
A RATIONAL FUNCTION PRECONDITIONER FOR INDEFINITE
SPARSE LINEAR SYSTEMS ∗

YUANZHE XI† AND YOUSEF SAAD†

Abstract. This paper introduces a rational function preconditioner for linear systems with indefinite
sparse matrices A. By resorting to rational functions of A, the algorithm decomposes the spectrum of A
into two disjoint regions and approximates the restriction of A−1 on these regions separately. We show a
systematic way to construct these rational functions so that they can be applied stably and inexpensively. An
attractive feature of the proposed approach is that the construction and application of the preconditioner can
exploit two levels of parallelism. Moreover, the proposed preconditioner can be modified at a negligible cost
into a preconditioner for a near-by matrix of the form A− cI, which can be useful in some applications. The
efficiency and robustness of the proposed preconditioner are demonstrated on a few tests with challenging
model problems, including problems arising from the Helmholtz equation in three dimensions.

Key words. Rational function, incomplete LU, deflation, Cauchy integral, approximate inverse,
Helmholtz equation

AMS subject classifications. 15A06, 65F08, 65F10, 65N22

1. Introduction. In this paper, we consider iterative methods for solving large sparse
linear systems

Ax = b, (1.1)

where A ∈ Cn×n and b ∈ Cn. To solve such systems, Krylov subspace methods precondi-
tioned with a form of incomplete LU (ILU) factorization are often advocated because they
generally achieve a good compromise between efficiency and robustness. However, classical
ILU factorizations become less reliable for indefinite matrices. For example, these methods
often fail for the discretized Helmholtz equation with high frequency in seismic imaging
simulations [23], or for shifted linear systems encountered in the computation of interior
eigenvalue problems [53]. They also generally fail for saddle point matrices such as those
obtained from mixed finite element methods in fluid and solid mechanics [6]. Matrices that
arise from such applications are often highly indefinite and ILU factorizations will either
encounter some small/zero pivots during the factorization process or produce unstable tri-
angular factors [15, 17]. Many attempts have been made in the past to overcome these
difficulties. Among these we cite the work on Multilevel ILUs [5, 12, 40, 51, 55], on inverse
based ILUs [8, 9, 11], on analytic ILUs [24, 25] and the more recent techniques that combine
ILUs with low-rank corrections [35, 63]. The performance of these methods is still often not
satisfactory for highly indefinite matrices.

The modified ILU factorization (MILU) [30, 43] was originally developed as an improved
version of ILU that consisted of lumping all, or only a fraction, of the elements dropped dur-
ing the elimination process and adding them to the diagonal entries of the computed factors
[52]. Later, a diagonal modification idea was developed that consisted of perturbing the
diagonal entries of the original matrix prior to performing the factorization in the numer-
ical solution of Helmholtz problems [10, 21, 39, 41, 47, 60]. For indefinite matrices, these
modified forms of ILU, which perturb the diagonal entries by complex numbers, tend to

∗This work was supported by NSF under grants DMS-1216366 and DMS-1521573 and by the Minnesota
Supercomputing Institute
†Address: Department of Computer Science & Engineering, University of Minnesota, Twin Cities.

{yxi,saad}@cs.umn.edu

1



2 Y. XI AND Y. SAAD

yield much more stable factors 1 than those obtained by simply increasing the accuracy
(allowing more fill-ins) of ILU on the original matrix. Larger perturbations will yield more
stable factors but these factors will likely be poor approximations to the original matrix A
resulting in much slower convergence.

The preconditioner presented in this paper can be viewed as a generalization of the
diagonal perturbation technique just mentioned, which attempts to approximate A−1 by
exploiting rational functions. This preconditioner exhibits improved robustness relative to
existing ILU-type preconditioners. In addition, both the construction and application pro-
cedures can exploit the multilevel parallelism provided by modern computing architectures.
The main contributions of the paper are as follows.

1. General indefinite sparse matrices. Theoretical results regarding diagonal modifica-
tion strategies are often limited to Hermitian matrices and they impose many constraints on
the choice of perturbations. These requirements are dropped in this paper by resorting to a
rational function approximation framework [32, 33]. In a nutshell, if P is the eigenprojector
associated with the eigenvalues of A inside a circle Γ in the complex plane, we decompose
A−1 into the sum of (I−P )A−1 and PA−1 and approximate these two terms separately. We
derive the Cauchy integral representation of (I − P )A−1 and approximate it by numerical
integration into a linear combination of shifted inverses (A − σiI)−1. The contour Γ and
the quadrature rules are selected in a systematic way so that the resulting poles σi improve
the diagonal dominance property of A in order to yield an inexpensive and accurate ILU
factorization for each A − σiI. To approximate PA−1 or its multiplication with a vector,
we propose two schemes for different scenarios. If the number of eigenvalues inside Γ is
not very large, we compute these eigenpairs by a FEAST-like [48] scheme and approximate
PA−1 with the computed spectral information. Otherwise, an inner-outer iteration scheme
is presented to efficiently approximate the matrix-vector product associated with PA−1.
In both cases the ILU factors computed in the rational approximation of (I − P )A−1 are
reused. The derivation of the preconditioner does not rely on any form of symmetry of the
underlying system. However, if A is Hermitian, the cost of constructing and applying the
preconditioner can be reduced by half due to the complex conjugate property of the poles.

2. Multi-level parallelism. The preconditioner proposed in this paper can exploit two
levels of parallelism in both the construction and application phases, making it attractive
for modern high performance computing architectures. Parallelism of the operations across
different poles σi constitutes the first level of parallelism. The other level corresponds to the
use of domain decomposition techniques to parallelize the ILU factorization and subsequent
triangular solves [36] associated with each shifted matrix A− σiI.

3. Updating the preconditioner. In many applications, a sequence of linear systems
whose coefficient matrices differ by a moderate real diagonal shift need to be solved. One
typical example is Helmholtz equations discretized on the same mesh but with respect to
different frequencies in seismic imaging simulations. To obtain a preconditioner for a shifted
matrix A − cI, where c is a small shift, it is not easy to update an ILU factorization that
has been previously computed for A. Often, the only alternative is to recompute a new ILU
factorization for each new matrix and this is costly. In contrast, the cost of updating the
proposed rational function preconditioners for these situations is negligible (it costs O(1)
operations), and this will work provided c is not too large.

The rest of the paper is organized as follows. Section 2 introduces the basic idea of
the rational function preconditioner. A few practical issues are discussed in Section 3 and

1Here we adopt a common abuse of language: if the condition number of the computed ILU factors is
relatively small, we say that these factors are ‘stable’, otherwise, they are ‘unstable’. This terminology was
first introduced by H.C. Elman in [17].



RATIONAL FUNCTION PRECONDITIONER 3

Fig. 2.1. Standard approach to rational function approximations: Cauchy integral approach. Stars
represent eigenvalues and the circle encloses the desired part of the spectrum.

numerical results are presented in Section 4. Finally, concluding remarks are drawn in
Section 5.

2. Rational approximation of A−1. This section describes how to build a rational
function preconditioner that combines ILU factorizations and a form of deflation, which is
based on (2.14).

2.1. Background: Cauchy integral representation of eigenprojectors. The use
of rational functions has been tied to the Cauchy integral representation of the eigenprojector
to compute eigenpairs of matrices. This is represented in the work by Sakurai and co-workers
[56, 57] and by Polizzi in the context of the FEAST package [48]. Given a circle Γ enclosing
a desired part of the spectrum, the eigenprojector associated with the eigenvalues inside the
circle is given by

P =
1

2iπ

∫
Γ

(sI −A)−1ds, (2.1)

where the integration is performed counter-clockwise [53]. See Figure 2.1 for illustration.
If a numerical integration scheme is used, then P will be approximated by a certain

linear operator P̃ that takes the form

P̃ =
1

2

2m∑
k=1

α̃k(A− σ̃kI)−1. (2.2)

This rational function of A is then used instead of A in a Krylov subspace or subspace
iteration algorithm as a filter to compute desired eigenpairs. A few details on this approach
will be provided in Section 2.3.

2.2. Rational approximation of (I − P )A−1. Let P be the eigenprojector defined
in (2.1). Then one can in theory compute Pf(A) for a function f via the formula:

Pf(A) =
1

2iπ

∫
Γ

(sI −A)−1f(s)ds, (2.3)

where the integration is performed counter-clockwise. The condition here is that f has to
be analytic in the region enclosed by Γ. We cannot therefore apply this idea to the function
f(z) = 1/z when Γ encloses the origin which is the situation of interest for preconditioning.

However, since 1/z is analytic outside Γ, it is feasible to calculate A−1 restricted to the
spectrum outside Γ. Without loss of generality, we assume Γ is a circle with center at the



4 Y. XI AND Y. SAAD

origin and radius r to simplify the analysis in this section. More general contour shapes can
be analyzed in a similar way and will be discussed in Section 3. By making the change of
variables t = 1/s in (2.3), we get

(I − P )A−1 =
1

2iπ

∫
Γ
′
−

(
1

t
I −A

)−1

× t× −dt
t2

=
1

2iπ

∫
Γ′

(I − tA)−1dt, (2.4)

where Γ
′

− (resp. Γ
′
) denotes the circle with center at the origin and radius 1/r running

clock-wise (resp. counter-clockwise). Applying a numerical integration scheme, we end up
with the approximation:

(I − P )A−1 ≈ 1

2

2p∑
k=1

αk(I − σkA)−1. (2.5)

Because (I−P ) is singular, this cannot be used as a preconditioner in theory. However,
recall that the above is only an approximation and the right-hand side of (2.5) is unlikely
to be singular. Therefore, we could potentially use it as a preconditioner but our aim is
different.

A few details about the weights αk and poles σk used in (2.5) are now discussed. Sub-
stituting A and I in the right-hand side of (2.4) with a complex variable z and the integer
1, respectively, we obtain the corresponding scalar function

h(z) =
1

2iπ

∫
Γ′

1

(1− tz)
dt. (2.6)

Based on the Cauchy integral formula, we know that

h(z) =

{
0 |z| < r
1/z |z| > r

. (2.7)

Note also that h(z) takes real values when z is real.
We now exploit the change of variables t = eiπx/r to get:

h(z) =
1

2

∫ 1

−1

eiπx/r

(1− zeiπx/r)
dx =

1

2

∫ 1

0

eiπx/r

(1− zeiπx/r)
dx+

1

2

∫ 1

0

e−iπx/r

(1− ze−iπx/r)
dx.

Any quadrature formula ∫ 1

0

g(x)dx ≈
p∑
k=1

ωkg(xk)

can be used and this will lead to

h(z) ≈1

2

p∑
k=1

ωk
eiπxk/r

(1− zeiπxk/r)
+

1

2

p∑
k=1

ωk
e−iπxk/r

(1− ze−iπxk/r)
≡ 1

2

2p∑
k=1

αk
1− zσk

, (2.8)

where we have set for convenience

αk =

{
ωke

iπxk/r k = 1, . . . , p
ωk−pe

−iπxk−p/r k = p+ 1, . . . , 2p
, (2.9)



RATIONAL FUNCTION PRECONDITIONER 5

and

σk =

{
eiπxk/r k = 1, . . . , p
e−iπxk−p/r k = p+ 1, . . . , 2p

. (2.10)

It is easy to see that if no pole is along the real axis, the first p poles would be located in
the upper half circle and related to the remaining ones by

σk = σp+k, k = 1, . . . , p.

A similar relation also holds for the weights αk. As a result, if A is real symmetric or
complex Hermitian, the calculation of (2.5) can be simplified by using only the poles with
positive (or negative) imaginary parts:

1

2

2p∑
k=1

αk(I − σkA)−1 = <e
p∑
k=1

αk(I − σkA)−1 = <e
2p∑

k=p+1

αk(I − σkA)−1. (2.11)

Applying the preconditioner defined by (2.5) (or (2.11)) requires solving linear systems
with the matrix I − σkA. In order to reduce the resulting computational cost, we compute
the ILU factorization

(σ−1
k I −A) ≈ LkUk, (2.12)

and further approximate (I − P )A−1 as

(I − P )A−1 ≈ 1

2

2p∑
k=1

αk
σk
U−1
k L−1

k . (2.13)

The approximation error of the right-hand side of (2.13) is dominated by two factors: (i)
the quadrature rule used and (ii) the accuracy of the computed ILU factorizations.

Considering the second factor, it is known that the accuracy and numerical stability of
ILU factorizations depend on the diagonal dominance of the matrix [15, 50, 52]. Thus, for a
more diagonally dominant matrix, an ILU factorization with the same threshold may drop
more fill-ins and still produce an effective preconditioner. Diagonal dominance of matrices
of the form A − σ−1

k I is highly affected by the location of the poles σ−1
k . In particular, it

was shown in [47] that adding a purely imaginary part to a given real shift, will usually
yield a better ILU factorization. As the shift σ−1

k moves farther away from the real axis, the
quality of the preconditioner starts to deteriorate since the ILU factorization of A − σ−1

k I
approximates a matrix that is no longer close to A. One of the goals of the paper [47] is
to devise heuristic compromises to optimize the selection of the shift. Note that the idea of
using complex shifts has been exploited in many different ways before they were adapted to
ILU factorizations, see, for example [21, 22, 27, 42].

With this in mind, we compare the location of the poles obtained from using the Gauss-
Legendre rule, the Gauss-Chebyshev rule of the first kind, and the standard mid-point rule
in Figure 2.2. We set r in (2.10) to 1 so that all the poles are on the unit circle. Detailed
formulas for (αk, xk) associated with these rules can be found in Appendix A. Figure 2.2
shows that the poles for the mid-point rule have larger imaginary parts than those of the
Gauss rules. The mid-point rule does not do a particularly good job at approximating
integrals when compared to a Gaussian quadrature rule, but it can lead to more stable ILU
factorizations and this is crucial to the overall performance of the preconditioner. The other
observation that can be made is that the poles tend to concentrate near the real axis as the



6 Y. XI AND Y. SAAD

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Number of poles = 8

Legendre
Cheb−1
Mid−pt

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Number of poles = 12

Legendre
Cheb−1
Mid−pt

Fig. 2.2. The location of the poles for the Gauss-Legendre rule, the Gauss-Chebyshev rule of the first
kind, and the mid-point rule using 2p poles to approximate h(z) in (2.6) with the radius r being set to 1.
Left: p = 4, right: p = 6.

number of poles increases. This suggests that it may be preferable to avoid using a large
number of poles in this case.

Consider now the approximation error related to numerical quadrature by the mid-point
rule. We plot the resulting approximations of h(z) in Figure 2.3 by varying the number of
poles used. The range of the variable z is inside the interval [0, 8] so that h(z) takes real
values. Figure 2.3 indicates that using a relatively small number of poles, e.g., 4 poles on

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 pole

2 poles

4 poles

8 poles

Exact 1/ x

Fig. 2.3. Comparison of the numerical approximations of h(z) in (2.6) and 1/z on the interval [1, 8].
The radius r is set to 1 and the mid-point rule is used with p poles on the upper half plane, where p = 1, 2, 4, 8.

the upper half plane, can still lead to a reasonable approximation of 1/z outside the circle
Γ. Thus, the mid-point rule may achieve a good balance between a stable ILU factorization



RATIONAL FUNCTION PRECONDITIONER 7

and an accurate approximation of h(z). As a result, we will often adopt the 8-pole mid-point
rule in the construction of the preconditioner.

2.3. Approximation of PA−1. In practice a preconditioner based on an approxi-
mation of (I − P )A−1 will perform poorly. Indeed, (I − P )A−1 approximates a singular
operator even though its approximation obtained from quadrature may be nonsingular. A
second issue is that the preconditioner aims at resolving eigen-components related to eigen-
values outside the circle Γ and leaving those inside Γ untouched. However, there may be
a large number of eigenvalues inside Γ and the related components must also be reduced.
This section explores remedies for this problem.

From (2.13) we have

A−1 = (I − P )A−1 + PA−1 ≈ 1

2

2p∑
k=1

αk
σk
U−1
k L−1

k + PA−1. (2.14)

If we have an orthogonal basis Q of the invariant subspace associated with the enclosed
eigenvalues, we can approximate PA−1 by QC−1QH where C = QHAQ and obtain an
approximate inverse of A. The invariant subspace can be readily computed by a FEAST-
like procedure [34, 48].

The basic idea of the FEAST algorithm [48] is to apply subspace iteration to an approx-
imate eigenprojector P̃ as defined in (2.2) to accelerate the convergence of the eigenpairs
enclosed by Γ. In the original FEAST derivation [48, 59], P̃ was obtained via a quadrature
approximation of an indicator function p(z) represented by:

p(z) =
1

2iπ

∫
Γ

1

s− z
ds.

Based on the Cauchy integral formula, we know that

p(z) =

{
1 |z| < r
0 |z| > r

.

If a quadrature rule with 2m poles is used, we would get

p(z) ≈ 1

2

2m∑
k=1

α̃k
z − σ̃k

, (2.15)

where α̃k and σ̃k are defined in a similar way to (2.9)–(2.10) with r and p replaced by 1/r
and m, respectively. Accordingly, P̃ will take the following form

P̃ =
1

2

2m∑
k=1

α̃k(A− σ̃kI)−1. (2.16)

This P̃ will map all the eigenvalues of A enclosed by Γ close to 1 and the rest close to 0.
There has been several recent improvements made to the original FEAST algorithm. For

example, for Hermitian problems, the Zolotarev rational function approximation approach
was developed in [31] to yield the sharpest possible decrease from the plateau of one inside
the target interval to zero outside. This leads to a faster convergence rate for the subspace
iteration algorithm on which FEAST is based but one should note that the filter is mostly
geared towards situations when direct methods are used to solve the shifted linear systems.
Indeed, it was observed that these poles tended to concentrate near the real axis, rendering



8 Y. XI AND Y. SAAD

iterative solution techniques slow or ineffective. In another example, the paper [64] argued
that how well the step function is approximated is unimportant for the convergence and
advocated a least-squares (LS) approximation approach to obtain rational functions that
achieve a good balance between the quality of the approximation and the efficiency of the
linear system solution by iterative methods. Several rational functions are plotted in Figure
2.4 as an illustration.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

0

1

2

3

4

5

6

7

LS
Mid−pt
Gauss

Fig. 2.4. Comparison of a standard rational function based on the Cauchy integral using the mid-point
rule with 4 poles on the upper half plane (dashed line), a least-squares (LS) rational function (solid line)
using the same poles, and a standard Cauchy integral using Gaussian quadrature with 4 poles ( dash-dotted
line) on the reference interval [−1, 1].

Figure 2.4 indicates that the Cauchy-Gauss based rational function (dash-dotted line)
yields a better approximation to the indicator function p(z) than the mid-point based ratio-
nal function (dashed line) when both of them use 4 poles on the upper half plane. Although
the LS rational function (solid line) based on the same poles as the mid-point rational func-
tion does not approximate 1 as well as the other two inside [−1, 1], it yields the sharpest
decrease at the boundaries, -1 and 1, and thus is likely to lead to the fastest convergence for
subspace iteration [64]. This suggests that a good strategy to build the filter, is to combine
the σ̃k from the mid-point rule and the α̃k from the LS approach.

Once poles and weights are specified, the FEAST algorithm amounts to applying sub-
space iteration in conjunction with a Rayleigh-Ritz procedure to P̃ . This is summarized in
Algorithm 1.

The most expensive operation in Algorithm 1 is the solution of 2m linear systems in
Lines 4–6. Next, we will show that it is possible to reuse the ILU factorizations computed
in (2.12) to solve these linear systems if σ̃k is chosen in an appropriate way.

Taking the reciprocal of σk in (2.10) leads to

σ−1
k =

{
re−iπxk k = 1, . . . , p
reiπxk−p k = p+ 1, . . . , 2p

. (2.17)

This shows that if the same number of poles and the same quadrature rule are applied in
(2.2) and (2.5), the following relation will hold:

σ̃k =

{
σ−1
k+p k = 1, . . . , p

σ−1
k−p k = p+ 1, . . . , 2p

. (2.18)



RATIONAL FUNCTION PRECONDITIONER 9

1: Input: a block Q ∈ Cn×s of initial eigenvector approximations
2: Its := 0, U := [ ],
3: while Its ≤MaxIts do
4: for k = 1, . . . , 2m do
5: Compute U := U + α̃k(σ̃kI −A)−1Q
6: end for
7: Orthonormalize the columns of U
8: Compute Θ = UHAU
9: Compute the Schur decomposition Θ = V CV H

10: Update Q = UV
11: Set Its := Its+ 1
12: end while

Algorithm 1
A FEAST-like Filtered Subspace Iteration.

Therefore, we obtain

(σ̃kI −A) ≈
{
Lk+pUk+p k = 1, . . . , p
Lk−pUk−p k = p+ 1, . . . , 2p

. (2.19)

As a consequence, we can reuse the ILU factorizations computed for (σ−1
k I − A) in a

number of ways. For example, if the ILU factors have been computed with enough accuracy,
the linear systems in Steps 4-6 in Algorithm 1 can be directly solved with a forward and a
backward substitution. Otherwise, the factors can serve as preconditioners for an iterative
scheme for solving the same systems. Moreover, similar to (2.11), if A is Hermitian, Steps
4-6 in Algorithm 1 can be simplified by performing only the first m steps of the for loop.

3. Practical issues. This section discusses a few techniques to improve the perfor-
mance of the preconditioner proposed in the previous section.

3.1. Shifting the center. We first consider an artifice to improve diagonal dominance
of each shifted matrix by moving the center of Γ away from the origin. Note that the Cauchy
integral representation (2.4) of (I − P )A−1, and its approximation (2.5), are still valid as
long as Γ encloses the origin.

We may assume without loss of generality that most of the eigenvalues of A lie on the
right side of the complex plane. We would like to move the circle to the left so that it contains
fewer eigenvalues with positive real parts. If the matrix is Hermitian, (I−P )A−1 would have
no negative eigenvalues when the circle is large enough and this operation would be somewhat
equivalent to solving the linear system without the presence of negative eigenvalues. As a
rule, we will move the center of the circle horizontally to the left in such a way that the
rightmost quadrature pole will lie on the imaginary axis. For example, since the 8-pole mid-
point rule shown in Figure (2.2) has its rightmost poles located at (0.9239,±0.3827), the
whole circle is then shifted to the left by 0.9239. Figure 3.1 illustrates this.

We now need to derive the Cauchy integral representation of (I − P )A−1 for a circle
that is centered at c 6= 0, i.e., for Γ = {z : |z − c| = r } with |c| < r. Making the change of
variables t = 1

z−c , any point z outside Γ corresponds to a point t with |t| < 1/r. Therefore:

(I − P )A−1 =
1

2iπ

∫
Γ
′
−

((
1

t
+ c

)
I −A

)−1

× t

1 + tc
× −dt

t2

=
1

2iπ

∫
Γ′

((
1

t
+ c

)
I −A

)−1

× 1

t+ t2c
dt,



10 Y. XI AND Y. SAAD

−2 −1.5 −1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

(0,0)(−0.9239,0)

Fig. 3.1. Shifting the center of Γ in Figure 2.2 from (0, 0) to (−0.9239, 0) such that all the quadrature
poles (diamonds) for the mid-point rule have non-positive real parts.

where Γ
′

− (resp. Γ
′
) denotes the circle with center at the origin and radius 1/r running

clock-wise (resp. counter-clockwise). The change of variables t = eiπx/r results in:

(I − P )A−1 =
1

2

∫ 1

−1

((re−iπx + c)I −A)−1 × 1

eiπx/r + ce2iπx/r2
eiπx/rdx.

When approximating the above integral with a standard quadrature rule, we obtain the
following:

(I − P )A−1 ≈1

2

2p∑
k=1

αk
σk + cσ2

k

× ((σ−1
k + c)I −A)−1. (3.1)

Accordingly, the approximation of the eigenprojector P associated with the eigenvalues
inside Γ is now given by:

P ≈ 1

2

2p∑
k=1

α̃k(A− (σ̃k + c)I)−1. (3.2)

Here, αk, σk, α̃k and σ̃k are defined in the same way as in (2.9), (2.10) and (2.15), respec-
tively. Moreover, it is easy to see that the following relation holds:

A− (σ̃k + c)I =

{
A− (σ−1

k+p + c)I k = 1, . . . , p

A− (σ−1
k−p + c)I k = p+ 1, . . . , 2p

. (3.3)

This means that the approximations of (I − P )A−1 in (3.1) and P in (3.2) can still share
the ILU factorizations as was the case when c = (0, 0). The construction of the rational
function preconditioner is summarized in Algorithm 2.

We note that the loop starting in Line 4 of the algorithm can be performed in parallel.
The ILU factorization of each A − (σ−1

k + c)I is computed in Line 5. The algorithm then
calculates two scalars ak and bk in Lines 6-7, which correspond to the coefficients in front
of (A − (σ−1

k + c)I)−1 in (3.1) and (3.2), respectively. If A is Hermitian, half of the ILU
factorizations are needed and the k loop will stop after p iterations.



RATIONAL FUNCTION PRECONDITIONER 11

1: Input: radius r of Γ, number of quadrature poles 2p
2: Output: ILU factors {Lk, Uk}, two vectors a, b
3: Compute αk, σk via (2.9)-(2.10) and center c
4: for k = 1, . . . , 2p do
5: Compute A− (σ−1

k + c)I ≈ LkUk via ILU factorization
6: Compute ak = −αk/(2σk + 2cσ2

k)
7: Compute bk = αkr

2/2
8: end for

Algorithm 2
Construction of the rational function preconditioner M−1.

3.2. Avoiding forming the basis of the invariant subspace explicitly. One issue
with the procedure described in Section 2.3 is that we may have many eigenvalues inside
Γ and deflating them would require computing and storing a large orthonormal basis of
the related invariant subspace. Since the application of the preconditioner in (2.14) essen-
tially only requires the evaluation of matrix-vector products of the form PA−1v, the second
improvement to our proposed scheme is to directly approximate PA−1v rather than PA−1.

The first observation is that P and A−1 commute, i.e., PA−1 = A−1P . This implies
PA−1v = A−1Pv in theory, i.e., when the projector P is exact. If we denote A−1Pv by
z, then an approximation of z can be computed by applying a residual-minimizing Krylov
subspace method to solve the problem

min
z
‖Pv −Az‖2. (3.4)

In an actual implementation, P in (3.4) is replaced by its approximation P̃ in (3.2) and
GMRES [54] is called to solve for z. Since the exact solution z is in the range of P , we seek
an approximate solution of the form z = P̃ y, i.e., we solve

AP̃y = P̃ v, z = P̃ y. (3.5)

This essentially amounts to using P̃ as a right preconditioner to solve Az = P̃ v by GMRES.
The advantage of this approach is that the spectrum of AP̃ is more clustered than that of
A, and this is favorable to a Krylov subspace method such as GMRES.

The application of the rational function preconditioner M−1 to a vector v is summarized
in Algorithm 3. Note that the loop starting in line 3, can be trivially parallelized.

1: Input: z(1) := 0, z(2) := 0, g := 0, v, a, b and {Lk, Uk}
2: Output: z
3: for k = 1, . . . , 2p do
4: Compute g ≈ (A− (σ−1

k + c)I)−1v
5: Update z(1) := z(1) + akg
6: Update z(2) := z(2) + bkg
7: end for
8: Apply m steps of GMRES without restart to solve Az(3) = z(2) via (3.5)
9: Compute z = z(1) + z(3)

Algorithm 3
Application of the rational function preconditioner M−1 to a vector v.

We would like to comment on Line 4 of the above algorithm. As discussed at the end of
Section 3.1, Lk, Uk computed in Line 5 of Algorithm 2 can be used in two different ways to



12 Y. XI AND Y. SAAD

solve (A−(σ−1
k +c)I)x = v. When the accuracy of the ILU factorization is high, U−1

k (L−1
k v)

will immediately yield a good approximate solution. Otherwise, Lk and Uk can be used as
preconditioners for GMRES to solve this linear system. The same comment can be made
for the case when applying P̃ as the right preconditioner in Line 8. We will compare these
two approaches in Section 4 with a few numerical examples.

3.3. Exploiting information from inner iterations. Since the application of the
preconditioner involves the use of GMRES in Step 8 of Algorithm 3, this rational function
preconditioner belongs to the class of flexible inner-outer Krylov methods [3, 29, 46, 49,
58, 61]. An appealing feature of these methods is that some approximate eigenvectors can
be estimated from inner iterations and then used to accelerate the convergence of outer
GMRES iterations.

Suppose the FGMRES framework [49] is exploited in both the inner and outer iterations.
Then the outer iteration will generate one basis Vm ≡ {v1, v2, . . . , vm} of the Krylov subspace
Km(A, r0) with r0 = b − Ax0 and the other basis Zm ≡ {z1, z2, . . . , zm} of the solution
subspace, which satisfy the following relation:

AZm = Vm+1H̄m,

where H̄m is upper Hessenberg of size (m + 1)×m. An approximate solution xm is of the
form

xm = x0 + Zmym,

where ym is the minimizer of

min
y∈Cm

‖b−AZmy‖2 = min
y∈Cm

‖Vm+1(βe1 − H̄my)‖2 = min
y∈Cm

‖βe1 − H̄my‖2,

and e1 is the first canonical basis vector. At each outer iteration i, FGMRES is invoked to
compute zi = M−1vi, which corresponds to Line 8 of Algorithm 3 with z(2) instantiated as
P̃ vi:

Az(3) = P̃ vi. (3.6)

One way to speed up the convergence of subsequent inner FGMRES is to resort to
deflation. This technique has been well studied in the literature [4, 13, 16, 20, 28, 44, 45]. In
this paper, we follow the method proposed by Morgan [44] to augment the Krylov subspace
with approximate eigenvectors u1, u2, . . . , up, so that the solution xm belongs to

x0 + span{r0, AP̃ r0, . . . , (AP̃ )m−p−1r0, u1, u2, . . . , up}.

The modification of Morgan’s algorithm to allow for right preconditioning is given in [13].
For the sake of completeness, we summarize it in Algorithm 4.

Note that eigenvectors are computed in Step 12 of Algorithm 4. In the first outer
iteration, no eigenvectors are available and p is set to p = 0. In subsequent iterations,
we can compute the p smallest eigenpairs2 (θi, gi) of the following generalized eigenvalue
problem [13]

H̄T
mH̄mg = θH̄T

mV
T
m+1Wmg,

2Here we adopt a common abuse of language: the smallest eigenpairs are the eigenpairs associated with
the smallest eigenvalues.



RATIONAL FUNCTION PRECONDITIONER 13

1: Compute r0 = b, β = ||r0||2 and v1 = r0/β
2: for j = 1, . . . ,m do

3: Set wj =

{
vj k = 1, . . . ,m− p
uj−m+p k = m− p+ 1, . . . ,m

4: Compute z := AP̃wj

5: For i = 1, . . . , j, do

{
hi,j = (z, vi)
z := z − hi,jvi

6: Compute hj+1,j = ||z||2 and vj+1 = z/hj+1,j

7: end for
8: Define Vm+1 := [v1, . . . , vm+1], Wm = [w1, . . . , wm]
9: Compute xm = x0 + P̃Wmym, where ym = arg miny ||βe1 − H̄my||2

10: If satisfied stop
11: x0 ← xm
12: Compute p eigenvectors u1, . . . , up of AP̃ , and go to 1

Algorithm 4
Right preconditioned FGMRES with deflation.

and set ui = Wmgi. These uis are called Harmonic Ritz vectors. As an alternative, one can
compute the p eigenpairs (θi, yi) of largest magnitude of the problem:

Hmy = θV TmWmy,

and set ui = Wmyi, where Hm is the Hessenberg matrix obtained from H̄m by removing
its last row. These uis are called Ritz vectors. Comparisons between these two schemes are
provided in Section 4.

3.4. Solving slightly shifted systems. Another appealing property of the proposed
rational function preconditioner is that it is possible to modify a preconditioner that has
been computed for A, into a preconditioner for A− c1I where c1 satisfies certain conditions.
Furthermore, this modification entails essentially no additional computational cost.

The main idea behind this technique is based on the fact that the circle Γ(c, r) with
center c and radius r can actually be shifted ‘by a different amount’, to Γ(c− c1, r) for the
new problem. As can be readily observed, the factorizations for A using the circle Γ(c, r)
and those for A− c1I using the circle Γ(c− c1, r) are identical. This is because

(A− c1I)− (σ−1
k + (c− c1))I = A− (σ−1

k + c)I.

Looking at Algorithm 2, we immediately see that if we apply it to the matrix A− c1I with
a circle Γ(c− c1, r), then indeed the Lk, Uk factors are identical as observed above, and that
the only change is in computing the scalars ak in Line 6. The cost for computing these new
values of ak is negligible. The only condition required to be able to use this technique is
that the new circle should still enclose the origin. If c1 is real this means that |c− c1| should
be less than r.

The above discussion can be easily generalized to the case when there are s linear systems
with coefficient matrices A− ciI, where the real shifts ci are ordered in descending order:

c1 < c2 < · · · < cs.

One can start by constructing a preconditioner for a reference starting matrix A− ctI with
1 ≤ t ≤ s using a circle Γ(c, r) and then update the preconditioners for the remaining s− 1



14 Y. XI AND Y. SAAD

linear systems as outlined above. Indeed, for a given matrix A − cjI we write A − cjI =
(A − ctI) − (cj − ct)I and so c1 in the above discussion is replaced by cj − ct. Note that
depending on the location of cj relative to ct, the circle will move to the right or the left
and that the approach is valid for the j-th system as long as |c− (cj − ct)| < r.

4. Numerical examples. This section presents some numerical results to illustrate
the performance of the rational function preconditioner. All algorithms were implemented
in MATLAB and the tests were performed on a Linux cluster with 252 GB of memory.
The ILU factorization was computed by the MATLAB bulit-in function ILUTP with a fixed
threshold of 10−3. The following notation is used throughout this section:

• fill: ratio of the number of non-zeros in the preconditioner over the number of
non-zeros in the original matrix;

• p-t: wall clock time to build the preconditioner in seconds;
• its: number of iterations to reduce the initial residual by a desired factor;
• i-t: wall clock time in the iteration phase.

4.1. 3D shifted Laplacian. We begin our tests with the following model problem

−∆u− ηu = f in Ω,

u = 0 on ∂Ω, (4.1)

where the PDEs are defined over Ω = (0, 1)
3

with the zero Dirichlet boundary conditions.
When these PDEs are discretized by the 7-point stencil, the eigenvalues and eigenvectors of
the resulting matrices can be determined explicitly [52].

4.1.1. Effect of the radius of Γ on preconditioning. We first study the effect of
the radius of Γ on preconditioning. The test problem was obtained by discretizing (4.1)
with η = 640 on a 403 grid. The resulting matrix has 232 negative eigenvalues. The matrix
entries were scaled by 1/402 and reordered by the approximate minimum degree (AMD)
ordering [1, 2] to reduce the fill-ins during the factorization. The number of poles used in
the rational function preconditioner was fixed at 8 and FGMRES(40) without restart was
applied in the inner solves. Notice that since the test matrix is real symmetric, only those
4 poles in either half plane are needed in the actual computation. The outer FGMRES(40)
iteration stopped when the relative residual norm was reduced by a factor of 105.

We then varied the radius of Γ and compared the iteration counts and the corresponding
fill factors to solve the above linear system. Based on the discussion in the previous sections,
we know that the preconditioning effect depends on two factors: 1) the accuracy of the
approximation P̃ to the exact eigenprojector P ; 2) the accuracy in the numerical solution
of linear systems associated with AP̃ in the inner iterations. Let us first assume P̃ is an
accurate approximation and study the second factor. This can be achieved by computing
exact L,U factors in the factorizations to avoid inaccuracy from ILUs. In general, a larger
radius will enclose more eigenvalues inside Γ and therefore this will make AP̃ harder to solve
by GMRES. This is confirmed by the data in the second and third columns of Table 4.1.
As can be seen, when r increases from 0.25 to 64, more eigenvalues fall inside Γ and, as
expected, the iteration count increases from 2 to 13. This implies that a smaller radius leads
to faster convergence of GMRES iterations when P̃ is a reasonable approximation to P .

Next we replaced the exact L,U factors with an ILUTP factorization and reran the
experiments. The vector g in Line 4 of Algorithm 3 was computed by U−1

k (L−1
k v). The

corresponding iteration counts are tabulated in the fourth column of Table 4.1. It is observed
that the iteration count does not increase monotonically as in the exact LU case. It first



RATIONAL FUNCTION PRECONDITIONER 15

decreases from 62 to 7 when the radius increases from 0.25 to 16 and then increases to 13
as the radius reaches 64. One possible explanation for this comes from the less stable ILU
factorizations of the shifted matrices. Once the quadrature rule is fixed, the approximation
accuracy of P̃ only depends on the accuracy of the ILU approximation to each shifted matrix.
Since the test matrix is highly indefinite, a smaller radius will yield less stable ILUs, resulting
in a larger error in the approximation to P . We also find that when the radius becomes
larger than 16, the iteration counts remain the same whether an ILU or the exact LU are
used. Indeed, in this case the ILU factorizations are almost as accurate as the exact LU due
to the larger radii used.

Finally, the last column of Table 4.1 shows that the fill factor from the rational function
preconditioner decreases monotonically from 39.66 to 5.82 as the radius increases. Compared
with the fill factor of 92.93 from an exact LU factorization of the test matrix, the rational
function preconditioner requires much less memory to solve the problem. In summary, the
results in Table 4.1 suggest that a relatively large radius is preferable for a better performance
of the rational function preconditioner when Lk, Uk are used to compute g directly. For
example, the use of a radius of 16 results in the second smallest iteration count with the
fill factor 9.78 in Table 4.1. When solving large indefinite linear systems, a heuristic rule of
thumb is to select the radius by aiming to reach a fill factor of around 10.

radius # of eigs. inside Γ
LU ILU
its its fill

0.25 241 2 62 39.66
1 302 2 10 23.35
2 386 3 9 17.83
4 585 4 9 13.80
8 1063 6 7 11.84
16 2400 7 8 9.78
32 6547 11 11 6.64
64 25230 13 13 5.82

Table 4.1
Effects of the radius of Γ on preconditioning the 403 shifted Laplacian matrix. This test matrix has

232 negative eigenvalues. Both exact LU and ILUTP with threshold 10−3 are applied to compute Lk, Uk in
Line 5 of Algorithm 2 and g in Line 4 of Algorithm 3 is computed by U−1

k (L−1
k v). The outer FGMRES

stops when the relative residual norm is reduced by a factor of 105.

Next we computed g in Line 4 of Algorithm 3 by another approach. We utilized a larger
threshold of 0.05 in the ILU factorization in Step 5 of Algorithm 2 and tested three radii: 1,
2 and 4. The computed factors were combined with GMRES(5) and GMRES(10) without
restart to solve the linear systems in Lines 4 and 8 of Algorithm 2. As can be seen from
Table 4.2, the fill factors are reduced to around 5.4 and the outer iteration counts are much
smaller compared with the cases in Table 4.1 when ILU factors are used to solve shifted
linear systems directly.

As a comparison, we also applied the standard ILUTP preconditioner to solve the same
test problem. Figure 4.1 shows the convergence profiles for standard ILUTP preconditioned
GMRES(40) with three different thresholds (0.004, 0.005 and 0.006). As shown in the
figure, even when the fill factor reaches 20.09, the ILUTP-preconditioned GMRES(40) still
fails to converge to the desired tolerance. In particular, the three preconditioned methods
all stagnated after 50 iterations and the residuals were reduced by a factor of less than 102

even after 400 iterations. The condition numbers of the L and U factors, as estimated by
MATLAB’S condest function, were cond(L) = 1.00 × 1010 and cond(U) = 2.68 × 105 for



16 Y. XI AND Y. SAAD

radius fill GMRES(5) GMRES(10)
1 5.40 11 3
2 5.38 6 3
4 5.37 5 4

Table 4.2
Effects of using Lk, Uk as preconditioners for GMRES(m) to solve linear systems associated with shifted

linear systems in Lines 4 and 8 of Algorithm 3. The ILUTP threshold is set to 0.05 and the outer FGMRES
stops when the relative residual norm is reduced by a factor of 105.

the case when the threshold is 0.004.

0 20 40 60 80 100 120 140 160 180 200
10

1

10
2

10
3

10
4

Iteration

R
e

s
id

u
a

l 
n

o
rm

 

 

0.004

0.005

0.006

fill=20.09

fill=14.91

fill=10.96

Fig. 4.1. Convergence of standard ILUTP-preconditioned GMRES(40) with different thresholds (0.004,
0.005 and 0.006) on the 403 shifted Laplacian test problem in Section 5.1.1.

Additional tests were performed for this problem with the shifted ILU preconditioner.
Three preconditioners were constructed by applying ILUTP with the threshold 0.004 to
factorize A + sI for s = 0.2i, 0.5i and 1.0i. As shown in Figure 4.2, shifted ILUTP-
preconditioned GMRES(40) only converges to the desired accuracy for s = 0.2i in the
first 200 iterations. The convergence profiles shown in this figure illustrate the well-known
drawback of this approach, which has to do with the selection of s. A large s improves
the numerical stability of the factorization and at the same time it leads to less fill-ins in
the computed factors. However, the resulting factorization is a less effective preconditioner
because it approximates a matrix that is far away from the original matrix. Another issue
with this approach is the loss of self-adjointness since the matrix A − sI is not Hermitian
even when A is.

4.1.2. Effects of inner solves and deflation. We next fixed the radius in the con-
struction of the preconditioner to 16 and varied the dimension of the inner FGMRES algo-
rithm to solve the same test problem as the one of the previous section.

Table 4.3 shows that the outer iteration count decreases from 43 to 5 as the dimension
increases. However, a larger Krylov subspace dimension takes more time for each outer
iteration and the least iteration time is achieved when FGMRES(30) is used as the inner
solver.

Next we tested the two deflation schemes discussed in Section 3.3 on the same problem.
At the kth outer iteration, we injected k−1 Harmonic or Ritz vectors in the Krylov subspace



RATIONAL FUNCTION PRECONDITIONER 17

0 20 40 60 80 100 120 140 160 180 20010−2

10−1

100

101

102

103

104

Iteration

R
es

id
ua

l n
or

m

0.2i
0.5i
1.0i

fill=5.44

fill=4.60 fill=4.00

Fig. 4.2. Convergence of modified ILUTP-preconditioned GMRES(40) with different diagonal shifts
(0.2i, 0.5i and 1.0i) on the 403 shifted Laplacian test problem in Section 5.1.1. The threshold used in
ILUTP factorizations is 0.004.

m 10 15 20 25 30 35 40 45 50 55 60
its 43 30 16 13 9 8 8 7 7 6 5
i-t 15.02 15.56 11.43 11.89 10.14 10.93 12.89 13.11 14.68 14.50 13.55

Table 4.3
Iteration counts and time when FGMRES(m) is used in inner solves.

generated by the inner FGMRES(m) algorithm. In order to avoid increasing the Krylov
subspace dimension, we kept the dimension of the augmented subspace constant and equal
to m. It was found that a better performance was obtained when Ritz vectors were used, in
contrast to cases reported in [13, 44].

m
Harmonic Ritz

its i-t its i-t
40 7 12.39 7 12.29
50 6 14.03 5 11.85
60 6 17.09 5 14.30

Table 4.4
Effects of using deflation in the inner iteration. The number of vectors injected into the Krylov subspace

at the kth inner solve is k − 1 and the dimension of the augmented subspace is fixed at m.

4.2. 3D Helmholtz problem. The second test problem is the Helmholtz equation of
the following form: (

−∆− ω2

c(x)2

)
u(x, ω) = s(x, ω), (4.2)

where ∆ is the Laplacian, ω is the angular frequency, c(x) is the seismic velocity field, and
u(x, ω) is the time-harmonic wavefield solution to the forcing term s(x, ω). The domain of
interest is the unit cube D = (0, 1)3. We assume that the mean of c(x) is equal to 1. The



18 Y. XI AND Y. SAAD

zero Dirichlet boundary condition was applied to one side and the Perfectly Matched Layer
(PML) boundary condition [7, 14] was applied to the rest. We kept 8 points per wavelength
when discretizing (4.2) by the 7-point stencil on N×N×N grids. Due to the PML boundary
condition, the discretized matrices were complex non-Hermitian. The forcing term s was
generated by a Gaussian point source centered at (1/2, 1/2, 1/2). The resulting discretized
linear system and right hand side were scaled by h2, where h is the grid space.

Since 3-digit accuracy is often sufficient in geophysics applications [18, 19, 37, 38, 62],
we stopped the outer GMRES when the relative residual norm was reduced by a factor of
103. We used GMRES(35) without restart in the inner iteration and chose the radius of the
circle Γ to be r = 30. The ILU factors were directly used to solve linear systems in Lines
4 and 8 of Algorithm 3. The number of poles used was fixed at 8. The ILU factorization
of the 8 shifted matrices were parallelized by calling the MATLAB function parfor. The
application of the preconditioner was performed in a serial fashion since the overhead of the
parfor function is very costly in this case.

To show the scalability of the preconditioner, we tested the preconditioner on four
problems discretized on grids with N = 25, 26, 27, 28. The matrices were reordered by the
nested dissection (ND) ordering [26]. The level of the ND tree started with 9 when N = 25

and was increased by 3 when N doubled each time. The computational results are reported
in Table 4.5.

n = N3 ω/(2π) lev fill p-t i-t its
323 4 9 8.84 0.55 2.67 2
643 8 12 10.89 4.63 22.04 2
1283 16 15 11.25 43.27 209.41 2
2563 32 18 11.67 428.77 2059.10 2

Table 4.5
Numerical experiments for solving (4.2) on N × N × N grids. The matrices are reordered by ND

ordering with lev levels in the ND tree. GMRES(35) without restart is used in inner solves. The radius of
the circle Γ is chosen as 30 and the number of poles is fixed at 8.

We first observe that the fill factor grows slowly to 11.67 as the problem size increases.
Moreover, the construction time scales as O(n log n). The iteration number remains constant
in these tests and the iteration time seems to scale like O(n log n) as well. These scaling
results can be visualized in Figure 4.3 where a comparison with the curve n log n is provided.

10
5

10
6

10
7

10
0

10
2

n

T
im

e
 (

s
)

 

 

Construction
O(nlog n) ref line

10
5

10
6

10
7

10
0

10
2

n

T
im

e
 (

s
)

 

 

Iteration
O(nlog n) ref line

Fig. 4.3. Time scaling results for the Helmholtz test problem in Table 4.5, comparing with the reference
scaling of n logn, where n is the test matrix size. Left: Construction time, right: Iteration time.



RATIONAL FUNCTION PRECONDITIONER 19

Table 4.6
The fill factors of ILU factorizations of 8

shifted matrices as well as corresponding poles in
the computation of the 1283 Helmboltz problem in
Table 4.5.

label pole nnz(Li + Ui)/nnz(A)

1 −00.00 + 11.48i 2.18

2 −16.24 + 27.72i 1.14

3 −39.20 + 27.71i 1.14

4 −55.43 + 11.48i 1.14

5 −00.00− 11.48i 2.21

6 −16.24− 27.72i 1.14

7 −39.20− 27.71i 1.14

8 −55.43− 11.48i 1.14

−60 −50 −40 −30 −20 −10 0 10
−30

−20

−10

0

10

2       0

30

2

7 6

3

5

1

8

4

Fig. 4.4. Illustration of the location of poles.

We also reported the fill factor associated with each shifted matrix as well as the pole
location in Table 4.6. It can be seen that the two shifted matrices with poles on the y-axis
have denser factors than the remaining six matrices. Since the fill factor of each shifted
matrices remains relatively small, the backward/forward triangular solves associated with
them are as efficient as sparse matrix-vector products. The location of the poles are further
illustrated in Figure 4.4.

5. Conclusion. This paper discussed a rational function preconditioner for indefinite
sparse matrices, based on decomposing the inverse of the original matrix into two parts and
approximating each part with rational functions of A that in turn exploit ILU factorizations.
The numerical experiments show that for the same given fill factor, this preconditioner is far
more robust than preconditioners based on ILU factorizations when solving linear systems
with highly indefinite coefficient matrices. In an inner-outer scheme based on using a Krylov
subspace method, it is observed that the number of outer GMRES steps achieved with this
preconditioner is small and independent of the problem size and frequency for 3D Helmholtz
equations discretized on regular grids. More work remains to be done to further improve the
efficiency and robustness of the algorithm. For example, we plan on constructing a second
level preconditioner to precondition AP̃ to reduce the inner iteration costs. We also plan to
take full advantage of the two levels of parallelism of this preconditioner by implementing it
on high performance computers. Finally, we would like to adapt this preconditioner to the
solution of other types of indefinite problems such as those related to saddle point problems.

Acknowledgments. We would like to thank anonymous referees for their useful sug-
gestions which led to substantial improvements of the original version of this paper. YX
also would like to thank Xiao Liu for fruitful discussions about the Helmholtz tests.

REFERENCES

[1] P. R. Amestoy, T. A. Davis, and I. S. Duff, An approximate minimum degree ordering algorithm,
SIAM J. Matrix Anal. Appl., 17 (1996), pp. 886–905.

[2] , Algorithm 837: An approximate minimum degree ordering algorithm, ACM Trans. Math.
Software, 30 (2004), pp. 381–388.

[3] O. Axelsson and P. S. Vassilevski, A black box generalized conjugate gradient solver with inner
iterations and variable-step preconditioning, SIAM J. Matrix Anal. Appl., 12 (1991), pp. 625–644.

[4] J. Baglama, D. Calvetti, G. H. Golub, and L. Reichel, Adaptively preconditioned GMRES algo-
rithms, SIAM J. Sci. Comput., 20 (1998), pp. 243–269.

[5] R. E. Bank and C. Wagner, Multilevel ILU decomposition, Numer. Math., 82 (1999), pp. 543–576.



20 Y. XI AND Y. SAAD

[6] M. Benzi, G. H. Golub, and J. Liesen, Numerical solution of saddle point problems, Acta Numerica,
14 (2005), pp. 1–137.

[7] J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Computat.
Phys., 114 (1994), pp. 185 – 200.

[8] M. Bollhöfer, A robust and efficient ILU that incorporates the growth of the inverse triangular
factors, SIAM J. Sci. Comput., 25 (2003), pp. 86–103.

[9] M. Bollhöfer, J. I. Aliaga, A. F. Mart́ın, and E. S. Quintana-Ort́ı, ILUPACK, (2011), pp. 917–
926.

[10] M. Bollhöfer, M. J. Grote, and O. Schenk, Algebraic multilevel preconditioner for the Helmholtz
equation in heterogeneous media, SIAM J. Sci. Comput., 31 (2009), pp. 3781–3805.

[11] M. Bollhöfer and Y. Saad, Multilevel preconditioners constructed from inverse-based ILUs, SIAM
J. Sci. Comput., 27 (2005), pp. 1627–1650.

[12] E. F. F. Botta and F. W. Wubs, Matrix renumbering ILU: An effective algebraic multilevel ILU
preconditioner for sparse matrices, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 1007–1026.

[13] A. Chapman and Y. Saad, Deflated and augmented Krylov subspace techniques, Numer. Linear Al-
gebra Appl., 4 (1997), pp. 43–66.

[14] W. C. Chew and W. H. Weedon, A 3D perfectly matched medium from modified Maxwell’s equations
with stretched coordinates, Microw. Opt. Techn. Let., 7 (1994), pp. 599–604.

[15] E. Chow and Y. Saad, Experimental study of ILU preconditioners for indefinite matrices, J. Comput.
Appl. Math., 87 (1997), pp. 387–414.

[16] E. de Sturler, Inner-outer methods with deflation for linear systems with multiple right-hand sides,
in In Householder Symposium XIII, Proceedings of the Householder Symposium on Numerical
Algebra, Pontresina, Switzerland, June 17 - 26, 1996, pp. 193–196.

[17] H. C. Elman, A stability analysis of incomplete LU factorizations, Math. Comp., 47 (1986), pp. 191–
217.

[18] B. Engquist and L. Ying, Sweeping preconditioner for the Helmholtz equation: Hierarchical matrix
representation, Commun. Pure Appl. Math., 64 (2011), pp. 697–735.

[19] B. Engquist and L. Ying, Sweeping preconditioner for the Helmholtz equation: Moving perfectly
matched layers, Multiscale Model. Simul., 9 (2011), pp. 686–710.

[20] J. Erhel, K. Burrage, and B. Pohl, Restarted GMRES preconditioned by deflation, J. Comput.
Appl. Math., 69 (1996), pp. 303 – 318.

[21] Y.A. Erlangga, C. Vuik, and C.W. Oosterlee, Comparison of multigrid and incomplete LU
shifted-Laplace preconditioners for the inhomogeneous Helmholtz equation, Appl. Numer. Math.,
56 (2006), pp. 648–666.

[22] Y. A. Erlangga, C. W. Oosterlee, and C. Vuik, A novel multigrid based preconditioner for het-
erogeneous Helmholtz problems, SIAM J. Sci. Comput., 27 (2005), pp. 1471–1492.

[23] O. G. Ernst and M. J. Gander, Why it is difficult to solve Helmholtz problems with classical iterative
methods, vol. 83 of Lect. Notes Comput. Sci. Eng., Springer, Heidelberg, (2012), pp. 325–363.

[24] M. J. Gander and F. Nataf, AILU: a preconditioner based on the analytic factorization of the elliptic
operator, Numer. Linear Algebra Appl., 7 (2000), pp. 505–526.

[25] M. J. Gander and F. Nataf, AILU for Helmholtz problems: a new preconditioner based on the
analytic parabolic factorization, J. Comput. Acoust., 9 (2001), pp. 1499–1506.

[26] A. George, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., 10 (1973),
pp. 345–363.

[27] M. B. Van Gijzen, Y. A. Erlangga, and C. Vuik, Spectral analysis of the discrete helmholtz operator
preconditioned with a shifted laplacian, SIAM J. Sci. Comput., 29 (2007), pp. 1942–1958.

[28] L. Giraud, S. Gratton, X. Pinel, and X. Vasseur, Flexible GMRES with deflated restarting, SIAM
J. Sci. Comput., 32 (2010), pp. 1858–1878.

[29] G. H. Golub and Q. Ye, Inexact preconditioned conjugate gradient method with inner-outer iteration,
SIAM J. Sci. Comput, 21 (1997), pp. 1305–1320.

[30] I. Gustafsson, A class of first order factorization methods, BIT, 18 (1978), pp. 142–156.
[31] S. Güttel, E. Polizzi, P. Tang, and G. Viaud, Zolotarev quadrature rules and load balancing for

the FEAST eigensolver, SIAM J. Sci. Comput., 37 (2015), pp. A2100–A2122.
[32] N. Hale, N. J. Higham, and L. N. Trefethen, Computing Aα, log(A), and related matrix functions

by contour integrals, SIAM. J. Numer. Anal., 46 (2008), pp. 2505–2523.
[33] N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, PA, USA, 2008.
[34] J. Kestyn, E. Polizzi, and P. Tang, FEAST eigensolver for non-Hermitian problems,

arXiv:1506.04463 [math.NA], (2015).
[35] R. Li and Y. Saad, Divide and conquer low-rank preconditioners for symmetric matrices, SIAM J.

Sci. Comput., 35 (2013), pp. A2069–A2095.
[36] Z. Li, Y. Saad, and M. Sosonkina, pARMS: a parallel version of the algebraic recursive multilevel

solver, Numer. Linear. Algebra Appl., 10 (2003), pp. 485–509.



RATIONAL FUNCTION PRECONDITIONER 21

[37] F. Liu and L. Ying, Additive sweeping preconditioner for the Helmholtz equation, Multiscale Model.
Simul., to appear, (2016).

[38] , Recursive sweeping preconditioner for the 3D Helmholtz equation, SIAM J. Sci. Comput., to
appear, (2016).

[39] S. MacLachlan, D. Osei-Kuffuor, and Y. Saad, Modification and compensation strategies for
threshold-based incomplete factorizations, SIAM J. Sci. Comput., 34 (2012), pp. A48–A75.

[40] S. MacLachlan and Y. Saad, A greedy strategy for coarse-grid selection, SIAM J. Sci. Comput., 29
(2007), pp. 1825–1853.

[41] M. Magolu monga Made, R. Beauwens, and G Warze, Preconditioning of discrete Helmholtz
operators perturbed by a diagonal complex matrix, Comm. Numer. Methods Engrg., 16 (2000),
pp. 801–817.

[42] M. Magolu Monga Made, R. Beauwens, and G. Warze, Preconditioning of discrete Helmholtz
operators perturbed by a diagonal complex matrix, Comm. in Numer. Meth. in Engin., 16 (2000),
pp. 801–817.

[43] T. A. Manteuffel, Shifted incomplete Cholesky factorization, in Sparse Matrix Proceedings 1978,
SIAM, Philadelphia, (1979), p. 41?61.

[44] R. B. Morgan, A restarted GMRES method augmented with eigenvectors, SIAM J. Matrix Anal.
Appl., 16 (1995), pp. 1154–1171.

[45] , GMRES with deflated restarting, SIAM J. Sci. Comput., 24 (2002), pp. 20–37.
[46] Y. Notay, Flexible conjugate gradients, SIAM J. Sci. Comput., 22 (2000), pp. 1444–1460.
[47] D. Osei-Kuffuor and Y. Saad, Preconditioning Helmholtz linear systems, Appl. Numer. Math., 60

(2010), pp. 420 – 431.
[48] E. Polizzi, Density-matrix-based algorithm for solving eigenvalue problems, Phys. Rev. B, 79 (2009),

p. 115112.
[49] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput., 14 (1993),

pp. 461–469.
[50] , ILUT: A dual threshold incomplete LU factorization, Numer. Linear Algebra Appl., 1 (1994),

pp. 387–402.
[51] , ILUM: A multi-elimination ILU preconditioner for general sparse matrices, SIAM J. Sci.

Comput., 17 (1996), pp. 830–847.
[52] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM Publications, Philadelphia, PA, 2nd ed.,

2003.
[53] Y. Saad, Numerical Methods for Large Eigenvalue Problems-revised edition, SIAM, Philadelphia, 2011.
[54] Y. Saad and M. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsym-

metric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.
[55] Y. Saad and B. Suchomel, ARMS: an algebraic recursive multilevel solver for general sparse linear

systems, Numer. Linear Algebra Appl., 9 (2002), pp. 359–378.
[56] T. Sakurai and H. Sugiura, A projection method for generalized eigenvalue problems using numerical

integration, J. Comput. Appl. Math., 159 (2003), pp. 119 – 128. Japan-China Joint Seminar on
Numerical Mathematics; In Search for the Frontier of Computational and Applied Mathematics
toward the 21st Century.

[57] T. Sakurai and H. Tadano, CIRR: a Rayleigh-Ritz type method with contour integral for generalized
eigenvalue problems, Hokkaido Mathematical Journal, 36 (2007), pp. 745–757.

[58] V. Simoncini and D. B. Szyld, Flexible inner-outer Krylov subspace methods, SIAM J. Numer. Anal.,
40 (2002), pp. 2219–2239.

[59] P. Tang and E. Polizzi, FEAST as a subspace iteration eigensolver accelerated by approximate
spectral projection, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 354–390.

[60] M.B. van Gijzen, Y.A. Erlangga, and C. Vuik, Spectral analysis of the discrete Helmholtz operator
preconditioned with a shifted Laplacian, SIAM J. Sci. Comput., 29 (2007), pp. 1942–1958.

[61] C. Vuik, New insights in GMRES-like methods with variable preconditioners, J. Comput. Appl. Math.,
61 (1995), pp. 189 – 204.

[62] S. Wang, M. V. de Hoop, and J. Xia, On 3D modeling of seismic wave propagation via a structured
parallel multifrontal direct Helmholtz solver, Geophys. Prospect., 59 (2011), pp. 857–873.

[63] Y. Xi, R. Li, and Y. Saad, An algebraic multilevel low-rank preconditioner for sparse symmetric
matrices, SIAM J. Matrix Anal. Appl., 37 (2016), pp. 235–259.

[64] Y. Xi and Y. Saad, Computing partial spectra with least-squares rational filters, SIAM J. Sci. Comput.,
38 (2016), pp. A3020–A3045.



22 Y. XI AND Y. SAAD

Appendix A. Classical quadrature rules. In this section, we provide some details
of several quadrature formulas to approximate the following integral∫ 1

0

g(x)dx ≈
p∑
k=1

ωkg(xk).

The weights and poles for the mid-point rule have the form{
xk = (2k−1)

2p

wk = 1
p

k = 1, · · · , p. (A.1)

The Gauss-Chebyshev quadrature rule of the first kind uses the following weighs and
poles:  xk = 1

2

(
1 + cos

(
(2k−1)π

2p

))
wk = π

2p sin
(

(2k−1)π
2p

) k = 1, · · · , p. (A.2)

The poles and weights associated with the Gauss-Legendre rule are given by:{
xk = tk+1

2
wk = 1

(1−t2k)[L′p(tk)]2
k = 1, · · · , p, (A.3)

where tk is the kth root of the p-th Legendre polynomial Lp(x).


