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Abstract. This paper describes a graphics processing unit (GPU) implementation of the Fil-
tered Lanczos Procedure for the solution of large, sparse, symmetric eigenvalue problems, with a
focus on eigenvalue problems that arise in the context of electronic structure calculations under the
Density Functional Theory framework. The Filtered Lanczos Procedure uses a carefully chosen poly-
nomial spectral transformation to accelerate the convergence of the Lanczos method when computing
eigenvalues within a desired interval. This method has proven particularly effective when Matrix-
Vector products can be performed efficiently. We illustrate, via example, that the Filtered Lanczos
Procedure implemented on a GPU can greatly accelerate eigenvalue computations for certain classes
of symmetric matrices common in electronic structure calculations. Comparisons against previously
published CPU results suggest a typical speedup of a factor of 20− 30.
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1. Introduction. This paper describes a graphics processing unit (GPU) ac-
celeration of polynomial filtering procedures for computing all eigenvalue-eigenvector
pairs (eigenpairs) of a symmetric matrix A inside a given interval [α, β]. Polynomial
filtering eigenvalue solvers are based on selecting a polynomial spectral transformation
of the original matrix so that the eigenvalues of interest are mapped to the extreme
part of the spectrum of the transformed matrix. Then, a projection method, e.g.,
Lanczos, is applied to the transformed matrix, leading to fast convergence [19]. These
approaches can be effective for computing eigenpairs lying anywhere in the spectrum
in situations where the matrix of interest has a nearly uniform spectral distribution
and the Matrix-Vector multiplication can be performed efficiently in serial or parallel
architectures.

Polynomial filtering techniques have been particularly effective for the eigenvalue
problems that arise in electronic structure calculations [19,38,39,47–49]. In the Den-
sity Functional Theory (DFT) framework, the solution of the all-electron Schrödinger
equation is replaced by a one-electron Schrödinger equation with an effective poten-
tial which leads to a nonlinear eigenvalue problem, known as the Kohn-Sham equa-
tion [20, 26]:

[

−∇2

2
+ Vion(r) + VH(ρ(r), r) + VXC(ρ(r), r)

]

Ψi(r) = EiΨi(r), (1.1)

where Ψi(r) is a wave function and Ei is a Kohn-Sham eigenvalue. The ionic potential
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Vion reflects contributions from the core and depends on the position r only. Both
the Hartree and the Exchange-Correlation potentials depend on the charge density:

ρ(r) = 2

nocc
∑

i=1

|Ψi(r)|2, (1.2)

where nocc is the number of occupied states (for most systems of interest this is half
the number of valence electrons). Since the total potential Vtotal = Vion + VH + VXC

depends on ρ(r) which itself depends on eigenfunctions of the Hamiltonian, Equa-
tion (1.1) can be viewed as a nonlinear eigenvalue problem or a nonlinear eigenvec-

tor problem. The Hatree potential VH is obtained from ρ by solving the Poisson
equation ∇2VH(r) = −4πρ(r) with appropriate boundary conditions. The Exchange-
Correlation term VXC is the key to the DFT approach and it captures the effects
of reducing the problem from many particles to a one-electron problem, i.e., from
replacing wavefunctions with many coordinates into ones that depend solely on space
location r.

Self-consistent iterations for solving the Kohn-Sham equation start with an initial
guess of the charge density ρ(r), from which a guess for Vtotal is computed. Then
(1.1) is solved for Ψi(r)’s and a new ρ(r) is obtained from (1.2) and the potentials are
updated. Then (1.1) is solved again for a new ρ obtained from the new Ψi(r)’s, and
the process is repeated until the total potential has converged.

A typical electronic structure calculation with many atoms requires the calcula-
tion of a large number of eigenvalues, specifically the nocc leftmost ones. In addition,
calculations based on Time-Dependent Density Functional Theory [10, 12], require a
substantial number of unoccupied states, states beyond the Fermi level, in addition
to the occupied ones. Thus, it is not uncommon to see eigenvalue problems in the
size of millions where (tens) of thousands of eigenvalues may be needed.

As a result, efficient numerical methods that can be easily parallelized in current
high-performance computing environments are therefore essential in electronic struc-
ture calculations. The high computational power offered by GPUs has increased their
presence in the numerical linear algebra community and they are gradually becoming
an important tool of scientific codes for solving large-scale, computationally intensive
eigenvalue problems. While GPUs are mostly known for their high speedups relative
to CPU-bound operations∗, sparse eigenvalue computations can also benefit from hy-
brid CPU-GPU architectures. Although published literature and scientific codes for
the solution of sparse eigenvalue problems on a GPU have not been as common as
those that exist for multi-CPU environments, recent studies conducted independently
by some of the authors of this paper demonstrated that the combination of polyno-
mial filtering eigenvalue solvers with GPUs can be beneficial [2, 23]. The goal of this
paper is twofold :

• We provide a simple and flexible framework for implementing polynomial
filtering eigenvalue solvers on a GPU and for exploiting the capabilities of-
fered by current high-performance accelerators. We give a detailed descrip-
tion of our software package, called cucheb, which can be downloaded from

https://github.com/jaurentz/cucheb

and includes all techniques presented in this paper.

∗See also the MAGMA project at http://icl.cs.utk.edu/magma/index.html

https://github.com/jaurentz/cucheb
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• We study and analyze the performance of the cucheb software package for
solving eigenvalue problems that originate from electronic structure calcula-
tions, and show that the combination of GPUs and polynomial filtering can
be quite effective for these problems.

The paper is organized as follows. Section 2 introduces polynomial filtering for
eigenvalue problems and provides the basic formulation of the filters used. Section 3
discusses the proposed GPU implementation of the filtered Lanczos procedure. Sec-
tion 4 presents computational results with the proposed GPU implementations. Fi-
nally, concluding remarks are presented in Section 5.

2. The Filtered Lanczos Procedure. The Lanczos algorithm and its vari-
ants [4, 11, 17, 28, 31, 43, 46] are well-established methods for computing a subset of
the spectrum of a symmetric (real) matrix. These methods are especially adept at
approximating eigenvalues lying at the extreme part of the spectrum [5, 29, 35, 42],
e.g., eigenvalues of largest magnitude. When the desired eigenvalues are well inside
the spectral interval these techniques can become ineffective and lead to large com-
putational and memory costs. Traditionally, this is overcome by mapping interior
eigenvalues to the exterior part of the spectrum, e.g., by a shift-and-invert spectral
transformation (see for example [37] or [44]). While shift-and-invert can be highly
effective in some situations, a matrix factorization is now necessary and this can be
too costly for matrices that generate a large amount of fill-in.

The Filtered Lanczos Procedure (FLP) offers an appealing alternative for such
cases. In this approach interior eigenvalues are mapped to the end parts of the spec-
trum of the transformed matrix using a polynomial spectral transformation. A Lanc-
zos procedure is then used on the transformed matrix [19]. Such a transformation
only requires Matrix-Vector multiplications, a task that is often easy to parallelize
for sparse matrices. The procedure requires bounds on the spectrum as well as a
well-selected polynomial.

2.1. Polynomial spectral transformations. Let A ∈ R
n×n be symmetric and

real and let

A = V ΛV T (2.1)

be its spectral decomposition, where V ∈ R
n×n is an orthogonal matrix and Λ ∈

R
n×n = diag (λ1, . . . , λn) is diagonal. We consider spectral transformations of A, i.e.,

mappings of the form

f(A) = V f(Λ)V T , (2.2)

where f(Λ) = diag (f(λ1), . . . , f(λn)) and f is any (real or complex) function f defined
on the spectrum of A. Standard examples in eigenvalue computations include the
shift-and-invert transformation f(z) = (z−ρ)−1 and f(z) = zk for subspace iteration.

In a polynomial spectral transformation the function f is a polynomial. A de-
sirable filter polynomial p should satisfy the following requirements: a) the desired
eigenvalues of A are the largest in magnitude eigenvalues of p(A), b) the construction
of p requires minimal knowledge of the spectrum of A, and c) multiplying a vector by
p(A) is relatively inexpensive.

Our implementation of the FLP constructs polynomials that satisfy the above
requirements using techniques from digital filter design. The basic idea is to construct
a transforming polynomial by approximating an “ideal” filter which maps the desired
eigenvalues of A to eigenvalues of largest magnitude in p(A).
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2.2. Constructing polynomial transformations. Throughout this section it
is assumed that the spectrum of A is contained entirely in the interval [−1, 1]. In
practice, this assumption poses no restrictions since the eigenvalues of A located
inside the interval [λmin, λmax], where λmin, λmax denote the algebraically smallest
and largest eigenvalues of A, respectively, can be mapped to the interval [−1, 1] by
the following linear transformation:

A := (A− cI)/e, c =
λmin + λmax

2
, e =

λmax − λmin

2
. (2.3)

Since λmin and λmax are exterior eigenvalues of A, one can obtain very good estimates
by performing a few Lanczos steps.† We will see in Section 4 that computing such
estimates constitutes only a modest fraction of the total compute time.

Let then [α, β] ⊂ [−1, 1], be a subinterval and assume we wish to compute all
eigenvalues of A in [α, β] along with their corresponding eigenvectors. Consider first
the following spectral transformation:

φ(z) =

{

1, z ∈ [α, β],
0, otherwise.

(2.4)

The function φ is just an indicator function, taking the value 1 inside the interval
[α, β] and zero outside. When acting on A, φ maps the desired eigenvalues of A to
the repeated eigenvalue 1 for φ(A) and all the unwanted eigenvalues to 0. Moreover,
the eigenvectors which correspond to eigenvalues of A within the interval [α, β] are
identical to the eigenvectors of φ(A) which correspond to the multiple eigenvalue
1. Thus, applying Lanczos on φ(A) computes the same invariant subspace, with
the difference that now the eigenvalues of interest (mapped to 1) are well-separated
from the unwanted ones (mapped to zero), and rapid convergence can be established.
Unfortunately, such a transformation is not practically significant as there is no cost-
effective way to multiply a vector by φ(A).

A practical alternative is to replace φ with a polynomial p such that p(z) ≈
φ(z) for all z ∈ [−1, 1]. Such a p will then map the desired eigenvalues of A to a
neighborhood of 1 for p(A). Moreover, since p is a polynomial, applying p(A) to a
vector only requires Matrix-Vector multiplication with A.

In order to quickly construct a p that is a good approximation to φ it is im-
portant that we choose a good basis. For functions supported on [−1, 1] the ob-
vious choice is Chebyshev polynomials of the first kind. Such representations have
already been used successfully for constructing polynomial spectral transformations
and for approximating matrix-valued functions in quantum mechanics (see for exam-
ple [2, 6, 19, 22, 36, 39, 40, 45, 47–49]).

Recall that the Chebyshev polynomials of the first kind obey the three-term
recurrence

Ti+1(z) = 2zTi(z)− Ti−1(z), i ≥ 1. (2.5)

starting with T0(z) = 1, T1(z) = z. The Chebyshev polynomials satisfy the following
orthogonality condition and so they form a complete orthogonal set for the Hilbert

†In practice, if λ̄min, λ̄max are approximations to eigenvalues λmin, λmax, and ‖ρmin‖, ‖ρmax‖
are the residuals of the approximate eigenpairs associated with the corresponding eigenvalues, one
could use the values λ̄min − ‖ρmin‖ and λ̄max + ‖ρmax‖ to scale the matrix.
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space L2
µ ([−1, 1]), dµ(z) =

(

1− z2
)−1/2

dz:

∫ 1

−1

Ti(z)Tj(z)√
1− z2

dz =







π, i = j = 0,
π
2
, i = j > 0,

0, otherwise.
(2.6)

Since φ ∈ L2
µ ([−1, 1]) it possesses a convergent Chebyshev series

φ(z) =

∞
∑

i=0

biTi(z), (2.7)

where the {bi}∞i=0 are defined as follows, where δij represents the Dirac delta symbol:

bi =
2− δi0

π

∫ 1

−1

φ(z)Ti(z)√
1− z2

dz (2.8)

For a given α and β the {bi} are known analytically (see for example [21]),

bi =

{

(arccos(α)− arccos(β)) /π, i = 0,
2 (sin (i arccos(α)) − sin (i arccos(β))) /iπ, i > 0.

(2.9)

An obvious choice for constructing p is to fix a degree m and truncate the Chebyshev
series of φ,

pm(z) =

m
∑

i=0

biTi(z). (2.10)

Due to the discontinuities of φ, pm does not converge to φ uniformly as m → ∞. The
lack of uniform convergence is not an issue as long as the filter polynomial separates
the wanted and unwanted eigenvalues. Figure 2.1 illustrates two polynomial spectral
transformations constructed by approximating φ on two different intervals. Even with
the rapid oscillations near the ends of the subinterval, these polynomials are still good
candidates for separating the spectrum.
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Fig. 2.1. Chebyshev approximation of the ideal filter φ using a degree 80 polynomial. Left:
[α, β] = [.1, .3], right: [α, β] = [−1,−.5].

Figure 2.1 shows approximations of the ideal filter φ for two different subintervals
of [−1, 1], using a fixed degree m = 80. In the left subfigure the interval of interest
is located around the middle of the spectrum [α, β] = [.1, .3], while in the right
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subfigure the interval of interest is located at the left extreme part [α, β] = [−1,−.5].
Note that the oscillations near the discontinuities do not prevent the polynomials from
separating the spectrum.

Since A is sparse, multiplying p(A) by a vector can be done efficiently in par-
allel using a vectorized version of Clenshaw’s algorithm [13] when p is represented
in a Chebyshev basis. Clenshaw’s algorithm can be run entirely in real arithmetic
whenever the Chebyshev coefficients of p are real.

2.3. Filtered Lanczos as an algorithm. Assuming a transforming polyno-
mial p, we can approximate eigenvalues of A by first approximating eigenvalues and
eigenvectors of p(A) using a simple version of the Lanczos method [28]. Many of the
matrices arising in practical applications possess repeated eigenvalues, requiring the
use of block Lanczos algorithm [17], so we describe the block version of FLP as it
contains the standard algorithm as a special case.

Given a block size r and a matrix Q ∈ R
n×r with orthonormal columns, the

Filtered Lanzos Procedure iteratively constructs an orthonormal basis for the Krylov
subspace generated by p(A) and Q:

Kk(p(A), Q) = span{Q, p(A)Q, . . . , p(A)k−1Q}. (2.11)

Let us denote by Qk ∈ R
n×rk the matrix whose columns are generated by k − 1

steps of the block Lanczos algorithm. Then, for each integer k we have QT
kQk = I and

range(Qk) = span(Kk(p(A), Q)). Since p(A) is symmetric the columns of Qk can be
generated using short recurrences. This implies that there exists symmetric {Di}ki=1

and upper-triangular {Si}ki=1, Di, Si ∈ R
r×r, i = 1, . . . , k such that

p(A)Qk = Qk+1T̃k, (2.12)

where

T̃k =

[

Tk

SkE
T
k

]

, Tk =























D1 ST
1

S1 D2 ST
2

S2 D3

. . .

. . .
. . . ST

k−1

Sk−1 Dk























, (2.13)

and Ek ∈ R
kr×r denotes the last r columns of the identity matrix of size kr×kr. Left

multiplying (2.12) by QT
k gives the Rayleigh-Ritz projection

QT
k p(A)Qk = Tk. (2.14)

The matrix Tk is symmetric and banded, with a semi-bandwidth of size r. The
eigenvalues of Tk are the Ritz values of p(A) associated with the subspace spanned by
the columns of Qk and for sufficiently large k the dominant eigenvalues of p(A) will
be well approximated by these Ritz values. Of course we aren’t actually interested
in the eigenvalues of p(A) but those of A. We can recover these eigenvalues by using
the fact that p(A) has the same eigenvectors as A. Assuming that an eigenvector v
of p(A) has been computed accurately we can recover the corresponding eigenvalue λ
of A from the the Rayleigh quotient of v:

λ =
vTAv

vT v
. (2.15)
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In practice we will only have a (perhaps very accurate) approximation v̂ of v.
The approximate eigenvector v̂ will be a Ritz vector of p(A) associated with Qk. To
compute these Ritz vectors we first compute an eigendecomposition of Tk. Since Tk

is real and symmetric there exists an orthogonal matrix Wk ∈ R
rk×rk and a diagonal

matrix Λk ∈ R
rk×rk such that

TkWk = WkΛk. (2.16)

Combining (2.12) and (2.16), the Ritz vectors of p(A) are formed as V̂k = QkWk.

3. cucheb: a GPU implementation of the Filtered Lanczos Procedure.

A key advantage of the Filtered Lanczos Procedure is that it requires only Matrix-
Vector multiplication, an operation that uses relatively low memory and that is typ-
ically easy to parallelize compared to solving large linear systems. FLP and related
methods have already been successfully implemented on multi-core CPUs and dis-
tributed memory machines [39].

3.1. The GPU architecture. A Graphical Processing Unit (GPU) is a Single
Instruction Multiple Data (SIMD) scalable model which consists of multi-threaded
Streaming Multiprocessors (SMs), each one equipped with multiple Scalar Processor
cores (SPs), with each SP performing the same instruction on its local portion of
data. While they were initially developed for the purposes of graphics processing,
GPUs were adapted in recent years for general purpose computing. The development
of the Compute Unified Device Architecture (CUDA) [16] parallel programming model
by NVIDIA, an extension of the C language, provides an easy way for computational
scientists to take advantage of the GPU raw power.

Under the CUDA programming model, each SP executes one thread at a time
and in a parallel fashion from the other SPs. The SIMD model simplifies the hard-
ware design of the GPU unit and allows this space to be filled by many SPs which
results to a throughput-oriented model. Threads and blocks of threads are executed
in an asynchronous manner and threads within a block cooperate by using explicit
synchronization calls (barriers) and block-private shared memory space.

After a block of threads is assigned to an SM, it is internally divided in warps
-a fixed number of threads determined in hardware- and executed warp-by-warp.
Having a large number of threads per block, and thus a large number of warps, can
hide latency since every time threads in a particular warp remain idle waiting for an
I/O instruction, another warp can be swapped in and executed.

3.2. Implementation details of the cucheb software package. In this sec-
tion we discuss the details of our GPU implementation of FLP. Our implementation
will consist of a high-level, open source C++ library called cucheb [3] which depends
only on the NVIDIA CUDA Toolkit [16, 30] and standard C++ libraries, allowing for
easy interface with NVIDIA brand GPUs. At the user level, the cucheb software
library consists of three basic data structures:

• cuchebmatrix

• cucheblanczos

• cuchebpoly

The remainder of this section is devoted to describing the role of each of these data
structures.

3.3. Sparse matrices and the cuchebmatrix object. The first data structure,
called cuchebmatrix, is a container for storing and manipulating sparse matrices.
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This data structure consists of two sets of pointers, one for data stored in CPUmemory
and one for data stored in GPU memory. Such a duality of data is often necessary
for GPU computations if one wishes to avoid costly memory transfers between the
CPU and GPU. To initialize a cuchebmatrix object one simply passes the path to a
symmetric matrix stored in the Matrix Market file format [9]. The following segment
of cucheb code illustrates how to initialize a cuchebmatrix object using the matrix
H2O downloaded from the University of Florida sparse matrix collection [18]:

#include "cucheb.h"

int main(){

// declare cuchebmatrix variable

cuchebmatrix ccm;

// create string with Matrix Market file name

string mtxfile("H2O.mtx");

// initialize ccm using Matrix Market file

cuchebmatrix_init(&mtxfile, &ccm);

.

.

.

}

The function cuchebmatrix_init opens the data file, checks that the matrix is real
and symmetric, allocates the required memory on the CPU and GPU, reads the data
into CPU memory, converts it to an appropriate format for the GPU and finally
copies the data into GPU memory. By appropriate format we mean that the matrix
is stored on the GPU in compressed sparse row (CSR) format with no attempt to
exploit the symmetry of the matrix. CSR is used as it is the most generic storage
scheme for performing sparse Matrix-Vector multiplications using the GPU. See [7,34]
and references therein for a discussion on the performance of sparse Matrix-Vector
multiplications in the CSR and other formats. Once a cuchebmatrix object has been
created, sparse Matrix-Vector multiplications can then be performed on the GPU
using the NVIDIA CUSPARSE library [15].

3.4. Lanczos and the cucheblanczos object. The second data structure,
called cucheblanczos, is a container for storing and manipulating the vectors and
matrices associated with the Lanczos process. As with the cuchebmatrix objects,
a cucheblanczos object possesses pointers to both CPU and GPU memory. While
there is a function for initializing a cucheblanczos object, the average user should
never do this explicitly. Instead they should call a higher level routine like
cuchebmatrix_lanczos which takes as an argument an uninitialized cucheblanczos

object. Such a routine will then calculate an appropriate number of Lanczos vectors
based on the input matrix and initialize the cucheblanczos object accordingly.

Once a cuchebmatrix object and corresponding cucheblanczos object have been
initialized, one of the core Lanczos algorithms can be called to iteratively construct
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the Lanczos vectors. Whether iterating with A or p(A), the core Lanczos routines in
cucheb are essentially the same. The algorithm starts by constructing an orthonor-
mal set of starting vectors (matrix Q in (2.11)). Once the vectors are initialized the
algorithm expands the Krylov subspace, peridiocally checking for convergence. To
check convergence the projected problem (2.16) is copied to the CPU, the Ritz values
are computed and the residuals are checked. If the algorithm has not converged the
Krylov subspace is expanded further and the projected problem is solved again. For
stability reasons cucheb uses full reorthogonalization to expand the Krylov subspace,
making the algorithm more akin to the Arnoldi method [1]. Due to the full reorthog-
onalization, the projected matrix Tk from (2.16) will not be symmetric exactly but
it will be symmetric to machine precision, which justifies the use of an efficient sym-
metric eigensolver (see for example [32]). The cost of solving the projected problem
is negligible compared to expanding the Krylov subspace, so we can afford to check
convergence often. All the operations required for reorthogonalization are performed
on the GPU using the NVIDIA CUBLAS library [14]. Solving the eigenvalue problem
for Tk is done on the CPU using a special purpose built banded symmetric eigensolver
included in the cucheb library.

It is straight-forward to use selective reorthogonalization [33, 41, 42] or implicit
restarts [4,46], though we don’t make use of these techniques in our code. In Section 4
we will see that the dominant cost in the algorithm is the Matrix-Vector multiplica-
tion with p(A), so reducing the number of products with p(A) is the easiest way to
shorten the computation time. Techniques like implicit restarting can often increase
the number of iterations if the size of the maximum allowed Krylov subspace is too
small, meaning we would have to perform more Matrix-Vector multiplications. Our
experiments suggest that the best option is to construct a good filter polynomial and
then use increasingly larger Krylov subspaces until the convergence criterion is met.

All the Lanczos routines in cucheb are designed to compute all the eigenvalues in
a user prescribed interval [α, β]. When checking for convergence the Ritz values and
vectors are sorted according to their proximity to [α, β] and the method is considered
to be converged when all the Ritz values in [α, β] as well as a few of the nearest Ritz
values outside the interval have sufficiently small residuals. If the iterations were done
using A then the computation is complete and the information is copied back to the
CPU. If the iterations were done with p(A) the Rayleigh quotients are first computed
on the GPU and then the information is copied back to the CPU.

To use Lanczos with A to compute all the eigenvalues in [α, β] a user is required
to input five variables:

1. a lower bound on the desired spectrum (α)
2. an upper bound on the desired spectrum (β)
3. a block size
4. an initialized cuchebmatrix object
5. an uninitialized cucheblanczos object

The following segment of cucheb code illustrates how to do this using the function
cuchebmatrix_lanczos for the interval [α, β] = [.5, .6], a block size of 3 and an
already initialized cuchebmatrix object:

#include "cucheb.h"

int main(){
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// initialize cuchebmatrix object

cuchebmatrix ccm;

string mtxfile("H2O.mtx");

cuchebmatrix_init(&mtxfile, &ccm);

// declare cucheblanczos variable

cucheblanczos ccl;

// compute eigenvalues in [.5,.6] using block Lanczos

cuchebmatrix_lanczos(.5, .6, 3, &ccm, &ccl);

.

.

.

}

This function call will first approximate the upper and lower bounds on the spectrum
of the cuchebmatrix object. It then uses these bounds to make sure that the interval
[α, β] is valid. If it is, it will adaptively build up the Krylov subspace as described
above, periodically checking for convergence. For large matrices or subintervals well
inside the spectrum, standard Lanczos may fail to converge all together. A better
choice is to call the routine cuchebmatrix_filteredlanczos which automatically
constructs a filter polynomial and then uses FLP to compute all the eigenvalues in
[α, β].

3.5. Filter polynomials and the cuchebpoly object. To use FLP one needs
a way to store and manipulate filter polynomials stored in a Chebyshev basis. In
cucheb this is done with the cuchebpoly object. The cuchebpoly object contains
pointers to CPU and GPU memory which can be used to construct and store filter
polynomials. For the filter polynomials from Section 2 one only needs to store the
degree, the Chebyshev coefficients and upper and lower bounds for the spectrum of
A.

As with cucheblanczos objects, a user typically will not need to initialize a
cuchebpoly object themselves as it will be handled automatically by a higher level
routine. In cuchebmatrix_filteredlanczos for example, not only is the cuchebpoly
object for the filter polynomial initialized but also the degree at which the Chebyshev
approximation should be truncated is computed. This is done using a simple formula
based on heuristics and verified by experiment. Assuming the spectrum of A is in
[−1, 1], a “good” degreem for [α, β] ⊂ [−1, 1] is computed using the following formula:

m = min{m > 0 : ||pm − φ|| < ǫ||φ||}, (3.1)

where ||f || is the weighted Chebyshev 2-norm. The tolerance ǫ is a parameter and is
chosen experimentally, with the goal of maximizing the separation power of the filter
while keeping the polynomial degree and consequently the computation time low.

Figure 3.1 uses the same ideal filters from Figure 2.1 but this time computes the
filter degree based on (3.1). In the left subfigure the interval of interest is located
around the middle of the spectrum [α, β] = [.1, .3] and the distance between α and β
is relatively small, giving a filter degree of 48. In the right subfigure the interval of
interest is located at the left extreme part of the spectrum [α, β] = [−1,−.5] and the
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Fig. 3.1. Chebyshev and approximation of the ideal filter φ. Left: [α, β] = [.1, .3] with an
optimal degree of 48, right: [α, β] = [−1,−.5] with an optimal degree of 10.

distance α and β is relatively large, giving a filter degree of 10. Although these filters
seem worse approximations than those in Figure 2.1, the lower degrees lead to much
shorter computation times.

The following segment of cucheb code illustrates how to use the function
cuchebmatrix_filteredlanczos to compute all the eigenvalues in the interval
[α, β] = [.5, .6] of an already initialized cuchebmatrix object using FLP with a block
size of 3:

#include "cucheb.h"

int main(){

// initialize cuchebmatrix object

cuchebmatrix ccm;

string mtxfile("H2O.mtx");

cuchebmatrix_init(&mtxfile, &ccm);

// declare cucheblanczos variable

cucheblanczos ccl;

// compute eigenvalues in [.5,.6] using block filtered Lanczos

cuchebmatrix_filteredlanczos(.5, .6, 3, &ccm, &ccl);

.

.

.

}

4. Experiments. In this section we illustrate the performance of our GPU im-
plementation of the Filtered Lanczos Procedure. Our test matrices (Hamiltonians)
originate from electronic structure calculations. In this setting, one is typically inter-
ested in computing a few eigenvalues around the Fermi level of each Hamiltonian. The
Hamiltonians were generated using the PARSEC package [27], and can be also found
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Fig. 4.1. Sparsity pattern of the PARSEC matrices. Left: Si41Ge41H72. Right: Si87H76.

in the University of Florida Sparse Matrix Collection [18].‡ The Hamiltonians are real,
symmetric, and have clustered, as well as multiple, eigenvalues. Table 4.1 lists the size
n, the total number of non-zero entries nnz, as well as the endpoints of the spectrum
of each matrix, i.e., the interval defined by the algebraically smallest/largest eigen-
values. The average number of nonzero entries per row for each Hamiltonian is quite
large, a consequence of the high-order discretization and the addition of a (dense)
‘non-local’ term. Figure 4.1 plots the sparsity pattern of matrices Si41Ge41H72 (left)
and Si87H76 (right).

All GPU experiments in this section were implemented using the cucheb library
and performed on the same machine which has dual Intel Xeon ES-2667 v2 3.30GHz
processors with 256GB of CPU RAM and two NVIDIA K40 GPUs each with 12GB of
GPU RAM and 2880 compute cores. We make no attempt to access mutliple GPUs
and all the experiments were performed using a single K40.

Matrix n nnz nnz/n Spectral interval

Ge87H76 112, 985 7, 892, 195 69.9 [−1.21e+0, 3.28e+1]
Ge99H100 112, 985 8, 451, 395 74.8 [−1.23e+0, 3.27e+1]
Si41Ge41H72 185, 639 15, 011, 265 80.9 [−1.21e+0, 4.98e+1]
Si87H76 240, 369 10, 661, 631 44.4 [−1.20e+0, 4.31e+1]
Ga41As41H72 268, 096 18, 488, 476 69.0 [−1.25e+0, 1.30e+3]

Table 4.1

A list of the PARSEC matrices used to evaluate our GPU implementation, where n is the
dimension of the matrix, nnz is the number of nonzero entries and [λmin, λmax] is the spectral
interval.

Exploiting eigenvalue solvers that are based on matrix factorizations, e.g., shift-
and-invert, has been shown to be impractical for matrices of the PARSEC matrix
collection [24,25]. The reason is that performing the LU factorization of each Hamil-
tonian results in a huge amount of fill-in in the associated triangular factors, requiring
an excessive amount of memory and computations [24]. On the other hand, polyno-
mial filtering accesses the Hamiltonians in their original form and only requires an
efficient Matrix-Vector multiplication routine. Polynomial filtering has been often

‡https://www.cise.ufl.edu/research/sparse/matrices/
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reported to be the most efficient numerical method for solving eigenvalue problems
with the PARSEC matrix collection [19, 38, 39, 47–49]. This observation led to the
development of FILTLAN, a C/C++ software package which implements the Filtered
Lanczos Procedure with partial reorthgonalization [19] for serial architectures. The
cucheb library featured in this paper, although implemented in CUDA, shares many
similarities with FILTLAN. There are, however, a few notable differences. cucheb

does not implement partial reorthgonalization as is the case in FILTLAN. More-
over, cucheb includes the ability to use block counterparts of the Lanczos method,
and which can be more efficient in the case of multiple or clustered eigenvalues. In
contrast to FILTLAN, which uses a least-squares filter polynomial, cucheb utilizes
Chebyshev-type filters.

4.1. GPU benchmarking. Results are summarized in Table 4.2. Variable ’in-
terval’ for each Hamiltonian was set so that it included roughly the same number
of eigenvalues from the left and right side of the Fermi level, and, in total, it in-
cluded ’eigs’ eigenvalues. For each matrix and interval [α, β] we repeated the same
experiment three times, each time using a different degree m for the filter polyno-
mial. Variable ’iters’ shows the number of FLP iterations, while ’MV’ shows the
total number of Matrix-Vector products (MV) with A, which is computed using the
formula ’MV’=rm× ’iters’. Through this section, the block size of the FLP will be
equal to r = 3. Finally, variables ’time’ and ’residual’ show the total compute time
and maximum relative residual of the computed eigenpairs. The first two rows for
each matrix correspond to executions where the degree m was selected a priori. The
third row corresponds to an execution where the degree was selected automatically
by our implementation, using the mechanism described in (3.1). As expected, us-
ing larger values for m leads to faster convergence in terms of total iterations, since
higher degree filters are better at separating the wanted and unwanted portions of
the spectrum. Although larger degrees lead to less iterations, the amount of work
in each filtered Lanczos iteration is also increases proportionally. This might lead to
an increase of the actual computational time, an effect verified for each one of the
matrices in Table 4.2.

Table 4.3 compares the percentage of total computation time required by the
different subprocesses of the FLP method. We denote the preprocessing time, which
consists solely of approximating the upper and lower bounds of the spectrum for A, by
’PREPROC’. We also denote the total amount of time spent in the full reorthogonal-
ization and the total amount of time spent in performing all MV products of the form
p(A)v on the GPU, by ’ORTH’ and ’MV’ respectively. As we can verify, all matrices
in this experiment devoted less than 10% of the total compute time to estimate the
spectral interval (i.e. the eigenvalues λmin and λmax). For each one of the PARSEC
test matrices, the dominant cost came from the MV products, due to their relatively
large number of non-zero entries. Note that using a higher degree m will shift the cost
more towards the MV products, since the Lanczos procedure will typically converge
in fewer outer steps and thus the orthogonalization cost reduces.

4.2. CPU-GPU comparison. Figure 4.2 shows the speedup of the GPU FLP
implementation over the CPU-based counterpart. The CPU results were obtained by
executing the FILTLAN software package in a purely sequential mode on the Mesabi
linux cluster at University of Minnesota Supercomputing Institute. Mesabi consists of
by 741 nodes of various configurations with a total of 17,784 compute cores provided
by Intel Haswell E5-2680v3 processors. Each node features two sockets, each socket
with six physical cores (12 with hyper-threading), and each core with a clock speed
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Matrix interval eigs m iters MV time residual

50 210 31, 500 44 4.3e−14
Ge87H76 [−0.645,−0.0053] 212 100 180 54, 000 62 6.4e−13

49 210 30, 870 43 2.1e−13
50 210 31, 500 45 3.7e−13

Ge99H100 [−0.650,−0.0096] 250 100 180 54, 000 65 4.0e−12
49 210 30, 870 45 5.1e−13
50 210 31, 500 77 3.2e−13

Si41Ge41H72 [−0.640,−0.0028] 218 100 180 54, 000 112 2.7e−11
61 180 32, 940 76 6.3e−13
50 150 22, 500 55 1.3e−14

Si87H76 [−0.660,−0.3300] 107 100 90 27, 000 56 3.3e−15
98 90 26, 460 55 1.5e−14

300 180 162, 000 386 3.2e−15
Ga41As41H72 [−0.640, 0.0000] 201 400 180 216, 000 506 8.1e−15

308 180 166, 320 396 2.5e−15

Table 4.2

Computing the eigenpairs inside an interval using FLP with various filter polynomial degrees.
Times listed are in seconds.

Matrix m iters PREPROC ORTH MV

50 210 5% 15% 69%
Ge87H76 100 180 3% 8% 82%

49 210 5% 15% 68%
50 210 4% 15% 70%

Ge99H100 100 180 3% 8% 83%
49 210 4% 15% 69%
50 210 7% 14% 70%

Si41Ge41H72 100 180 5% 8% 83%
61 180 7% 11% 75%
50 150 8% 16% 69%

Si87H76 100 90 8% 8% 82%
98 90 8% 8% 81%

300 180 2% 3% 93%
Ga41As41H72 400 180 2% 2% 95%

308 180 2% 3% 93%

Table 4.3

Percentage of total compute time required by various components of the algorithm. For all these
examples the dominant computational cost is the MV multiplication.

of 2.5 GHz. Each node is also equipped with 64 GB of RAM memory.

We have divided the comparison in two parts: a “low degree” situation when
m = 50 (m = 300 for Ga41As41H72), and a “high degree” situation when m = 100
(m = 400 for Ga41As41H72). In both cases, the GPU implementation obtains a
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speedup which ranges between 10 − 40 with a tendency for larger speedups when
larger degrees are used.
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Fig. 4.2. Speedup of the GPU FLP implementation over the CPU (FILTLAN) for the PARSEC
test matrices.

5. Conclusion. In this work we presented a GPU implementation of a Filtered
Lanczos Procedure for solving large and sparse eigenvalue problems such as those
that arise from real-space Density Functional Theory methods in electronic structure
calculations. Our experiments indicate that the use of GPU architectures in the
context of electronic structure calculations can provide a speedup of at least a factor
of 20− 30 over CPU implementations.

Possible future research directions include the utilization of more than one GPUs
to perform the filtered Lanczos procedure in computing environments with access to
multiple GPUs. Each different GPU can then be used to either perform the sparse
Matrix-Vector products and other operations of the FLP in parallel, or compute all
eigenpairs in a sub-interval of the original interval. The implementation proposed
in this paper can be used without any modifications. Another interesting extension
would be to use additional customization and add support for other sparse matrix for-
mats except the CSR format. A dense matrix version of the proposed implementation
would also be of interest for solving sequences of eigenvalue problems as in [8].
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