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Abstract. This paper presents a general framework for Shanks transformations of sequences
of elements in a vector space. It is shown that the Minimal Polynomial Extrapolation (MPE), the
Modified Minimal Polynomial Extrapolation (MMPE), the Reduced Rank Extrapolation (RRE), the
Vector Epsilon Algorithm (VEA), the Topological Epsilon Algorithm (TEA), and Anderson Accel-
eration (AA), which are standard general techniques designed for accelerating arbitrary sequences
and/or solving nonlinear equations, all fall into this framework. Their properties and their connec-
tions with quasi-Newton and Broyden methods are studied. The paper then exploits this framework
to compare these methods. In the linear case, it is known that AA and GMRES are ‘essentially’
equivalent in a certain sense while GMRES and RRE are mathematically equivalent. This paper
discusses the connection between AA, the RRE, the MPE, and other methods in the nonlinear case.

Key words. Acceleration techniques; sequence transformations; Anderson Acceleration; Re-
duced Rank Extrapolation; quasi-Newton methods; Broyden metods.

AMS subject classifications: 65B05, 656B99, 65F10, 65H10.

1. Introduction. In computational sciences it is often necessary to obtain the
limit of a sequence of objects of a vector space (scalars, vectors, matrices, ...) that
converges slowly to its limit or even diverges. In some situations, we may be able
to obtain a new sequence that converges faster to the same limit by modifying the
method that produced the original sequence. However, in many instances, the process
by which the sequence is produced is hidden (black bozx) or too cumbersome for this
approach to be practical. Another common solution is to transform this sequence,
by means of a sequence transformation, into a new sequence which, under some as-
sumptions, will converge faster. Notable among these general techniques is Shanks
transformation [75]. As stated in [44], the so-called Shanks transformation is arguably
the best all-purpose method for accelerating convergence of sequences.

The aim of this paper is to present a general framework for Shanks transfor-
mation(s) of sequences of elements in a vector space. This framework includes the
Minimal Polynomial Extrapolation (MPE), the Modified Minimal Polynomial Extrap-
olation (MMPE), the Reduced Rank Extrapolation (RRE), the Vector Epsilon Algo-
rithm (VEA), the Topological Epsilon Algorithm (TEA), and Anderson Acceleration
(AA). Their application to the solution of systems of linear and nonlinear equations
will be discussed throughout the paper. For details on these methods, which are
widely used, and their many applications, see, for example, [7,21,34,35,40,52,70,77].

Section 2, provides a basic background on sequence transformations for accelerat-
ing convergence. The general framework containing all the methods mentioned above
is presented in Section 3. Their properties and their connections with quasi-Newton
methods are also studied. In Section 4, some of the transformations are discussed in
more details, in particular Anderson Acceleration which is related to Broyden-type
methods. The Vector Epsilon Algorithm is treated in Section 5. Conclusions are
drawn in Section 6.
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2. Prologue on acceleration methods. An acceleration technique takes a se-
quence (s,) and produces an accelerated sequence, or a set of such sequences (t;’“)),
indexed by k, that, hopefully, converges faster than the original sequence, see, e.g.,
[12,21]. Note that the s;’s can be scalars, or vectors, or matrices, or tensors, or even
other elements in general inner-product spaces.

For a historical perspective on acceleration and extrapolation methods, see the ar-
ticle [19]. The literature on acceleration schemes is rich and has a long history. Modern
acceleration methods started with Richardson’s deferred approach to the limit [68,69)
followed a little later by Aitken’s well-known method for computing zeros of polynomi-
als [1]. In 1955, Shanks [75] defined a generalization of Aitken’s procedure. However,
his method was not too practical as it relied on ratios of determinants and numerical
methods for evaluating these were complicated as well as unstable. Shortly thereafter,
Wynn [84] discovered an elegant recursive algorithm to calculate these ratios. This
discovery set a new dynamic in motion and many papers followed. Meanwhile, physi-
cists were also developing their own acceleration techniques using a viewpoint akin to
that of quasi-Newton methods !, see [2,65,66]. These techniques include Anderson
Acceleration (or Anderson mizing), and Pulay mizing also known as Direct Inversion
in the Iterative Subspace (DIIS). These were widely studied and applied to the solution
of various problems in numerical analysis and applied mathematics. The literature
on these topics is quite broad and we only mention a few papers to show the variety
of results obtained and problems treated [31,34,41,48,63,70,78,81]. One can distin-
guish between two classes of methods among those just mentioned. In the traditional
acceleration techniques, such as Aitken or Shanks method, a sequence to accelerate
is available at the outset and the aim of the method is to produce a faster converg-
ing sequence from it. In contrast, in the second class of methods, which includes
the quasi-Newton based methods, DIIS, and Anderson Acceleration, the sequence is
generated by the method itself.

We now introduce general acceleration methods starting with Aitken’s A2 pro-
cess [1]. We are given a scalar sequence (s,) whose limit is lim,_, s, = s. Aitken’s
acceleration is based on the observation that it is possible to find this limit exactly in
the special situation where consecutive iterates s,,, satisfy the relation

Spt1— S — A(sp —s) =0, Vn (2.1)

where \ is a constant different from 1. The above relation is the kernel of Aitken’s
process, that is the set of sequences which are transformed into a constant sequence
whose terms are all equal to s. The scalar A\, and the limit s can be easily determined
from Sy, Sn41, Sn+2 by writing:

Spil — S Spio — 8 Sp42 — Sn+1
e W D WPidn s e
Sp — S Sp+1 — S Sn+1 — Sn

and, letting As; = s;,1 — s; and A%s; = As; 1 — As; = 5,19 — 25,41 + 5;, we obtain

2
_ SnSn42 — Spy1 (Asn)2
s = — 2 + = Sp — A2 )
Sn+2 Sn+1 Sn Sn

IHere we use the term quasi-Newton method in a broad way to describe a method in which a first
order derivative, as represented by a Jacobian, is approximated using current secant information.
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which can also be written as a ratio of determinants

Sn Snt1l s, As,
As, A As, A?

5= 13 Sf“ - Sg%ns" — 5, — Asp(AZs,) " As,,. (2.2)
ASn A8n+1

Although a trivial observation in this case, the third part of the above formula shows
that s is the Schur complement of A2s,, in the matrix

s, As,
As, A2%s, )’
while the second formula is Schur’s determinantal formula for the complement. As a
background recall that if a square matrix M is partitioned as

M= (g g) , (2.3)

where D is square and invertible then det(M) = det(D) x det(M /D) where (M/D)
is the Schur complement of D in M, i.e., (M/D) = A— BD~'C. Note that A can
be a 1 x 1 matrix as was the case above. More on Schur complements and Schur
determinantal formulas, can be found in [15,62, 86].

Let now (s,) be a sequence that does not belong to the kernel defined by (2.1).

o

Any of the previous formulas for s can still be used, and its result is denoted by ¢;,’. In

) = sp—As,(A%s,) "1 As,. The sequence transformation (s,) — ( %1))
defines Aitken’s A2 process and, by construction, Vn,tg) = s if and only if (s,)

satisfies (2.1). This kernel can also be written under the form

particular, t%l

ao(sp — ) +a1(spt1 —s) =0, Vn

where aq, a1 are constants such that aga; # 0 and ag + a3 # 0.

Shanks [75] extended the above idea by developing a transformation that yields
the exact limit for sequences that belong to a (k + 1)-term kernel, i.e., for sequences
that satisfy:

ao(sp —8) + a1(spt1 —8) + -+ ap(sntx —8) =0, Vn. (2.4)

We now consider ay, ..., ax and s as unknowns with agag # 0 and ag+ - -+ ax # 0.
Since the a;’s are determined up to a multiplicative scalar, we will impose the following
normalization condition, a constraint that does not restrict generality

From (2.4) and (2.5) we easily obtain the following linear system:

ap + -+ a =1
Sp4i0o + -+ Spyktior — s =0, 1=0,...,k.
This is a (k+2) x (k+2) linear system with unknowns «p, - - - , ag, s. The unknown s,

which is the desired limit, can be obtained by using Cramer’s rule. This process can
now be applied to any sequence, not just one that satisfies the kernel relation (2.4), and
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in this case we denote the resulting s by tslk). This process which transforms an original
sequence (s;,) into the new sequence ( %k)) is known as the Shanks transformation. A

few row manipulations with determinants will lead to the following expression:

Sn Sp+1 Sn+k
Asp Aspir -0 Aspyp
HR) — Aspyp—1 Aspyp -+ Aspiop—1
As,  Aspir o0 ASpgk
ASn-‘,-k—l ASn+k te A311—0—216—1

By construction, £ is such that ¥n, t4) = s if and only if (sn) satisfies (2.4). Clearly,
when k = 1 this is just Aitken’s process as shown by (2.2).

The above formula can again be expressed using Schur complements. A remark-
able result due to Wynn [84] is that, for scalar sequences, tgc ) can be obtained by the
following recursive implementation which he termed the e-algorithm:

n n+1 n+1 n)y—
Egc-&-)l = El(g—l ) + [51(c )~ El(c )] L
with 5(_"1) =0 and 58") = s, forn =0,1,.... Asit turns out, we have 557,? =t for all

k and n. Wynn extended this algorithm to vector sequences by defining the inverse of
a vector v € CP as its pseudo-inverse, that is v=! = (v*v)~!v*. He thus obtained the
vector e-algorithm (VEA) [85] that will be discussed in Section 5. However, Shanks
transformation does not extend as is to vector sequences. The more general framework
of projection will have to be used for this purpose. This is explained next.

3. Shanks transformations in a vector space. Let (s,) be a sequence of
elements of a vector space F on R or C satisfying, for a fixed value of k and for all n,
the following relation which generalizes (2.4)

ao(Sp —8)+ -+ ag(sptr —s) =0, (3.1)

with a; € R, s € E, and ag + - - - + o = 1, a normalization condition which does not
restrict generality. The set of such sequences is called the Shanks kernel.

For a fixed value of k, we want to transform (s,) into a new sequence ( %k)) such
that, for sequences belonging to the Shanks kernel, t%k) = 5,Vn (now only a sufficient
condition). If the coefficients a; are known it immediately follows, from (3.1) and the

normalization condition, that this Shanks sequence transformation is given by
tSLk) =QaoSp + -+ QkSntk- (3:2)

To determine the k + 1 coefficients «; we will need to set-up a linear system of k
(scalar) equations, in addition to the normalization condition. If the sequence to
be transformed does not belong to the Shanks kernel, the coefficients «; can still
be computed by the same system but they will then depend on k£ and n and the
transformed sequence will satisfy (3.2).

We will now present a general framework including all sequence transformations
whose kernel is the set of sequences satisfying (3.1). Let us mention that this kernel
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includes sequences which behave like sums of exponential functions (see [20]), a com-
mon feature of many iterative procedures, which explains their efficiency in a number
of cases.

The main ingredients for building these schemes are the notions of Schur comple-
ment and Schur determinantal formula [15,62,86]. They were extended to matrices
M of the form (2.3) where now A € E, B is a row consisting of ¢ elements of E, C
is a vector of dimension ¢, and D a square and invertible ¢ X ¢ matrix. In this case
det(M) is the element of E obtained by expanding M with respect to its first row
of elements of E by the classical rules, and (M/D) € E [14]. In what follows, A is
the usual forward difference operator, its powers defined as usual, and it always acts
on the lower index when applied to quantities with two indices. When discussing the
vector case, we always restrict ourselves to RP. There is no difficulty in extending the
results to CP.

3.1. Coupled topological Shanks transformations. Let (¢,) be a known
sequence of elements of F, called the coupled sequence, assumed to satisfy

oty + -+ agtprg = 0, (33)

for all n, where the coefficients «; are the same as in (3.1). The corresponding
Shanks sequence transformation is called a Coupled Topological Shanks Transforma-
tion (CTST). The term topological is due to historical developments of the transfor-
mation [11], and from the fact that, to be able to discuss its convergence properties,
the vector space E must be equipped with a topology.

Let y and y;, ¢ = 1,...,k, be linearly independent linear functionals (that is
elements of E*, the algebraic dual space of E) which can depend on n. Obviously,
when F is a vector space of dimension p, we must have k < p. We denote by (-, -) the
duality product (or bracket) between E* and E.

Three strategies for writing a linear system that yields the coefficients «; can be
employed and these are discussed in turn.

3.1.1. The polynomial extrapolation strategy. This strategy is obtained
from considering the system of linear equations

{ Jot) oot ol tnrsd 0 (3.4)
ao{Yistn) + -+ + ax{yistnaek) =0, i=1,... k. :

Invoking again Cramer’s rule to solve this system, and substituting the resulting a;’s
in (3.2) leads to

Sn ot Snak 1 ... 1

§k) — <y17:tn> <y17t.n+k> / <y1,'tn> <y17t.n+k> 7 (3.5)

<yk7tn> to <yk,tn+k> <ykatn> to <yk7tn+k>

where, as explained above, the determinant in the numerator represents the element
of E obtained by developing it with respect to its first row by the usual rules for
expanding determinants.

We now replace each of the columns from column k + 1 down to column 2 by its
difference with the preceding column, and we do this both in the numerator and the
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denominator of (3.5). This transforms this ratio of determinants into:

Sn, Asy, -+ ASpyp—1
(Y1.tn) (Y1, Aty) -+ (Y1, Atpyr_1)

f(k) _ (Yrstn) (yr, Atn) - (Yr, Atnyp-1)
" (y1,Aty) - (y1, Atpyp—1)

<yk7 Atn> e <yk7 Atn+k71>
Thus, according to the Schur determinantal formula, t%k) can be written as a
Schur complement
9 =5, — [Aspy .o, Aspppt)(YTATE) -y TR (3.7)

with Y = [y1, ..., k), ™ = [tns -y tntr—1], and where 7™ is the first column of

n,1
the matrix T,," (that is t,, in this case). Note that in this notation the matrix T

has k columns (denoted by an upper index) and that its first column is ¢, (which
has n as a lower index). An important point to notice is that, in a general vector
space E, the notations (YTATT(Lk)) and YTTr(fl) have to be understood in the sense
of the duality product and not in the sense of the usual scalar product between
vectors. This means, for example, that (YTAT,(Lk)) is the matrix whose elements are
(Yi, Atpyj_1) fori,j =1,..., k. Obviously, it has the original meaning when E = RP.
In the matrix case, the duality product becomes the Frobenius inner product defined,
for P,Q € RP*9 by (P,Q) = (P,Q)r = tr(PTQ) = tr(QT P). These notational
conventions will also be valid below. It is also worthwhile noting that when £ = RP
and k = p, this formula simplifies to

tP =5, — [Asn,. .., Asppp 1 [(ATP)TIT).

This transformation enters into the framework introduced in [22].

We saw that (3.6) is deduced from (3.5) by replacing each column in the numerator
and in the denominator from the last one by its difference with the preceding one.
The same treatment can be reapplied several times to (3.6), thus leading to

Sn Asy, ce Aksn

... k
(i tn) (1, Aty) -+ (y1, AFt,) <y17.Atn> (y1, A¥ty)

) = (3.8)

: : : : Ak
Wi tn) (Y, Aty) «+ <yk,Aktn> (yr, Aty) (Yr, A ty,)

= 5n = [Aspye o, AR YT ALy, ... AR Y TTR). (3.9)

3.1.2. The Shanks strategy. We will now outline the strategy followed by
Shanks to obtain his scalar sequence transformation. Shanks considered extracting
the «;’s by solving the system of linear equations:

o7} + -+ g =1
. 3.10
{O{Q<y,tn+i> + -+ ak<y7tn+k}+i> =0, ZZO,"'ak_l' ( )
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where y is now a fixed vector. Proceeding as before, we solve the system with Cramer’s
rule and then exploit (3.2) to obtain

<y’ tn> e <y7 tn+k> / <ya tn> e <y7 tn+k>

) = (3.11)

Yy tnsk—1)  (Ystnror—1) Ystnrr—1) - (Ystntor—1)
Replacing each column starting from the last one by its difference with the preceding

one allows to write this ratio of determinants as

Sn Asy, s Aspig-n
<y7 tn> <y7 Atn> e <y7 A7571—5—/~c—1>

) = LG ttn1) @y Atnpir) - (9, Abnsaa) | (3.12)
<y5Atn> <yaAtn+k—1>

(Y, Atpyr—1) - (Y, Atpyop—2)

Thus, according to the Schur determinantal formula, t%k) can be written as a

Schur complement (a new result)

18 = 5, — [Asn,.. ., Aspap 1] (YTATI) Y TTH), (3.13)
with now
Yz - z tn tn+1 o tn+k71
ZYy -z A tn+1 tn+2 e tn+k
y=1. " | and TW = . . . ,
ZZ ey tn+k71 tn+k T tn+2k72

where z = 0 € E*, and where T, ,(Lkl) denotes the first column of the matrix T\") as

before. In the particular case t, = As,, such a formula was already given in [18].
Here are a few observations. A first observation, valid for the case when £ = RP,

is based on the fact that TT(Lkl) = T{"e; where e; is the i-th canonical basis vector of

the range of Tflk), i.e., it consists of zeros except for a one in the i-th entry. For any
7, where 0 < 57 <k — 1 we write

T = TF (er — e2) + T (ea — e3) + -+ + TM (e — 1) + T e
j
= T,(Lk)ejH — Z ATT(Lk)eZ
=1

When substituted into (3.13) this immediately yields the alternative formula, valid
forany jwith0<j<k—-1

tst) = Sn+j — [Asnv ceey A5n+k—1}(YTATT(Lk))ilyTT(k)

n+j,1?
where Tfllj_)j’1 = Ték)e‘j_l,_l is the (5 + 1)-st column of T,(Lk), or, equivalently, the 1-st
column of T,Slj_)j. A more general result will be proved later (Theorem 3.1).
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A second observation will lead to yet another formula for t%k), namely one that

expresses formulae (3.5) and (3.11) as the Schur complements
5 = ao(sn = [snin, s (VT YT,

with, for each case, the corresponding matrices Y and Ték). This result is eas-
ily obtained by dividing their respective numerators and denominators by the de-

terminant of the matrix YTTT(Li)l. Thus, the numerators of (3.5) and (3.11) can

be written as s, — [Sp+1,-- .,anrk](YTT?gli)l)*lYTTr(l{?, and their denominators as
Vag=1-[1,....,(YTTH) 'Y TT¥) | which gives the result.

A last observation is that (3.12) and (3.13) can also be written under a form
similar to (3.8) and (3.9).

Finally, we note that the matrix [As,, ..., Asn+k_1](YTATT(Lk))_1YT is a projec-
tor only when ¢, = s,,Vn, a choice that may not satisfy (3.3).

3.1.3. The least-squares strategy. To discuss the least-squares strategy we
begin by expressing the formulas (3.2) and (3.3) in an alternative form that will

invoke the differences As,,;, for j =0,...,k — 1. These definitions for t%k) can also
be written as follows
k
tF) =5, + Z a;(Sptj — Sn)
j=1
k J
=S, + Z Q; Z ASnJﬂ‘,l
j=1 =1
k k
= 8n — Z - Zai Aspyio1-
i=1 j=i
In other words, the accelerated sequence will satisfy:
k
tslk) = Sn — Z /BiASn—‘,-i—l) (314)
i=1

in which 8; = —(a; + -+ + ag) for i = 1,..., k. Note that since the constraint (2.5)
has been used to derive (3.14) this new formulation implicitly assumes that the «;’s
sum up to one. Proceeding similarly for the sequence t,,, we would obtain the relation

k
tn— > BilMtnii1 =0, (3.15)
=1

In the least-squares strategy, the vector b = (f31,..., ) € R¥ is obtained by solving
the (p + 1) x k least-squares system (3.15), that is

Aty Atpsro1] b =15 tn, (3.16)

where =g stands for ‘equal in the least-squares sense’. Thus, using the same notation
Ték) as in the polynomial extrapolation strategy, and assuming that T,(Lk) is of full
8



rank, we get b = [(ATT(Lk))TAT,(Lk)}*l(ATr(Lk))Ttn. It then follows that the sequence
transformation (3.14) is given by

tR) = s, — [Asp, ..., Aspip | (AT AT L AT ¢,,. (3.17)

Since t,, = 7Ek1)’ this formula is a particular case of (3.7) with, now, Y = AT, By

the Schur determinantal formula, we also have

k) _ Sn Asy - ASpik-1
= AT, (AT AT

/MAIﬁ%TAzﬁ), (3.18)

which is a particular case of (3.6) with Y = AT,

As before, the matrix [As,, ..., Aspx_ 1 [(ATSNT AT ATINT in (3.17) is
a projector only when ¢, = s,, ¥n, and this choice of ¢,, may not satisfy (3.3). We
also remark that formula (3.17) shows that ) is the pseudo-Schur complement of
AT in the matrix [67]

<&1Asﬁ)

AT > with 57(17@) = [Sny v v s Sntho1]-

Notice that (3.18) can also be written under a form similar to (3.8).

3.1.4. Choice of the coupled sequence. We will now discuss the choice of
the coupled sequence (t,). There are two common ways of selecting it.

General choice. Writing (3.1) for the indices n + 1 and n, and subtracting, we
see that the sequence t, = As, satisfies (3.3). In fact, any sequence of the form
t, = APs,, p > 2, will also satisfy (3.3) and is therefore a valid choice. It will lead to
a transformation proposed in [43, p. 68].

Fized-point choice. Consider the fixed point problem s = g(s) in E, and assume
that the s,’s are given by s,4+1 = g(sn),n = 0,1,... Then when the s,’s satisfy
(3.1), the g(sn)’s will also satisfy it, as well as their differences. Thus, we can select
tn = g(Sn) — Sn, which leads to variants of MPE [26], MMPE [11,64], RRE [36, 58],
and TEA [11], in the appropriate vector space E. Other possible interesting choices
include t,, = APSpm OF ty, = g(Sntm) — Snt+m Where m € Z. Setting f(s) = g(s) — s,
this also motivates the choice t,, = f(s,) where the s,’s are approximations of s.

3.1.5. Choice of the linear functionals. Next we discuss the choice of the
linear functionals y and y; in the cases of the polynomial extrapolation and the Shanks
strategies (these functionals do not play a role in the least squares strategy). These
functionals may or may not depend on n, thus leading to new transformations which
have not yet been studied. When FE is RP, the duality product becomes the usual
inner product. In the matrix case, the duality product is replaced by the Frobenius
inner product as explained above.

3.2. Summary and nomenclature. In this section, we summarize the various
transformations derived from the kernels (3.1) and (3.3), and the corresponding names
by which they will be called.

The sequence transformation defined by (3.2) will be denoted by the generic term
Coupled Topological Shanks Transformation (CTST in short). Each method depends
on two selections. First we select one of three possible strategies for writing the linear
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system that yields the coefficients a;. These are the polynomial extrapolation strat-
egy (3.4), the Shanks strategy (3.10) and the least squares-strategy (3.16). The three
symbols used for these strategies will be: Pol, Sha, and Lsq, respectively. Second,
we have two possibilities for choosing the coupled sequence (t,) satisfying (3.3): the
general choice and the fixed point choice. We will use the symbols Gen and Fzp for
these, respectively. Thus, we end-up with six classes of transformations according to
the strategy for the computation of the coefficients a;, and the choice of the coupled
sequence (t,). The naming for these methods will consist of the acceleration strat-
egy selected followed by the choice made for the coupling sequence, e.g., Pol-Gen ,
for Polynomial acceleration scheme, with the general choice for the coupling. These
methods are shown in the following table where the columns determine the accel-
erations strategy (Polynomial, Shanks, Least-squares) while the rows determine the
choice of the coupling sequence t,, (general, fixed point).

Polynomial | Shanks | Least-squares
t, : General Pol-Gen Sha-Gen Lsg-Gen
t, : Fixed Point Pol-Fzp Sha-Fxp Lsq-Fxp

It must be made clear that, even when E = RP, the choices of the sequence (t,) and
that of y and the y;’s are independent of each other.

We set S = [Asp, ..., Aspikp—1]. We will now study, in particular, the following
methods
e The Modified Mimimal Polynomial Extrapolation (MMPE) [11,64]. Tt enters
into the polynomial extrapolation strategy when the y;’s are arbitrarily fixed
linearly independent linear functionals and t,, = As,,. It is given by

t0 =50 = [Asn, ., Aspy 1 ](YTA2SSN) YT Asy, Y = [y, )

e The Minimal Polynomial Extrapolation (MPE) [26] corresponds to the poly-
nomial extrapolation strategy with ¢, = As, and y; = As,4,—1, and we
have

tng) =Sn — [Asnv e A8n+k—1}[(Asr(bk))TAZSW(Lk)]il(ASW(LIC))TASH-

e The Reduced Rank Eztrapolation (RRE) [36, 58] is obtained by the choices
t, = As, and y; = A%s,,;_1. It holds

t0) = 5 — [Asp, ..., Asppr_1][(AZSPNTAZSI=LAZGRNT A g,

o Anderson Acceleration (AA) [2] is a method for the solution of fixed point
problems. Modulo a shift of indices, the vectors Z; that it constructs can be
seen to belong to the class Pol-Fzp and the vectors f, and g have the form
(3.17) from the least-squares strategy Lsq-Frp (see Formulas (4.6), (4.8) and
(4.10) of Section 4.3).

e The Topological Epsilon Algorithm (TEA) [11]. Its first version falls into the
Shanks strategy with a fixed y € E*, and it is given by (3.11) or (3.12) or
(3.13).

e The Vector Epsilon algorithm (VEA) [85], discussed in Section 5, also en-
ters into this framework after replacing determinants by designants which
generalize them in a noncommutative algebra [73].

The MMPE and the TEA can treat, without any change, sequences of elements of
a general vector space, in particular, matrices or tensors, while, in the matrix case, the
other transformations need the replacement of the duality product by the Frobenius
inner product.

10



3.3. Recursive implementations. For all methods described above, when n is
fixed and k increases, the linear systems (3.4) and (3.10) can be recursively solved by
the bordering method described in [16] and [21, pp. 30-31]. Thus, the vector, matrix
and tensor cases are treated in the same way.

Of these methods, only three benefit from a specific simple recursive algorithm
for their implementation in the case where y and the y;’s are independent of n. These
are the MMPE which can be implemented by the S3-algorithm of Jbilou [49] (see
also [51]), the Sha-Gen by the TEAs [11] or, by the less expensive STEAs [23, 24],
and Henrici’s method [46, p. 115] by the H-algorithm [13, 25].

In the general case, that is when the y;’s depend on n, some other recursive
algorithms also exist but their implementation is quite tricky [82, pp. 177] and [22].

3.4. Properties. We remark that, in all cases, formulae (3.7), (3.13) and (3.17)
have the same structure, independently from the choice of the linear functionals y and
y;, namely

t®) = s — [Asn, ..., Aspir_1]7

where 7y is the solution of the system (YTATék))'y = YTT,(L{? . The preceding result
can be generalized by isolating any column ¢ in the determinants of (3.5) and (3.11),
and it leads to

THEOREM 3.1. The following expression holds for any i =0,... k,

o _| e ASL

. k) _
n YTT(? ) YT AT . with ASY = [As,, ..., Aspin_1],

/ ‘YTAT,S’“)

that is

t0) = 5,0 — ASWy with ~; = (YTAT,gk))*lYTTéi)i,l.

n

Proof. In (3.5) and (3.11), select any column ¢ for 0 < ¢ < k. For ¢ = 0, we have
the formulae (3.7) and (3.13) given above. After selecting a column 1 < i < k — 1,
we subtract the column j from the column j + 1 for j = 0,...,% — 1. Then, for
j =1+1,...,k, we subtract the column j from the column j — 1. When ¢ = k,
the subtractions are done only for the preceding columns. Finally, the column 7 is
moved to the first place in both the numerator and the denominator. Since, the
exact same operations are performed on the numerator and the denominator, the sign
of the ratio is unchanged. The new ratio now appears as a Schur complement and
the result follows. For the least-squares strategy, we first have to write (3.18) as a
ratio of determinants, thus obtaining a formula similar to (3.6) and (3.12). Then, the
determinants have to be modified by adding together their columns, and we get a
representation like (3.5) and (3.11). Finally, we proceed with any column ¢ as above
for the two other strategies. O

COROLLARY 3.2. Assume that the s;’s are vectors in RP that are generated by the
linear recurrence sj+1 = Hsj+d, sg arbitrary, where and I —H is invertible. Then for
all three strategies of Section 8.1, with t; = As; ¥j, we have tém) =s=(I-H) 4,
where m is the degree of the minimal polynomial of H for the vector so — s.

This result is well-known and it has even been extended to some cases where
the matrix H is singular. It is based on the fact that, thanks to the definition of

11



the minimal polynomial of a matrix for a vector, the s;’s and s satisfy (3.1). The
complete results and their proofs can be found in the literature [10,42].

The corollary means that any of the Shanks transformations will yield the exact
solution in at most m steps, and this result is valid even if the original sequence (s,,)
does not converge, i.e., without making any particular assumption on M.

The next property we prove is an orthogonality result that will establish a link
with projection methods. From Theorem 3.1, we have

t0) = s i — [Asn, .o Aspar1dD, i=0,...,k,

where v(®) is the solution of the system (YTATM)y(0) = YTTéi)i,l. We set

%Lk) = Sntit1 — [ASpy1,- -, A5n+k]'y(i)7

where 'y(i) is the same as above. If ¢,, = As,,, we have

YT@ZC) - tglk)) = YTAanri - YT[AQSm S A25n+k71h’(i)

= YT Asyps — YTATP (YTATW) YT, |

Thus, we obtain the following Galerkin orthogonality conditions that generalize a
property given in [53, eq. (2.4)] (see also [50]), and are valid for all coupled topological
Shanks transformations

THEOREM 3.3. We set

E}q,k) = Sp+tit+l — [Asn-‘rla Ty A3n+k]’7(i)7 i = 07 LR k — 17

where v is the solution of the system (YTATy(lk))fy(i) = YTTS_T_)M, IfVn,t, = As,,
then

yI@E® — ™y =0, i=0,...,k—1.

3.5. The quasi-Newton connection. Consider a system of p nonlinear equa-
tions in p unknowns f(z) = g(z) —x = 0 € RP. Newton’s method consists in the
iteration @11 = z, — [f'(xn)] 1 f(2n), where f’(z) denotes the Jacobian of f at z.

Under the assumptions of Lipschitz continuity of the Jacobian f’ in the neigh-
borhood of z and the boundedness of its inverse, it is known that the sequence (z;,)
converges locally to a solution and that the convergence is quadratic, see, e.g., [33],
and [30] or [29, pp. 478 ff.] for a detailed study. The main drawback of Newton’s
method is the need to compute f’ and so quasi-Newton methods were introduced as
a remedy. They replace Newton’s iteration by an iteration of the form

Tn+l = Tp — an(l’n),

where G, is an approximation of [f/(z,)]~! (see, for example, [17, pp. 287ff]).
We consider the following iterative method for computing the fixed point z of g
1. Set s = x,,.
2. Compute s;41 = g(s;) fori =0,...,k— 1.
3. Apply the transformation Pol-Frp (that is t; = f; = g(s;) — s; = As;) to the
iterates s;, and compute (3.7) for n = 0, that is

9 = 50— [Aso,..., Asp 1| (Y TATE) Y TR,
12



4. Set xpy1 = ték).

Since Téﬁ) =ty = fo = f(x,), any of these methods can be considered as a
quasi-Newton method with

Gn = [Aso, ..., Asp_1|(YTATN)1yT ¢ Ro>p,

The Shanks strategy also leads to a fixed point method by computing ték) by

(3.13), and restarting the iterations with z,1; = t(()k) (a procedure first proposed for
the vector e-algorithm when k = p [8,9,42]). Although more complicated (since it
needs to compute the s;’s up to ¢ = 2k), this method (which is Sha-Gen or Sha-
Fzp) can also be considered as a quasi-Newton method where G,, is as above but
with dimension p x kp, and where Téﬁ) is now the vector (f(so)7,..., f(sk—1)T)T of
dimension kp. We will come back to this procedure in Section 4.1.

Among quasi-Newton methods, the Barnes secant method [3] uses an approxima-
tion G,, € RP*P that satisfies the conditions

GnAfl':ASi, ’L':O,...,pfl,

where f; = f(s;) = g(s;) — s;. Using the notations of the polynomial extrapolation
strategy, this can be written in matrix form as,

Gn[Af(), ey Afp—l] = [ASO, ey Asp_l]
G AT = ASE,

with t; = f; and S = [s,...,$p1]. Thus G, = ASF (AT{”)~1, and the iteration
becomes

Tagr = T = [Aso, ., Asp 1 ][Afo, o Afp 1] T (@) = mn — ASPHAT) T,

As we will see in Section 4.2, this is exactly the RRE when k = p since t; = f; = As;.

As stated by Barnes [3], his method can be identified with the generalized secant
method as previously described by Bittner [6] and Wolfe [83]. The matrix G,, is
determined by the conditions

Gnfi=5i—Tpt1, 1=0,...,p,
which yields, in matrix form,

Gn[Aan ey Afp] = [ASO, ey ASP]
GnATO(p+1) — Asép‘f'l).

As explained in [27], since the p + 1 vectors f; must be linearly dependent, there
exist constants «; not all zero such that

a0f0+"'+apfp:07

a relation identical to (3.3). The constants a; can be normalized to sum up to 1.
Multiplying the two preceding relations by G,,, which is assumed to exist, we get

ao(so — Tpy1) + -+ 0ap(Sp — Tng1) =0, (3.19)
13



which gives z,,+1 = agso + - -+ + a;s,. The vector a = (g, ..., q,)T is obtained as
the solution of the system of linear equations

1 -+ 1 T 1
a=e = 1,0,...70 ERP+.
(1 )emamwo

It is easy to recognize that (3.19) is nothing else than the Shanks kernel (3.1) when
starting from sy and with & = p, and that the procedure falls into the class Lsg-
Fxp (see Section 3.1.3).

Under some assumptions, all these methods converge quadratically to the fixed
point x of g when k& = p. This is proved in [51] for the RRE and the MPE, in [56]
for the TEA, in [8] and [9] for the VEA (although there is a gap in the proof), and
in [61, p. 373] for the MMPE with the choice y; = e; (which corresponds to a method
due to Henrici [46, p. 115], see Section 4.1). As proved in Corollary 3.2, all methods
presented in this paper yield the exact solution in one iteration for a system of linear
equations when k = p, the dimension of the system. Indeed, it is known since the
1980s that RRE and MPE are Krylov subspace methods in the linear case [4,5,49]
(see also [52,76]). Analogously, the sequence (zx) obtained by Lanczos’ method [55]
for solving the system of linear equations Az = (I — M)x = d starting from zy (which
can be implemented by the biconjugate gradient algorithm of Fletcher [39]), and the
sequence (tgk)) obtained by applying the TEA with y = ro = (I — M)xo — d to the
sequence generated by s,+1 = Ms, +d with sg = z( are identical as proved in [12, pp.
186-189]. A simpler proof, already given in [17, pp. 167-8], is based on the fact that
As, = —rp, =d— (I — M)z, and A's, = (~1)!4""1r,, and on the determinantal
expressions of x, and ték) (see (3.8)), or those of the corresponding Schur complements
(see (3.9)), which can be shown to be identical after some algebraic manipulations.

REMARK 1. The preceding results are still valid if p is replaced by m, where m is
the degree of the minimal polynomial of the Jacobian f'(x) for the vector x,, — x.

4. Particular methods. We will now consider particular cases of our general
framework that are well-known.

4.1. The Modified Minimal Polynomial Extrapolation. The Modified Mi-
nimal Polynomial Extrapolation (MMPE) belongs to the class Pol-Gen . It corre-
sponds to the choice t,, = As,,, and linearly independent y;’s.

We now apply MMPE to the solution of the fixed point problem s = g(s) in R?,
and consider the vectors generated by s; = g(s;—1) for ¢ = 1,2,..., with s¢ given.
Taking k = p and choosing y; = e; (the vectors of the canonical basis of RP), the first
application of the MMPE produces the vector

t(()p) =59 — [Aso, ..., Asp_l][Azso, cel, Azsp_l]flAso,
which can be written as
t(()p) = s0 — [Asg, ..., Asp_1]7,
where 7y is the solution of the system

[A?s, ..., A25p_1]'y = Asp that is AT(EP)V = Asg.

As mentioned in Section 3.5, for finding the fixed point s = g¢(s), we consider the
iterative method which consists in constructing a sequence (z,) by setting so = 2,
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applying the MMPE as above, defining the next iterate by x,+1 = tép ), and restarting
the process with sg = @, 1. This method is due to Henrici [46, p. 115] and, under
some assumptions, the sequence (x,) converges quadratically to the fixed point s of
g. If g is affine, then tép) =21 = s . As mentioned in Section 3.5, a similar restarting
procedure with the other methods described above leads to methods that, under some
assumptions, converge quadratically to the fixed point of g.

Assume now that the vectors s; are not given by fixed point iterations (they need
not even be given a priori but may be generated by the transformation process itself)
and that, instead of taking k = p in the system that gives v, we take k < p. Then,
this system does not have a full rank. Solving it in the least squares sense gives
(ATO(k))TATO(k)'y = (ATO(k))TAso, and t(()k) is nothing else than the first application
of the RRE which was discovered in this way [36,58]. Notice that Formula (3.17) is
also recovered for n = 0.

4.2. The Reduced Rank Extrapolation. As previously mentioned, the Re-
duced Rank Extrapolation (RRE) corresponds to setting y; = AZs,,; 1 for i =
1,...,k and t,4; = Aspy; for ¢ = 0,...,k — 1 in the polynomial extrapolation
strategy. Therefore, it is a member of the class Pol-Gen. Since ¥ = AT,gk) =
[AZ%s,,, ..., A%, 1], it follows that

t®) = s —[Asn, ..., Aspyp1|[(ATNT AT =HATENT A,

Using the notation of Theorem 3.1, the vector v = (AT T AT -1(AT)T As,,
is such that

70 = argmin, [|As, — AT,

Thus, since t, = As,, RRE also coincides with the method Ls¢-Gen as given by
(3.17). Note also that in the case when ATy(Lk) is not of full rank, the preceding
expression is still valid and the article [67] shows that t) can be written using pseudo-
Schur complements.

As a particular case, assume that we fix n at n = 0, and use all forward differences
Asg, ..., Asg. In the linear case, ték) is the solution obtained at the k-th step of
the full GMRES [72]. Indeed, as proved in [45, Eq. (3.3)], the iterates of the full
GMRES for solving the system Az = (I — M)z = d can be written as a Schur
complement. Then, applying the RRE to the sequence generated by s,4+1 = Ms, +d
with sg = g, one can easily see that, after some algebraic manipulations, the Schur
complements of both methods (and thus both methods) are identical since As,, = —r,
and A’s, = (—1)*A""'r, (see (3.9)). Therefore, GMRES can be written under a
determinantal form. These authors also showed that GMRES can be considered as
a quasi-Newton method. If the linear iterations are restarted from ték), then RRE
and GCR(k)/GMRES(k) are mathematically equivalent as proved in [76]. These
results were also shown earlier by Beuneu in an unpublished report [4] and in [5] (see
also [49,52]).

According to Theorem 3.1, we have the following corollary.

COROLLARY 4.1. For any 0 <i < k, we have

t'ELk) = Sn+i — [Asm ceey Asn+k—1]7(z)a
where 4" = argmin, || As, i — AT,gk)'yHg.
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4.3. Anderson Acceleration. Anderson Acceleration (AA) is aimed at the

solution of systems of nonlinear equations f(z) = g(z) —x = 0, see [2].

Specifically, let x;, i = 0,1,..., be a given sequence and define f; = f(x;). As
presented by Walker and Ni [80], or by Ni [59] in his thesis, or by Higham and
Strabi¢ [48], AA consists of choosing xg and m > 1, computing z1 = g(x0) = zo+o fo,
where By > 0 is a parameter, and, for k = 1,2, ..., after setting my = min(m, k), to

compute (using common notation) the vector (%) that solves

min [1fi — AR

and finally to obtain

k—1
T = T — Z egk)AfL‘i = Tk — AXk9<k)

i=k—my

k-1
fe=tfi— > OPAf, = fi — AP,

i=k—my,
where
Xk = Zhomps s Th-1],  Fo = [fommps -+ Jo—1],
and
0% = (AFFAF)IAFTL fy.
Then, the next iterate of Anderson’s method is
Tri1 = Tk + Pufi = 2k + Brfr — (AXy + BrAF,)0™),

where (i is a parameter, usually positive.
We have

Tp = Tk — [ATp—my, - - - Avp_1|(AFTAF) TP AF] fi.

Thus, Zj, is the Schur complement of (AF AFy) in the matrix M, given by

M. = Tk Al’k—mk ce A«rk—l
=\ AFT fi AFTAF, '

Therefore, from the Schur determinantal formula,

Tl A-kamk tee A.%'k,1
(A fr—mps fr) (Afio—mp Afi—mi) = (Afo—my, Afr—1)

(Afoorifr) (Afecr, Afecm) - (Afir Afs)
(Afk—mkaAfk—mk) e (Afk—mkaAfk—l)

I

k=

(Afect Afiemy) - (Afeet, Afir)
16
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A similar expression for fj is obtained by replacing the first row of the determinant
in the numerator by fi, Afk—m,, ..., Afk—1, and the following relation holds

fk = fk — [Afk,mk, ey Afkfl](AFgAFk)_lAFkak (48)

An alternative way to express the update (4.5) is to rewrite it by defining: ¢; =
g(xi) = x; + fi, and gy = Ty + fx. This gives,

Trt1 = G — Jo + Befr = G — (1 — Be) fr- (4.9)

If we set Gk = [gh—mys-- -, Jk—1], We also have Gy, = X, + Fy, and AGy, = AX), +
AFy, = [Agk—my,-- -, Agr—1]. Then g satisfies:

Ok = 2 + fr — (AX) + AF,)0™)
= g — AGLOW
= gk — [Agk,mk, ceey Agkfl](AFgAFk)ilAFgfk (410)

Note also that gi can be expressed by a formula similar to (4.7) in which the first row
of the determinant in its numerator is replaced by the row [gx, Agk—my, - - - Agr—1]-

In practical situations, the mizing (also called damping) parameter Sy is often set
to a fixed nonzero constant. In the case B = 0,Vk the iterates simplify to zp41 = Ty,
which is a linear combination of the previous iterates, and this leads to a stagnating
sequence. The case 8 = 1,Vk is a common choice in the literature and leads to a
new iterate of the form 241 = gx which is the same as in (4.10). This is the so-called
undamped iterate.

We now return to the polynomial extrapolation strategy when E = RP. We
replace k by my and n by k —my, in the Schur complement formula (3.7) for tglk ), By
the last expression in Theorem 3.1, we obtain:

t(mk)

k—my = S — [Ask,mk, ey Ask,l]

[[yla LRI ymk]T[Atk:—mky sy Atk—l]]_l[yh e aymk]Ttkv

for k=1,2,..., where my = min(m, k) with m > 1. That is

) g [ ASk—mps - Asp_1 ] (YTAT™) =1y Ty, (4.11)

k—my k—my

Now, consider (4.11) with the fixed point choice ¢; = f;. This satisfies (3.3), and
Y = ATéngk = AF}. Comparing this expression with (4.6), (4.8) and (4.10), we
see that Anderson Acceleration relates to the polynomial extrapolation strategy. In

fact, with the previous choices, when (4.11) is applied to the sequence s; = z;, the
(my)
k'—mk

B fk, and, when s; = g;, we have t,(c’f

polynomial acceleration yields ¢

we obtain tﬁ;ﬁ’;}b

= T. By a similar argument, if we set s; = f;,
k)

e = k- Thus, by using both
relations, we are able to find the new iterate zpy1 = Zr + Bufe = gx — (1 — Be) fr-
When (8, = 1, by only one application of the transformation, we directly obtain the
new iterate since 1 = gx. Thus, AA belongs to the class Pol-Fxp. From (3.17)
with ¢; = f;, we see that it is also a method of the class Lsq-Fxp .

REMARK 2. We now comment on the situation where we want to find the fized
point of a mapping g. Let us restrict ourselves to the situation where B, = B is a
nonzero constant, and set g(x) = x4+ f(x). Then a fixed point of g is also a zero of f.

Anderson Acceleration defines xj41 in the first part of (4.5) (i.e., Tpr1 = Tp + Bfr)
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as a natural substitute for xyy1 = g(Tx) = Tx + Bf(Zr) which would have been verified
if we had fr, = f(Zx). We have instead, as a consequence of (4.5),

Trr1 = 9(k) = [ATk—mys - - AGe_1]0"),

where 0% minimizes (4.1) and is equal to (4.4). Obviously, when B = 1, we have
g =7, and we recover (4.10).

In [45], the authors also discuss the quasi-Newton Inverse Least Squares method
(QN-ILS) proposed in [32]. They proved that it is related to Krylov subspace methods
in general, and to GMRES in particular when applied to linear systems.

With our notation, one iteration of the QN-ILS method can be written as

T4 = Gk — [9k — Gh-1, - - Gk — GnJ7H
with ng = max(0,k —m) and v*) = [fr — fu_1, ..., fe — fu.]T fr. On the other hand,
following [48], the Anderson Acceleration can be written as follows, for kK =1,2,...,

my
Uk = Tk — Zﬂgk)(xk — Tp—j) (4.12)
i=1
me 3
or = g(ze) = > 01 (g(ar) — glan—)) (4.13)
i=1
Tr41 = Uk + ﬂk(vk — Uk), (414)
with mp = min(m, k), 2, = g(z¢), and where %) = (95’6),...,97(5,1)71 minimizes
Hvk — ung that is 6(F) = [f}c — o1y S — fk—mk]Tfk- Thus
U = Tp — [Th = Tty oy T — Ty )0
Uk = Gk~ 9k = Gh—1s - Gk — Gy |0,

When k < m, we have my = k and ny = 0. When k < m, that is when k = m+ 7,
7 =0,1,..., then my = m and ng = 5. Thus, the vectors zj produced by the QN-ILS
method are the same as the vectors vy of AA that are defined above.

It is easy to see that the vectors vy correspond to the vectors gy as defined in
(4.10). Thus, in fact, the QN-ILS method is exactly Anderson Acceleration with
Br = 1, and its iterates can also be written as ratios of determinants.

4.3.1. Comparison with RRE. We would like to compare the sequence (tglk))
obtained in RRE with the vector sequence obtained by Anderson Acceleration. In the
following we assume that k is fixed and that it is the same for RRE and the Anderson
Acceleration.

The article [45] described a method that is identical with RRE and showed that
this method is mathematically equivalent to GMRES in the linear case. As discussed
earlier, this result was already known in the 1980s, see, e.g., [76]. As proved in [80],
when all previous iterates are used, Anderson Acceleration is ‘essentially equivalent’
(but not completely) in a certain sense to GMRES [71], and thus to RRE. Indeed
aitt = g(afMPES) and thus also 2 = g(zf*F). The question now is whether or
not there are relations with any one of the extrapolation techniques in the nonlinear
case.

Let us consider again ¢\™*)

o, given by Formula (4.11). For the general choice

ti=As; and Y = AT,ST:fn)k, as previously seen, we recover the RRE (which belongs
18



to the class Pol-Gen ) expressed with this change in the indices. However, with this
procedure, it is not possible to reproduce the vectors Zj, fr and g, of Anderson
Acceleration. Indeed, in particular, we have f; = f(x)) in Formulas (4.6), (4.8) and
(4.10) of AA, while the RRE needs t;, = Asy, in (4.11). Other combinations of choices
for s;, t; and Y do not allow to recover the vectors of AA in the general nonlinear
case.

Instead, consider RRE in which we set s; = g(x;) = ¢; for ¢ = 0,...,k, and, by
using Theorem 3.1, the accelerated member

gk = Sk — [Agk—mka B Agk—l]e(k) =gk — [Agk—mk7 sy Agk—l]a(k)-

If in this formula we were to choose #*) so as to minimize (4.1), we would obtain
Sk = gk given by AA, and, in the undamped version, we would have xx41 = G-

In RRE, the coefficient #) satisfies a slightly different optimization criterion,
namely, it minimizes [|Agr — [A2gk—my, - - -, A%gk]0]]2, where A2g; = A(gir1 — gi)-
Thus in the last case, we can also set xpy; = S, compute Sx11 = g(xgy1) and
continue in this way. This AA-like variation of RRE is close, but not quite equivalent,
to Anderson acceleration because of the difference in the optimization criterion used
to obtain the coefficients 6;. Note that this difference is subtle. Each vector f;
involved in the least-squares problem (4.1), the right-hand side and column vectors
of Fy, is replaced by Ag;. In the standard RRE, we have Ag; = g(zj+1) — g(z;)
but since z;11 = g(z;) we would have Ag; = g(z;11) — ;41 = fj+1 which is what
is used in the least-squares problem (4.1) of AA. However, in the AA-like variation
discussed above the relation x;41 = g(z;) is no longer true because we defined xj41
as Tx11 = 8 # g(wk)-

An attempt to compare RRE with AA was made in Capehart’s PhD thesis [28]
using a non-standard interpretation of AA.

4.3.2. The Broyden connection. In generalized Broyden methods [37,79] the
authors define a class of Broyden update techniques that give an approximate Jacobian
Gy, satisfying m secant conditions:

GrAfi = Ay, fori=k—m,....k—1,
with f; = f(x;) and where it is assumed again that the vectors Afix_pm, ..., Afr_1

are linearly independent and m < k. In matrix form this can be written, using the
notations of Anderson Acceleration,

GRAF, = AX,,

with Xy = [Zk—m, .., Zk—1] and Fy = [fk—m, ..., fk—1] (thus a procedure entering
into the class Pol-Fxp ). A least-change condition is imposed

(Gr — Gr_m)q =0, VYq€span{Afp_m,...,Afp_1}".
After calculations we get a rank-m update formula
Gr = Grom + (AXy, — G_n AF)(AFTAF,)'AFE.
The update itself is of the form
Tpr1 = Tk — Gremfr — (AXg — Gom AF)OW | 0% = (AFLAF,)AFE fi..
)Note that it is common in practice to vary m with k (so m could be replaced by
my

Setting Gx—,, = —prl yields exactly Anderson’s original method (4.5). This
result was shown by Eyert [37,79] (see [38]).
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5. The Vector Epsilon Algorithm. To complete our overview, let us now
discuss the vector e-algorithm (VEA) [85] as defined in Section 2. When applied to a
sequence (s,,) of real vectors (to simplify) satisfying (3.1) the algorithm yields sg,:) =35
for all n, a result proved in [57]. Thus, it fits into the general framework laid out in
Section 3. However, its algebraic theory is more complicated. The first attempt to
express these vectors as a ratio of determinants was proposed in [74], but it involved
determinants of dimension 2k + 1 (Formula (30)) instead of k + 1 as above. The
second attempt consisted in working in a noncommutative field, to use designants,
which generalize determinants in this setting, and to consider a real Clifford algebra
for the theory [73].

There exist left and right designants which were defined and studied in [47]. For

example, let AS”) be the right designant

ai1 -+ QAin
A = | o,

r

Gpl **° Gpn r

where the a;;’s belong to a noncommutative field. This designant can be recursively

computed (and thus defined) as follows. We start from

ail a2
a21 A22

AR —

-1
r = a22 — A12G77 A21-

r

Let AP, be the right designant of order p + 1 obtained from Ag") by keeping the rows
1 to ¢, and the columns 1 to p and the column r. Then, we have

-2 -2
A(n) _ Azfl,nfl Azfl,n _ An—2 _An72 (An72 )—1An72
ro An—2 An72 - “'n,n n—1,n n—1n—1 n,n—1"
n,n—1 n,n

Obviously, this formula looks like a Schur complement.
Designants are used in the solution of systems of linear equations in a noncommu-

tative field [60]. Thus they are useful in our context, and it was proved by Salam [73]

that the vectors 6%2) obtained by applying the vector e-algorithm to a sequence of

vectors (s,,) are given by

-1

ASn s A8n+k_1 Sn Asn s A8n+k_1 1

-

Asppr =+ ASpiok—1 Sntk |, | ASptk +++ Asppop—1 1|,

A similar result holds with left designants.

6. Concluding remarks. Methods for accelerating the convergence of various
processes have been developed by researchers in a wide range of disciplines, often
without being aware of similar efforts undertaken elsewhere. Certainly, differences
in terminology and notation have played a role in hampering the exchange of ideas
across different arenas. In this paper, we gave a general framework for sequence
transformations based on kernels of the form (3.1) and (3.3). This framework includes
many known and widely used transformations, and it allows to derive new ones. Their
connections with quasi-Newton and Broyden methods have been pointed out.
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The Anderson Acceleration article appeared about one decade before the Kaniel
and Stein [54] version of RRE and 13 years before the RRE paper [36]. It is only
recently that the literature has explored the various relations between these methods.
To be able to make links between different acceleration schemes, it was necessary
to overcome the scientific language barrier. In the case of the RRE, the MPE, and
Anderson Acceleration, it was essential to express the RRE and the MPE accelerated
sequences differently, specifically as an update from the last iterate instead of a delayed
iterate. It is hoped that these alternative expressions will help unravel other, yet
unknown, connections.
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