all equal to 0. Thus, by
reweighting the above sum, £ will have asymptotically
X% distributiorﬂ

Therefore, the above £(S,,, ¢) can be used in model
selection criterion for estimating ¢, the dimension of the
principal subspace.

THEOREM 3.1. The following criterion yields an esti-
mation for the dimension q of the principal subspace of
the covariance matriz 3:

(3.3)
3 (p—k)(p—k—1)
_ ; C_5)2 p—Fk)(p—k—1
¢ = argmin | 5— 4_Ek+1(& o) —=Cy 5 )

where £;, fori=1,...,p are eigenvalues of the sample
covariance matrixz S,, = %XXT, o is the noise variance
and C,, is a parameter that depends on n.

Proof of the theorem is given in supplementary.
We also give a simulation result which shows that
Lemma [3.1] and Theorem hold true in practice.

3.2 Krylov subspace methods Krylov subspace
methods are popularly used to compute the partial
spectrum (top k eigenvalues and eigenvectors) of ma-
trices [27]. Recent results [22] have shown that these
methods returns high quality principal components and
give nearly optimal PCA for any matrix. The proposed
dimension estimation criterion can be used as a stop-
ping criterion for such Krylov subspace approximation
of the principal subspace of covariance matrices.

For a symmetric matrix A, the Krylov subspace
is defined as K™(A,v) = span{v,Av,..., Am v},

where v is a random vector of unit norm, ||v|| = 1,
TAnderson made a similar observation (of asymptotically X%

distribution) in [I] for a given eigenvalue Ai of 3 with multiplicity
gr and the sum of eigenvalues of (S, — A\¢I). In our case, \y = o
with multiplicity ¢ =p — ¢.

Algorithm 1 Proposed Algorithm

Input: Data matrix X € RP*", noise variance o,
parameter C,,, and a error tolerance e.
Output: Dimension ¢ and an approximation to the
principal subspace Y.
Set IC=zeros(p,1), Q = [,k = 1, m =
@ = & |X|I% — 2|X|% + po
for k=1 to p do

1. Generate a random vector vy with ||vi|2 = 1.
K = 1[Xv, (XX")Xvy,...,(XXT)™"1Xvy]
Q= O’f‘th([Q,K]), Q= Q(:7 1: k)
T = %QTXXTQ.
[V,0] = eig(T).
IC(k) = n(®— Y5 (6;—0)?) - C, =R E=h=1)

SR o

if (k>1&& IC(k) > IC(k—1)) then
break;
end if
end for
q=k—1. Output gand Y = QV.

v ¢ null(A) and m is a scalar. The Lanczos algo-
rithm builds an orthonormal basis for this Krylov sub-
space [27]. We can also define a block Krylov subspace
as: K™(A,V) = span{V,AV,...,A™" 1V}, where
V € RP*F is a random matrix such that V ¢ null(A),
see [22] for recent theoretical results for randomized
block Krylov subspace methods. We can compute
approximate eigenvalues and eigenvectors of A, say
{0;,y:}%_, for some k, using the Krylov subspace meth-
ods. We have the following result from eqn. 3 and The-
orem 1 in [22]:

LEMMA 3.2. Consider a symmetric PSD matrixc A €
RPXP with eigenvalues €;,i = 1,...,p. Let {0;,y:}*
be the k eigenpair computed using m steps of block
Krylov subspace method (using the orthonormal basis
of K"(A,V) for V.€ RP*k) [fm = % for some
0 <e<1, then we have

|9i_£i‘ §€€k+17 i=1,...,k.

Moreover, suppose Y is a matrixz containing the eigen-
vectors {yi}le computed by the Krylov subspace method
as columns, then we have for & € {2, F'}

IA = YiYEAle < (1+e)l|A - Agle,

where Ay, is the best rank k approzimation of A obtained
using its exact eigen-decomposition.

Therefore, the Krylov subspace method will return
a high quality principal components of S,, and near
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optimal (1 + €) PCA. In addition, the eigenvalues 6;’s
computed are very close to the actual eigenvalues ¢;s of
the sample covariance matrix (within a multiplicative
factor). The error e in the above analysis is related
to the gap in the spectrum, i.e., we can replace € by
ffL — 1, see [22] §7]. For k > ¢, the error term e}
is related to the noise related eigenvalues and we have
el = O(%) from the analysis in section and

[1]. Asymptotically, this term goes to zero. Thus, 6;’s
have the same statistical properties of ¢;’s, and are good
approximation to them. Since ¢;’s are asymptotically
equivalent to \;’s, 6;’s are good estimates of \;’s.

Proposed Algorithm: Algorithm [I| presents the
proposed algorithm for simultaneously estimating the
dimension and computing the principal subspace of the
covariance matrix. In step 2, note that only matrix-
vector products with the data X and its transpose are
needed to form the Krylov matrix K. In step 3, since
Q is already orthonormal from the previous iteration,
the new vectors in K can be quickly orthonormalized
wrt. Q. We can also replace steps 2-5, by a version of
the Lanczos algorithm [27], which updates the previous
subspace Q and the tridiagonal matrix T.

Cost: 1If ¢ is the exact dimension, the compu-
tational cost of the algorithm will be O(nnz(X)gm +
p(gm)?), where nnz(X) is the number of nonzeros in X.

Since both ¢ < p and m = %

are small, the algo-
rithm is quite inexpensive, more so if data X is sparse.

Choosing o: In our Algorithm, we need to choose
the noise level o, when it is unknown. In many applica-
tions, e.g., in signal processing, typically an estimate of
noise level is known. In low rank approximation prob-
lems, the maximum approximation error tolerance ac-
ceptable might be known. Otherwise, for signal process-
ing applications, o can be determined using the thresh-
olding method proposed in [I9]. For data related appli-
cations, article [32] discusses an inexpensive method to
estimate o using the spectral density plot of the data
matrix. For further details, see [311 [32].

4 Analysis

In this section, we first show that the proposed method
yields a strong consistent estimator for ¢, the exact
dimension. We then analyze the conditions for correct
estimation for finite n data observations.

4.1 Strong consistency

THEOREM 4.1. The criterion defined by
(4.4)

IC(k) = 2 zp: (gi_g)z_cn(p—k)(p—k—n

2

can be used to obtain a strong comsistent estimator for
q, the exact dimension of the principal subspace, i.e.,
lim,,_,o0 k = ¢, where k = arg miny, IC(k), with value of
C,, such that

lim — =0 and lim ———— =0

n—oo N n—oo loglogn
Proof of this theorem is given in supplementary. For the
right choice of C,, the proposed estimator is strongly
consistent. Next, we consider the eigenvalues computed
using the Krylov subspace method in our criterion.

COROLLARY 4.1. For the choice of C,, in Theorem|. ]|
the criterion[3.9 is strongly consistent for the eigenval-
ues computed using the Krylov subspace method in Al-
gorithm (1] if we set the parameter o = (1 — €)opye in
the algorithm, where oyye 1S the true noise variance of
the data.

Proof can be found in supplementary. Next, we analyze
the performance of the proposed method for finite sam-
ple size and obtain the conditions for correct detection.

4.2 Performance Analysis The consistency analy-
sis above considered the asymptotic case when n — oo,
and the law of iterated logarithm [21] is used to derive
the results. Here, we analyze the performance of the
proposed method for finite sample size (general n), and
obtain the conditions when the method either underes-
timates or overestimates the dimension.

The notorious scenario for wrong detection is when
the dimension is off by exactly one (¢+1), which we an-
alyze here (important in signal detection applications).
The analysis trivially generalizes to other cases. First,
let us consider underestimation by one, and consider the
following difference:

Ay = IC(g—1)—-1C(q)
= o3ty =0) = Culp — ).

Note that we will not have underestimation when A; >
0, i.e., when

eq>a< 2in(pq)H).

So, we need the magnitude of ¢, (related to relevant
data or the signal strength) to be large enough in order
to avoid underestimate the dimension. That is, we
need a reasonable gap between relevant eigenvalues and
the noise related eigenvalues in the spectrum. For the
asymptotic case (n — o0), we know that the RHS
term with C,, goes to zero and, hence we will not have
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Figure 1: Signal detection: Comparison between the proposed method MPT, RMT and MDL as a function of:
(left) the number of samples n, (middle) signal strength (A, eigenvalue), and (right) the noise level o.

any underestimation of dimension as long as the signal
strength is more than the noise variance.

Next, let us consider overestimation of the dimen-
sion by one, and the following difference:

Ay = IC(g+1)—-1C(q)

n
= Chlp—q—1)— T‘g(&ﬂrl —0)?.

Again, we will not overestimate if As > 0, i.e., when

g

</Sp-q-1)+1.
o

n

We know that ¢,4; corresponds to the largest noise
related eigenvalue of the covariance matrix. For the
asymptotic case (n — 00), we know {441 — o, hence
the equation holds. For finite n, we must choose the
noise parameter o close to the true noise level (reflected
in £,41) in order to avoid overestimation. Assuming the
noise variance o is known, for finite n, when the ratio of
p/m or n/p is not too large, we can derive bounds on the
parameter C,, in our method to avoid overestimation,
using the random matrix theory results in [14] [15].

The largest eigenvalue of the sample covariance
matrix (Wishart matrix) of pure noise vectors with
Gaussian distribution follows the Tracy-Widom dis-
tribution [14} [I5]. Then, for finite p,n as long as
min{p,n} > 1 and the ratio of p/n or n/p is not too
large, the largest eigenvalue due to noise will be approx-
imately o(1 + /p/n)?, see [19] for details. Hence, for
finite but large values of p,n, we have

p
trme (12)

Substituting in the condition above for overestimation,
we get the following bound for the parameter C, for
exact detection for finite but large values of p, n:

(p + 2y/np)?

Cp, > —.
n(p—q-1)

2

When the ratio of p/n or n/p is not too large, the
RHS is fairly small. The above analysis provides us the
conditions on the relevant eigenvalue £, noise level and
the parameter C,, in order to avoid incorrect estimation
of the dimension ¢ using the proposed method.

When we consider the eigenvalues obtained by the
Krylov subspace method in the criterion, we will have an
additional term that depends on € in the denominators
of the above conditions. That is, we have approximately
the following conditions for exact dimension detection:

o
/¢ 2Cn () 1 d
> il (-0 +) m
Z1e! 1 C
—_— =(p—q—1)+1.
s =g mp—q—1)+

For small €, we end up with similar conditions on £,
noise level and C,, as above.

5 Numerical experiments

In this section, we present some numerical experimental
results to illustrate the performance of the proposed
method, and compare it to few other popular methods.
First, we consider examples for the number of signals
detection application in signal and array processing.
We then consider few large data matrices and a PCA
application to illustrate the method’s performance.

5.1 Number of signals detection In the first set
of experiments, we consider the signal detection prob-
lem to illustrate the accuracy of the proposed method
for dimension estimation (exact detection is desired in
this application). The results and observations from
these experiments are applicable for general data too,
see supplementary. We consider p dimensional signals
x;’s that are corrupted by white noise with A(0,oI),
variance o. There are three parameters in this model,
namely the number of samples n, the signal strength or
the magnitude of )\, eigenvalue, and the noise level o.
We compare the performances of the proposed method,
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Table 1: Performance of the Krylov Subspace method, Algorithm [I] with m = 10.

Dataset D Actual ¢ [ A, | o | Estimated ¢ | [A —Y;Y7A[[r | Runtime
sprand 5000 50 5 1 50 134.47 6.1 secs
5000 100 2 0.5 100 159.23 22.8 secs

10000 100 2 0.5 100 162.52 72.5 secs

40000 100 2 0.5 100 183.74 101.6 secs

100000 100 2 0.5 100 210.86 192.1 secs

Harvard 500 63 2.6 1 69 36.14 0.24 secs
Ipiceria3d | 3576 108 5 1 104 140.52 0.68 secs
EVA 8497 165 5.2 1 172 81.47 2.90 secs
Ipstocfor3d | 16675 981 23.7 | 3 981 3.05e4 2.29 secs

as-22july 22963 241 54.6 | 10 237 311.23 137.4 secs

internet 124651 - - 1 351 7.49e3 797.8 secs

the MDL (Minimum Description Length) method pro-
posed in [33], and the ‘state of the art’ hypothesis testing
method proposed in [I9] based on random matrix the-
ory (RMT) for signal detection as a function of these
three parameters. In all experiments, we set C,, = logn
to ensure that the asymptotic properties and the finite
sample lower bound on C),, above hold.

Figure [1| presents three results for the three meth-
ods, the proposed matrix perturbation theory (MPT)
based method, the MDL method and the random ma-
trix theory (RMT) based hypothesis testing method.
For a chosen signal dimension p (reported in the plot),
we generate the signals and the sample covariance ma-
trix based on the considered signal eigenvalues A (listed
in the plot). We then add noise covariance matrix cor-
responding to the noise level o considered. We plot the
probability of the estimated rank g.s; being not equal
to the actual rank g, i.e., Pr(gest # ¢) over 100 trials.
In the first plot of Fig. |1} we plot Pr(gest # q) as a
function of the number of samples n. We consider small
signal dimension p = 200 (note that MDL and RMT
require complete eigen-decomposition), the actual rank
q = 5 and the noise level ¢ = 1.1. The eigenvalues cor-
responding to the signals are given in the plot. We note
that MDL requires n > p to yield exact rank, where as
the proposed method MPT yields exact rank for much
smaller sample size, and performs even slightly better
than the state of the art method RMT which requires
all the eigenvalues of the sample covariance matrix.

In the second (middle) plot, we compare the perfor-
mances wrt. the signal strength, i.e., the magnitude of
the gth eigenvalue ), of the covariance matrix. Again
the signal dimension is p = 200, the actual rank ¢ = 5
and the noise level ¢ = 1.1. The number of samples
is n = 400. We note that, the proposed method again
outperforms MDL and yields more accurate results for
much lower signal strength. In the last plot, we com-

pare the performances with respect to the noise level o.
Here too, the signal dimension is p = 200, the actual
rank ¢ = 5 and the number of samples is n = 400. The
signal eigenvalues are given in the plot and the signal
strength A\; = 6. The proposed method MPT performs
better than MDL wrt. the noise level too and performs
was well as RMT. RMT requires parameters, such as
confidence level a to be selected. More importantly,
both MDL and RMT require computing all the eigen-
values of the sample covariance matrix. Results for our
algorithm [I] are reported in the supplementary.

5.2 Data matrices Next, we illustrate the perfor-
mance of the proposed method for numerical rank esti-
mation of data matrices. We consider general data ma-
trices that have low numerical rank from publicly avail-
able database, SuitSparse [8], and a few synthetic sparse
random matrices. For these matrices, the Gaussian type
distribution assumptions for the data and noise may not
hold. We report additional comparative results in the
supplementary.

Table [I| presents the performance of the Krylov
Subspace method, i.e., Algorithm [I] for dimension es-
timation and approximation of the principal subspace.
The synthetic sparse random matrices are of the form
X = BAB? + N, where B is a sparse (relevant)
data matrix (unit column norm) of size p x ¢ (spar-
sity nnz(B)/pg = [0.05,0.1]), A is a diagonal matrix
with the smallest diagonal entry equal to A, listed in
the 4th column. N is a Gaussian sparse random matrix
with o listed in fifth column. The number of Lanc-
zos steps per iteration (for each k) is m = 10. The
exact dimension ¢ and the estimated dimension ¢ are
reported (dimension estimation), along with the Frobe-
nius norm error||A — YquTAH r, evaluating the quality
of approximation to the principal subspace. The run-
time of the algorithm is also reported (computed using
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Figure 2: Background subtraction: for two sample images from two video datasets. Low rank approximation
(mean added) and foreground detection with eigenvectors from proposed method and exact eigenvectors.

cputime function on an Intel i-5 3.4GHz machine). For
the synthetic examples, we vary the parameters: size
p, rank g, data strength A, and noise level o, and re-
port the results. We also consider a few sparse data
matrices (also see supplementary). We report matrices
that have smaller numerical rank (¢ < min(n,p)) and a
reasonable gap in the spectrum. The Krylov subspace
algorithm works well only when there is a spectral gap.
Otherwise, the interior eigenvalues do not converge. For
large matrix ’internet’, we do not know the exact rank
(cannot compute complete decomposition). We observe
that the algorithm performs reasonably well for these
matrices. The method is also quite inexpensive, partic-
ularly for large sparse data matrices.

5.3 Video Foreground Detection In the last ex-
periment, we consider an application of PCA, that of
background subtraction in surveillance videos. Here,
PCA is used to separate the foreground informa-
tion from the background noise. ~We consider two
videos datasets: “Lobby in an office building with
switching on/off lights” and “Shopping center” avail-
able from http://perception.i2r.a-star.edu.sg/
bk_model/bk_index.html. Here we illustrate how the
proposed Krylov method can be used to obtain an ap-
propriate dimension of the principle subspace (compo-
nents) to be used for background subtraction, and use
the approximate principal components obtained from
the algorithm in the application [6].

The Lobby video contains 1546 frames each of size
160 x 128, and the data matrix size is 1546 x 20480.
Second video is from a shopping mall with 1286 frames
each of resolution 320 x 256. So, the data matrix is of
size 1286 x 81920. This video contains more activities

than Lobby video with many people moving in and
out of the frames throughout. The performance of the
proposed method for background subtraction of these
video data is shown in figure

Figure four images on the left) are results on a
randomly selected frame from the Lobby video. The
four images correspond to the true frame, low rank
approximation (after adding back the mean) and the
background subtracted image using the eigenvectors ob-
tained from the proposed Krylov method (m = 10,0 =
0.1), and using the exact eigenvectors, respectively. The
images were all mean centered and normalized to have
unit norm. The approximate dimension estimated was
equal to 1. The matrix has one very large eigenvalue
compared to rest, since the video has very little activi-
ties (one/two people moving in and out in few frames).

Figure[2 C) and (D) are the background subtracted
images for a randomly selected frame from the Shop-
ping Mall video. The approximate dimension estimated
by our method was 14. This video has more activities
and the dimension estimated here is higher than for the
Lobby data. For more details on these datasets and
the use of PCA for foreground detection, we refer [6].
We observe that, we can achieve good foreground de-
tection using the proposed method. Also note that, our
method does not require forming the covariance matrix
for PCA (in the above two video datasets, p = 20480
and 81920, respectively), hence requiring less storage
(such dense covariance matrices would not fit in the
memory). Therefore, this example illustrates how the
proposed method can be used to simultaneously esti-
mate the dimension of the principal subspace and use
the approximation obtained for the principal subspace
in PCA and robust PCA applications.
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A  Proofs for the derivation

Here we give the proofs missing in the main paper.
Proof of Proposition

Proof. From proposition S, is a y/n consistent estimator of X, and we can express S,, as a perturbation

S,—-%
S, =XY+¢ . =3+ ¢cE,
where the perturbation of X is of the order 1/y/n. That is, ¢E = O,, (ﬁ) . Then,
S UA;" = (Z+eE)UAT
= U, +eEU .

Since U, has orthogonal columns and is non-random, and also for A;l (diagonal matrix with inverse of the top ¢
eigenvalues) is bounded since A, > €, the second term in the above equation should be eEU,A; ! = Op(e). Then,

we have G, = Uy + O, (ﬁ), i.e., G4 is a \/n consistent estimator of Uy. See [1] for further details.

Proof of the corresponding Corollary:
Proof. From proposition we have G4 = Uy + O, (ﬁ) Then,
QG = Gp—qGZ_q = Ip — GqGZ

- [orson (G5 [oeron (35)]
Ip—UquTJrop( ! )

Proof. Using the Corollary, we have
vec(Qa(Sn —01,)Qqg) = vec(Qa(S, —0l,)(Qe — Qu)) + vec(Qa(Sn — 0L,)Qu)

vee(Qq(Sn — 01,)Qu) + O, (Jlﬁ>

— vec((Qa — Qu)(S, — oT,) Q) + vec(Qu(S, — oT,)Qw) + 0, (=

S

= U, U] ,+0,

Si-

Proof of Proposition [3.3

vec(Qu(Sn — 01,)Qu) + 0, (%) .

Thus, vec(Qg (S, — 01,)Q¢) has the same asymptotic distribution as vec(Qu (S, —c1,)Qu). We know that the
bottom p — g eigenvalues of X are all 0. Hence we have QuXQu = Qu(oI,)Qu. So, we have
1
vec(Qa(S, ~ o1,)Qa) = vec(Qu (S~ Z)Qw) + 0, (=
1
= (Qu ® Qu)vec(S, —X) + 0y (\/7»1) .
Thus, in terms of the distribution, we have from above,

VnE{vec(Qa (S, - 01,)Qc)} = (Qu @ Qu)E{vnvec(S, — %)} =0

and

cov{v/nvec(Qa(Sn — 0I,)Qa)} = (Qu ® Qu)cov{y/nvec(S, — )} Qu ® Qu)
= (Qu @ Qu)(Qu ® Qu).
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Proof of Theorem [B.11

Proof. A model selection criterion takes the form
IC(k) = L(n,k) — E(L(n, k)),

as n — oo. In our case, from Lemma we have
n
L(n,k) = > mix(hy,
i=1

where p; are the eigenvalues of ﬁ(QG ® Qc)(Sr ®S,)(Qe ® Qg), an estimate of Q%QQ from Proposition

the asymptotic covariance matrix of /5 vec(Qg (S, — 0I,)Qg). To compute an approximation to the mean of

the statistic, we use the following Gamma approximation:
L, 1 ! 1
;mxm = > ml (2,2) - ;F (2,%)

I'(k,0;) ~T(K,©)

-

=1

|
KM\"

ﬁ
Il
-

where

(> “91‘)2 _ > kb
S and © = %

and the mean of the asymptotic approximation of L is given by E(L(n, k)) = KO. Hence, in our case,

n n P ‘ *Ej
E(L(n,k) =Y kb= pi= Y. R

i=1 i=1 i, j=k+15i]

K =

501:2#17[(:

DN | =

where {¢;}!_, are the eigenvalues of the sample covariance matrix S,, and the last equality is from the property
of Kronecker products as seen in the proof of Lemma [3.1
Note that, asymptotically ¢; — o,the noise variance, for ¢ > ¢ as n — oco. Hence, asymptotically

(p—Fk)p—k-1)

E(L(n,k)) = n= 5 .

Hence, we use the criterion in (3.2)) for model selection, i.e., for the dimension estimation of the principal subspace.

q=5p=200, A=[40 20 10 8 6] The figure on the left plots the ratio

L%l
E(L(n,q))  2ij—k+lizi 357
n B (p*Q)(g*qfl)

as a function of the number of samples n for a small simulation
with p = 200, = 5 (similar to the experiment in Figure [L)).
The true covariance matrix from which the data is sampled has
top ¢ = 5 eigenvalues of magnitude listed in the figure and the
noise level was 0 = 1.2. We plot the average of the ratio over
30 trials. We note that the mean E(L(n,q)) quickly approaches
the degree of freedom 7, showing that the quantity L(n, ¢) indeed

0 %

0 10 < 2;;’63 size3rl:?—> 400 500 has Xf] distribution for large enough n. Thus, Lemma and
Theorem hofd in practice too. In section [5| of the main paper and below, we present several numerical

experiments to illustrate the performance of the proposed method.
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B Proofs for the analysis
Proof of Theorem [4.1]

Proof. In order to prove the strong consistency of

k= argmkinIC(k),

we first consider that k > ko, then

teth) 100 = gz [ 3 o= 3 (6o —0n<(pk)(1;];1)_(pko)(p2ko1)>
i=k+1 i=ko+1
]2; & ~
= —LQ (Zi—UV—Cn ((k—ko)(k+k0_2p+l)>
20 i:%:ﬂ 5

since ¢; = A\, + O (1 / logfg") from the law of iterated logarithm [2I]. The last two terms in the RHS of the

above equation go to zero as n tends to infinity and A; > 0, hence we have
IC(k) — IC(ko) < 0 for all large n a.s.

Next, for k< k1, we have

IC(];‘)—IC(IQ) — % i (fi—O')Z— i (&—U)Q _Cn ((p_]%)(g_]%_l) _ (p_k1)<p2_ k1_1)>
i=k+1 i=k1+1
n - loglogn (k — k) (k+ ki —2p+1)
— - R0 (PEE) o, < . )
10(k)—IC(ky)  (k—Fk)(k+k —2p+1) (ks —k) O(loglogn)
Cy, - 2 T T G

Since, £; = A; +O (\ / logfg"> and for all i > k, \; = . Again, the second term in the RHS of the above equation

goes to zero due the the property of C),. As, k< k1 and {]AC, k1} < p, the first term is always negative. Hence, we
again have

IC(k) — IC(k1) < 0 for all large n a.s.
Proof of Corollary

Proof. For the eigenvalues 6; computed in Algorithm [T} we have from Lemma [3.2]
&—G&FA Saz Sf,, 1= 17...,16.

Hence, we have

k
n 3 p—Kkp-—k-1)
IC(k) < @ (Sn - O'IPH% - (& - 6€k+1 - 0')2> - Cn

i=1
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Figure 3: Signal detection using the Krylov method: Detection as a function of: number of Lanczos steps m (left),
signal strength (¢, eigenvalue), and (right) the noise level o.

For the first case when k > ko, ignoring the terms that go to zero asymptotically, we will have:

A k k
I1C(k) — IC (ko) 1 2
f S T“Q ;(fz *Egko_«_l 70’)2 7;(&76&;_"_1 70’)2
ko E
- b Z(([—eﬂk 1102 — (b —ely,, —0)?) — Z (t; — el —0)?
202 t "0 v k+1 i k+1
i=1 i=ko+1

For e < 1, note that both terms in RHS is always negative since lk,1 > ¢;,,. Hence I1C(k) — IC(ko) < 0 for
eigenvalues computed by the Krylov method.

Next, for the case k < kq, the term in %,{C(kl) which is neither negative nor goes to zero is
- k
IC(k) — IC(k1) n :
— o < g | 2 G —oP
" " \izk+1

= ong (b =) ((1—6)(a+0 (\/@)‘”)2'

Hence, if we replace o in the algorithm by (1 — €)o, this term goes to zero and we will have IC(I%) —IC(ky) < 0.

C Additional Numerical Results

In section [b| of the main paper, we presented several numerical experiments to illustrate the performance of the
proposed method in applications. Here, we present few additional experimental results.

Krylov subspace method: In the the main paper, for the number of signal detection experiments, we
used the exact eigenvalues of the covariance matrices (computed using eig function in Matlab) for the dimension
estimation using the three compared methods (MDL and RMT require all of the eigenvalues). Here, we illustrate
how the proposed Krylov subspace based algorithm [1| performs for the dimension estimation. We consider the
same signal detection problem as above (same Gaussian model as Fig. 1). The first plot in figure 3| give the
performance of the algorithm as a function of the number of Lanczos steps m. The parameters were chosen to be
p = 2000,n = 2500,0 = 1.1. We know the relation between the error € in the eigenvalue estimation by the Lanczos
algorithm and the number of Lanczos steps m from Lemma [3.2] Hence, increasing m is equivalent to decreasing
€. We see that for a very few Lanczos steps m > 4, we get accurate results. This is because, it is well-known
that the top eigenvalues computed by Lanczos algorithm converges fast [27]. This superior performance of the
Lanczos algorithm was observed in [34] as well for a similar Gaussian signal detection model.

In the second and third plots, we plot the performance of the Krylov subspace method for signal detection
as a function of the signal strength (magnitude of A, in the middle) and the noise level o (right), with
p = 2000, n = 2500, m = 5. We observed that, our Algorithm [I} for m > 4, performs very well and replicates the
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Figure 4: Numerical rank estimation of data matrices by the proposed method (MPT) and MDL, along with the
actual spectrum.

results we obtained by the proposed method with exact eigenvalues of the sample covariance matrix (reported in
Figure .

Data Matrices: In Table [I] of the main paper, we saw the performance of the proposed algorithm on few
sparse data matrices. The following results give us more insight into the method’s performance. Figure [f] presents
the spectrum of twelve matrices obtained from the SuiteSparse database with low numerical rank and gap in the
spectrum, along with the rank estimated by the the proposed method (MPT) as a red (star) line and MDL in
black (circle). We chose C,, = logn in all cases and o0 = 1 (except chipcool0 where o = 0.01 was chosen). The
matrix name, size p and the actual numerical rank ¢ (based on the gap) are given in the title of each plot. We
note that the proposed method gives god solution for almost all examples except one case (Ip-qap8, second plot,
the method chooses a different gap in the spectrum for o = 1). The MDL method fails in a few examples and
is slightly off in a couple more examples. The matrix Ipiceria3d (fourth plot/1st row 1st column) is interesting
because the matrix has two distinct eigen-gaps close to zero. Our method selects the first one. These set of
experiments show that the proposed method performs very well (determines the rank based on the spectral gap)
for general data matrices too, where the distribution assumptions do not hold.
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