
A highly scalable dense linear system solver for
multiple right-hand sides in data analytics

Vassilis Kalantzis∗, A. Cristiano I. Malossi†, Costas Bekas†, Alessandro Curioni†, Efstratios Gallopoulos‡, Yousef Saad∗
∗Department of Computer Science and Engineering, University of Minnesota, MN 55455, USA, {kalan019,saad}@umn.edu

†Foundations of Cognitive Solutions, IBM Research – Zurich, Switzerland, {acm,bek,cur}@zurich.ibm.com
‡CEID, University of Patras, 26504 Patras, Greece & Dept. CSE, University of Minnesota, MN 55455, USA, stratis@ceid.upatras.gr

Abstract—We describe PP-BCG, a parallel iterative solver for
the solution of dense and symmetric positive-definite linear
systems with multiple right-hand sides suitable for MPPs. Such
linear systems appear in the context of stochastic estimation of the
diagonal of the matrix inverse in Uncertainty Quantification and
the trace of matrix products in statistical analysis. We propose a
novel numerical scheme based on the block Conjugate Gradient
algorithm combined with Galerkin projections and describe
its implementation. We test the method on model covariance
matrices from uncertainty quantification, where the solution of
the linear systems is typically used to estimate the diagonal of
the matrix inverse. Numerical experiments on an MPP illustrate
the performance of the proposed scheme in terms of efficiency
and convergence rate, as well as its effectiveness relative to block
Conjugate Gradient and the Cholesky-based ScaLAPACK solver.
In particular, on a 4 rack BG/Q with up to 65536 cores using
dense matrices of order as high as 0.5×106 and 800 rhs, PP-BCG
is 2-3 times faster.

Keywords-Linear systems, multiple right-hand sides, block
Conjugate Gradient, Galerkin projections, distributed memory
environments, uncertainty quantification

I. INTRODUCTION

We present a parallel solver for large and dense symmetric
positive-definite (SPD) linear systems with multiple right-
hand sides (mrhs). Our interest is in using this solver as a
kernel in applications from data analytics on state-of-the-art
massively parallel processors (MPPs). A distinguishing feature
of some of these applications is that only moderate accuracy
is sought, which makes viable the use of Monte Carlo type
stochastic estimation methods based on matrix equations [2],
[5]. In uncertainty quantification (UQ) for example, which is
the application of interest here, one seeks the diagonal of the
inverse of a covariance matrix that is SPD; the elements of
the diagonal quantify the degree of confidence in the data
collection and their estimation involves solving relatively well-
conditioned SPD linear systems with mrhs [4], [25]. In a
related application, the diagonal of the so called “hat matrix”
provides the statistical leverage scores that are of interest in
many applications and in the design of randomized numerical
linear algebra algorithms [16]. Another case in data analytics
where SPD systems with mrhs appear is when Gaussian pro-
cess modeling is used in statistical analysis. In particular, the
determination of covariance structure via maximum likelihood
estimation leads to the need to estimate the trace of the
product of the inverse of a matrix with a block of vectors [36].

Historically, of course, solving linear systems with mrhs at-
tracted attention primarily because of their importance in large
scale simulations from electromagnetics, electronic structures,
physics, mechanics, etc. [7], [8], [15], [17], [34]; see also [3]
for recent software in the Trilinos package.

A general form of the target problem is to solve

AX(j) = Z(j), j = 1, 2, . . . , δ, (1)

where A ∈ Rn×n is dense and SPD though not necessarily
explicitly available, Z(j) ∈ Rn×p is the j’th batch of p right-
hand sides (rhs), and δ is some unknown positive integer.
The batch-like form of (1) arises from the fact that in several
applications only a few rhs are available at a time; for example,
in stochastic estimation, the least sufficient number of samples
(rhs) is typically not known a priori. Thus, only a few samples,
e.g., p � n, are generated and solved at each step, the
procedure repeating until the approximation is considered
accurate enough1. Moreover, the huge size of modern data
collections in analytics, as well as the unprecedented rates by
which new data is generated, lead to large problems for which
it is imperative to develop low complexity, scalable solvers.

By and large, there are two major opportunities when
designing solvers for (1). The first, we term “computational”,
is related to the underlying computational model. In partic-
ular, it refers to code restructuring in order to obtain better
performance, for example using operations on blocks rather
than single vectors in order to exploit the memory hierarchy,
using bulk communication, etc.; see e.g. [18]. The second
opportunity we refer to (somewhat generically) as “mathe-
matical”, because it is related to the extraction, sharing and
reusing information (in the terminology of [33]). In direct
methods, this is well known and part of standard software,
since the expensive (in this case, Cholesky) factorization step
is independent of the rhs and performed only once, and the
triangular factors reused repeatedly or independently until all
solutions are computed [6], which can amortize the cost of
the factorization. On the other hand, in the cases of interest
here this approach is no longer practical. Firstly, the matrices
can be very large and the cubic cost of the factorization
prohibitive and also not sufficiently amortized without enough
batches of rhs. Secondly, in several applications the matrix

1In general, p could also vary, though we leave this for future research.

A is not explicitly available but only in action, via MVs.
Thirdly, a direct method like Cholesky does not permit early
stopping to relax the accuracy of the computed results and
trade it for smaller time to solution, something that might be
desirable in some data analytics applications [12]. In order
to address these difficulties and reduce the complexity of the
problem, it becomes necessary to deploy matrix-free iterative
schemes, like Krylov subspace methods (KSMs) [31]. KSMs
generate a sequence of approximate solutions by augmenting
a subspace (in this case, the Krylov subspace) at each new
iteration. Not surprisingly, information sharing becomes in
general more complex (with few exceptions, e.g. when the
rhs are linearly dependent or almost so, in which case one
can easily approximate part of the solution in terms of the
other part) involving the matrix eigenstructure, analysis on
subspaces, etc.

In spite of the large and growing body of literature on KSMs
for mrhs (see [20], [30] for recent reviews and bibliographical
surveys) there have been very few studies on the interplay
between these opportunities and a study of tradeoffs. Notable
exceptions are [30] that explores nonsymmetric block methods
and recycling together with data movement and cache efficien-
cies for serial architectures, and [8] that describes deflation for
nonsymmetric solvers with experiments solving large sparse
systems with up to 128 rhs on a 1024 core multiprocessor.
We attribute this scarcity in contributions to the fact that
(1) is readily parallelizable. This, however, misses entirely
the opportunity for information sharing. As we will see and
was noted early on in [19] by careful designing the parallel
algorithm, the rewards are substantial.

In our case, we can solve each batch AX(j) = Z(j), 1 ≤
j ≤ δ by the Conjugate Gradient method (CG) [23], the best
known KSM for SPD matrices. In the context of UQ, applying
CG simultaneously to all available rhs, that is in a “pseudo”-
block approach using a term from [3], and combining with
iterative refinement was shown to scale well in MPPs [4].
Other CG-based parallel schemes, like the multistep CG [14],
communication-avoiding CG [24], and pipelined CG [21], have
also had efficient implementations, the focus however was on
reducing communication in solving for a single rhs. While
the cost of applying CG to each different batch of rhs can
typically be much smaller than that of the direct solver (at
each iteration the dominant cost comes from the MV products
which for unstructured SPD systems runs at O(n2)), the total
computational cost might still be prohibitive, especially if
many batches of rhs need to be solved. It is then natural to
consider KSMs that take advantage of the computational effort
invested when solving AX(j) = Z(j), j = 1, . . . , j, in order
to accelerate the convergence of the method in subsequent
batches AX(j) = Z(j), j = j + 1, . . . , δ. When p>1,
information sharing in KSMs occurs naturally when deploying
a block method such as block CG (BCG) on each batch
AX(j) = Z(j), j = 1, . . . , δ, since, compared to standard CG,
a p-times larger Krylov subspace is built for each individual
solution, and thus faster convergence is obtained per batch.
Moreover, each matrix-matrix product (MM) in BCG requires

only one pass over A, thus reducing the memory references
of standard CG; cf. the discussions in [13], [20], [26], [28],
[30], [37] for block methods and recycling. However, BCG
is designed to only share information among rhs within the
same batch. Therefore, for small p is the performance of such a
scheme for solving (1) would be similar to CG. Some proposals
to address this issue and accelerate the overall performance of
a BCG-based approach already exist. In [11] it is suggested to
use deflation of invariant subspaces, and in [29], [35] to use
spectral recycling. These techniques, however, do not consider
the implications of massive parallelism and a study of their
scalability remains an interesting open issue. Our goal, is to
go beyond and consider the mathematical and computational
opportunities for solving for mrhs in an MPP implementation.

Contributions of this paper

We present a solver suitable for large dense linear SPD
systems with mrhs that is specifically designed to exploit
MPPs and also makes use of information sharing ideas in order
to accelerate the solution process. It combines partial recycling
of Krylov subspaces with BCG and is related to earlier work
in [32] and the block seed approach in [10]. The proposed
algorithm also extends and improves prior work of the authors
([25]) as it explicitly addresses the needs of a parallel imple-
mentation together with more effective information sharing.
In the absence of problem specific information (e.g. special
structure as in [39]), this method returns better performance
when solving large matrix equations like (1) compared to well-
known baseline methods. The paper is organized as follows.
In Section II we present the proposed solver, abbreviated as
PP-BCG. In Section III we describe its parallel implementation
and give details on various design aspects as well as a cost-
benefit analysis. In Section IV we present experiments on an
MPP platform and comparisons with other solvers. Concluding
remarks are provided in Section V.

Specific contributions of our paper include: i) A novel
parallel numerical scheme for the solution of linear systems
of the form in (1) and its parallel implementation on a
message-passing environment. ii) A performance model for
the solver and an analysis of tradeoffs in communication
overheads, memory requirements and convergence rates. iii)
An implementation on an MPP and experiments with up to
65,536 cores using dense matrices of order as high as 0.5×106

and 800 rhs together with performance comparisons relative to
BCG and ScaLAPACK. Results show that PP-BCG is 2-3 times
faster for these large problems. We note here that due to the
relatively good condition of the matrices in the application of
interest, preconditioning was not considered.

II. THE PP-BCG METHOD

In this section, we outline the proposed method, abbreviated
as PP-BCG. The key idea is to recycle the Krylov subspace built
in solving AX(1) = Z(1) in order to improve the convergence
rate of batches AX(j) = Z(j), j = 2, . . . , δ.

A. Solving for the first batch of rhs

Since we make no structural assumptions other than that
the matrix is dense and SPD, we consider BCG to be the best
choice for solving the first batch, AX(1) = Z(1) [27]. For the
same reasons, we pick as initial Z(1) whatever is available and
do not consider seed selection strategies (e.g. as done in [33]).

For future reference, this is listed as Algorithm 1. Matrices
X

(1)
0 ∈ Rn×p, R(1)

0 = Z(1) − AX(1)
0 , and P0 = R

(1)
0 denote

the initial guess, initial residual, and initial direction block
of BCG, respectively. Throughout this section we assume that
matrix A as well as multivectors X(1)

i , R
(1)
i and Pi−1 are

distributed row-wise among the available processors. Matrices

Algorithm 1 Block Conjugate-Gradient (BCG).

1: input : A, Z(1), X
(1)
0 , tol, p

2: output : X
(1)
i , ζ ≡ i

3: R
(1)
0 = Z(1) −AX(1)

0 , P0 = R
(1)
0 , compute (R

(1)
0)>R

(1)
0

4: i = 1
5: repeat
6: Ti = APi−1
7: αi = (P>i−1Ti)

−1((R
(1)
i−1)>R

(1)
i−1)

8: X
(1)
i = X

(1)
i−1 + Pi−1αi

9: R
(1)
i = R

(1)
i−1 − Tiαi

10: βi = (R
(1)T
i−1 R

(1)
i−1)−1((R

(1)
i)>R

(1)
i)

11: Pi = R
(1)
i + Pi−1βi

12: i = i+ 1
13: until max{‖r(1)i ‖, . . . , ‖r

(p)
i ‖} ≤ tol

αi and βi are p × p that (in the absence of roundoff) are
calculated to enforce the orthogonality conditions in BCG.

Computing the MM product Ti = APi−1 (line 6) de-
mands communication among the processors to exchange
their local sections of Pi−1, while computing the matrix
products P>i−1Ti and (R

(1)
i)>R

(1)
i in lines 7 and 10 require a

reduction operation, each of size p2. For reasons of stability,
((R

(1)
i−1)>R

(1)
i−1)−1 and (P>i−1Ti)

−1 are computed using the
SVD (via LAPACK’s DGESV) [1]. The latter allows the
(automatic) use of pseudoinverses in case of rank deficiency of
R

(1)
i−1, e.g. when the rhs converge at different rates. Another

option, would be to use deflation techniques that have been
developed primarily for block nonsymmetric solvers, see e.g.
[8].

By partitioning X
(1)
i = [x

(1)
i , . . . , x

(p)
i] and X(1) =

[x(1), . . . , x(p)], we have that x(j)i ∈ x
(j)
0 +Ki, j = 1, . . . , p,

where

Ki ≡ {R(1)
0 , AR

(1)
0 , . . . , Ai−1R

(1)
0 } ≡ {P0, . . . , Pi−1},

is the Krylov subspace of dimension i. Ordering the eigen-
values of A as λn ≥ . . . ≥ λ1 > 0, the A-norm of the error
of the j’th right-hand side after i− 1 BCG iterations satisfies
‖x(j)i − x(j)‖A
‖x(j)0 − x(j)‖A

≤ 2

(√
κA − 1
√
κA + 1

)i
, where κA = λn/λp [27].

Numerically, therefore, BCG has faster convergence than CG,

since the corresponding value of κA for the latter is larger,
namely λn/λ1. Moreover, BCG provides a computational
opportunity for better performance as it can use MM rather
than MVs.

The BCG algorithm can be applied to the solution of any
subsequent batch AX(j) = Z(j), j = 2, . . . , δ as in Algorithm
1. However, this does not entail any information exchange
between the batch solves and therefore, any computational
effort that was invested in solving AX(1) = Z(1) is not
reused. From an information exchange point of view, this is
suboptimal especially when the blocksize p is small in which
case BCG converges at a rate similar to CG. We next describe
a mechanism to enable information reuse across batches.

B. Initialization by modified Galerkin projections

Let ζ denote the number of iterations made by BCG during
the solution process of AX(1) = Z(1), and let matrices
Pi−1, Ti generated by Algorithm 1 be distributed without
overlap among the available set of processors, while all of
the small p×p matrices αi, βi, and P>i−1Ti, i = 1, . . . , ζ̂, are
replicated in each available processor. The parameter ζ̂ ≤ ζ
is user-provided and depends only on the amount of system
memory being available to the application.

The convergence rate of BCG applied on any subsequent
batch AX(j) = Z(j), j ≥ 2, can be enhanced by computing
a non-trivial initial guess X(j)

0 through a series of Galerkin
projections; see e.g. [10], [25]:

X̂
(j)

ζ̂−i+1
= X̂

(j)

ζ̂−i
+ Pi−1(P

>
i−1Ti)

−1P>i−1R̂
(j)

ζ̂−i
, i = ζ̂ : −1 : 1, (2)

R̂
(j)

ζ̂−i+1
= (I −APi−1(P

>
i−1Ti)

−1P>i−1)R̂
(j)

ζ̂−i
, i = ζ̂ : −1 : 1. (3)

Initially, X̂(j)
0 = 0 and R̂

(j)
0 = Z(j). Eqs. (2) and (3)

essentially capture the part of the solution of X(j), j ≥ 2, that
lies in the Krylov subspace generated by AX(1) = Z(1), under
the constraint that R̂(j)

0 is made orthogonal to each direction
block Pi, i = ζ̂ − 1, . . . , 0. Algorithm 2 (GALPROJ) sketches
the Galerkin projections procedure. Since each processor has
access only to a certain part of Pi−1 and Ti, i = 1, . . . , ζ̂,
a reduction operation of size p × p is necessary to form
P>i−1R̂

(j)

ζ̂−i+1
(line 5 of GALPROJ). After computing H ∈

Rp×p, the update of X̂(j)

ζ̂−i+1
and R̂(j)

ζ̂−i+1
is performed locally

in each processor. In total, each iteration of GALPROJ costs
O(np2), for a combined cost of O(nζ̂p2).

From an HPC viewpoint, small values of p lead to re-
ductions which are dominated by latency. To improve per-
formance, it is possible to deflate τ>1 direction blocks
Pi, . . . , Pi−τ+1 simultaneously, this way increasing the gran-
ularity of each reduction step and reducing the initializa-
tion time of multiple reductions into a single one of size
τ × p2. For sufficiently small values of τ , the matrix product
Z=[Pi, . . . , Pi−τ+1]>A[Pi, . . . , Pi−τ+1] can be approximated
by its on-diagonal block part P>i Ti, . . . , P

>
i−τ+1Ti−τ+1 which

is already computed by Algorithm 1, since in exact arithmetic
the direction blocks are A-orthogonal, and in finite precision
arithmetic we expect this property to hold locally for matrices
Pi, . . . , Pi−τ+1.

Algorithm 2 The Galerkin projections scheme (GALPROJ).

1: input : A, X̂
(j)
0 , R̂

(j)
0 , ζ̂

2: output : X̂
(j)

ζ̂

3: i = ζ̂
4: repeat
5: H = (P>i−1Ti)

−1(P>i−1R̂
(j)

ζ̂−i
)

6: X̂
(j)

ζ̂−i+1
= X̂

(j)

ζ̂−i
+ Pi−1H

7: R̂
(j)

ζ̂−i+1
= R̂

(j)

ζ̂−i
− TiH

8: i = i− 1
9: until i == 1

C. Analysis of deflation by modified Galerkin projections

Consider the deflation of the direction blocks P0, . . . , Pζ̂−1
in (2) and (3). During the i’th projection step,

Φi = I −APi−1(P>i−1APi−1)−1P>i−1 (4)

projects on the orthogonal complement of Pi−1. Since, in exact
arithmetic, the direction blocks are A-orthogonal, we have:

Φ = Πζ̂
i=1Φi, ΦR̂

(j)
0 ⊥ {P0, . . . , Pζ̂−1}. (5)

Thus, in exact arithmetic, R̂(j)
0 becomes orthogonal to any

invariant subspace captured in the Krylov subspace Kζ̂ =
{P0, . . . , Pζ̂−1}, which explains the enhanced convergence

rate when X̂
(j)

ζ̂
is passed as an initial guess in BCG when

the latter is applied on AX(j) = Z(j).
In exact arithmetic, the order of deflation of the direction

blocks P0, . . . , Pζ̂−1 does not make any difference. However,
in finite precision arithmetic, the order of deflation has a large
impact. As an example, consider for the moment that the direc-
tion blocks are deflated in the order they were generated, i.e.,
from P0 to Pζ̂−1. Now, let R̂(j)

i satisfy R̂(j)
i ⊥{P0, . . . , Pi−1}.

At the next step we compute R̂(j)
i+1 = Φi+1R̂

(j)
i and thus

R̂
(j)
i+1⊥

{
Pi

}
, R̂

(j)
i+1 ∈

{
R̂

(j)
i

}
∪
{
APi

}
.

If R̂(j)
i+1 is to remain orthogonal to {P0, . . . , Pi−1}, we also

need that P>ξ APi = 0 for all ξ = 0, . . . , i − 1, which, in
general, does not hold. Actually, in finite precision, every time
we deflate Pi, components from P0, . . . , Pi−1 re-emerge in
R̂

(j)
i . To ease this effect, we choose to deflate the direction

blocks P0, . . . , Pζ̂−1 in a reversed manner, as in (2) and (3).
While reverse deflation does not eliminate the finite precision
effects, it leads to initial guesses of better quality since the
leading direction blocks P0, P1, . . . remain better deflated. Fig.
1 illustrates a numerical comparison between the two different
deflation strategies for a diagonal test matrix Aii = i/104, i =
1, . . . , 104, where p = 1, and δ = 2. We perform ζ = 1048
when solving the linear system AX(1) = Z(1) and then call
GALPROJ to compute an initial guess for AX(2) = Z(2),
using ζ̂=ζ. The left subfigure plots the orthogonal projection
of R̂(2)

ζ̂
along each direction block Pi, i = 0, . . . , ζ̂ − 1,

0 200 400 600 800 1000 1200
10

−20

10
−15

10
−10

10
−5

10
0

Inner product with P
i

(a) ‖Pi(P>i Pi)−1P>i R̂
(2)
ζ ‖.

0 5 10 15 20 25 30
10

−20

10
−15

10
−10

10
−5

10
0

Inner product with lowest eigenvectors

(b) Inner product of R̂(2)
ζ with the

thirty lowest eigenvectors.

Fig. 1: A comparison of two different deflation orderings.

when deflation is implemented in the natural order (dashed
line) and reversed order (solid line). Notice how the direction
blocks produced in the early iterations of Algorithm 1 have
re-emerged in R̂

(2)

ζ̂
under the standard ordering. The right

subfigure shows the inner product between R̂
(2)

ζ̂
and the

eigenvectors associated with the thirty lowest eigenvalues of
A for the natural order (dashed line) and reversed order (solid
line). Since the term R̂

(2)

ζ̂
obtained by reverse deflation is

closer to being orthogonal to these extremal eigenvectors,
faster convergence is expected when that initial guess is used
in BCG when applied on AX(2) = Z(2). The reverse deflation
process that we described represents an important feature of
PP-BCG and improves significantly on the work reported in
[25].

The overhead involved in the aforementioned deflation
scheme presented in this section requires the storage of two
sequences of multivectors, Ti and Pi−1, i = 1, . . . , ζ̂; see also
Table I. However, this is not an issue for our approach since
one can set ζ̂ before-hand based on the amount of system
memory being available. While the efficiency of the scheme
depends on the portion of the Krylov subspace being deflated,
it is guaranteed to work even without any additional memory
overhead (in which case the whole scheme would reduce to
the standard BCG). In the following we consider a modification
of GALPROJ for clusters with limited system memory.

D. Galerkin projections under limited memory scenarios

When memory space is limited, it is possible to perform
the Galerkin projections via GALPROJ without storing the
direction blocks P0, . . . , Pζ̂−1. We next show that these matrix
variables can be re-computed on-the-fly each time an initial
guess for a new batch of rhs AX(j) = Z(j), j ≥ 2 is sought.

Assume that during Algorithm 1 we store only matrices
Ti, αi, βi, i = 1, . . . , ζ̂, as well as matrices Rζ̂ , Pζ̂ . Then

using equation Pζ̂ = R
(1)

ζ̂
+Pζ̂−1βζ̂ from BCG, we can recover

(the unknown) Pζ̂−1 = (Pζ̂ − R
(1)

ζ̂
)β−1
ζ̂

. Generalizing the

above concept, each Pi, i = ζ̂ − 1, . . . , 0 can be re-generated
on-the-fly by using the following set of equations:

Pi = (Pi+1 −R(1)
i+1)β−1i+1, i = ζ̂ − 1, . . . , 0 (6)

R
(1)
i = R

(1)
i+1 + Ti+1αi+1, i = ζ̂ − 1, . . . , 0. (7)

At step i, we only need access to R
(1)
i+1 and Pi+1, which

are already generated and temporarily stored from the pre-
vious step. Moreover, all computations in (6) and (7) are
embarrassingly parallel since a local copy of the p × p
matrices αi, βi, i = 1, . . . , ζ̂ is already available at each
processor during execution of Algorithm 1. The necessity to
store P0, . . . , Pζ̂−1 is thus replaced by an additional O(nζ̂p2)
operations for each new batch.

E. The complete distributed scheme

Algorithm 3 PP-BCG.

1: input : A, tol1, tol2, p, ζ̂
2: . Solve AX(1) = Z(1)

3: X(1) = BCG(A, Z
(1)
0 , X

(1)
0 , p, tol1)

4: . For any AX(j) = Z(j)

5: for j = 2, . . . , δ do
6: X̂

(j)

ζ̂
= GALPROJ(A, X̂

(j)
0 ≡ 0, Z(j), ζ̂)

7: X(j) = BCG(A, Z(j), X̂
(j)

ζ̂
, p, tol2)

8: end for

PP-BCG scheme is described in Algorithm 3. In each iter-
ation (lines 5-8) an initial guess is generated by exploiting
the information stored when solving AX(1) = Z(1) (line 6).
This initial guess is then passed to BCG (line 7). Note that
the tolerance, tol1, for the solution of AX(1) = Z(1) can be
different than the general tolerance tol2 used for the solution
of the subsequent batches of rhs. This allows us to generate a
larger and thus richer Krylov subspace which is essential for
PP-BCG to be efficient.

III. DISTRIBUTED IMPLEMENTATION

We next describe the implementation of PP-BCG on one
of the dominant parallel processing paradigms, that is a dis-
tributed memory message passing system using the Message
Passing Interface (MPI) standard [38]. We assume a 2-D grid
of G = M ×K processors, each processor labeled by its row
and column position on the grid. We thus write matrices A
and Z(j), j = 1, . . . , δ as

A =


A11 A12 · · · A1K

A21 A22 · · · A2K

...
...

. . .
...

AM1 AM2 · · · AMK

 , Z(j) =


Z

(j)
1

Z
(j)
2

...

Z
(j)
K


where submatrix AIJ is assigned to processor (I, J) and Z(j)

J

is assigned to the J’th processor of the first row of the grid
(equivalently, processor (1, J)).

Let each processor belong to a row group and to a column
group on the 2-D processor grid. This means that now, except
for the global communicator, there are M + K additional
communicators which correspond to each different row and
column of processors in the 2-D grid. Let matrix P ∈ Rn×p

be distributed among the K processors of the first row of the 2-
D grid. Then, the MM product T = AP can be accomplished
in parallel as follows (see also Fig. 2):

1) Each processor in first row holding block PJ broadcasts
it along its column using the column communicator.

2) Each processor performs the product TIJ = AIJPJ .
3) Each processor in a row performs a reduction operation

using the row communicator.
4) Each processor of the first column (root processor of the

corresponding row communicator) distributes its local
result to the corresponding processor of the first row of
the processor grid.

The communication pattern of the MM product enables col-
lective operations on 1-D grids of size at most max{M,K}
plus some point-to-point communication. Except A, all mul-
tivectors are distributed row-wise among the K processors of
the first row and thus for all operations of PP-BCG except
the MM product, e.g., block inner products or block AXPY
operations, only a subset of processors of the 2-D grid is
active. In our implementation, this subset is always formed
by the K processors in the first row of the 2-D grid. Thus,
performing block inner products requires communication only
among the K processors lying in the first row of the 2-D grid.

MPI_BCAST
MPI_REDUCE

MPI_SEND
MPI_RECV

Fig. 2: Schematic sketch of the communication pattern for the
MM product in a 4× 4 2-D grid of processors.

We also note that for completeness PP-BCG was also im-
plemented for 1-D processor grids. However, this leads to
MM products which are less scalable than in the 2-D case,
since having all M × K MPI processes under the same
communicator increases the communication volume.

Table I shows the leading memory requirements of each
phase of PP-BCG. Variables nI and nJ denote the number
of rows and columns of A assigned to the (I, J) processor,
respectively. If memory resources are limited, we have the
option to store matrices Ti only, and then locally generate
Pi−1 on the fly (as described in subsection II-D), an approach
denoted by the ’*’ superscript.

Table II shows the per processor computational complexity
(per iteration) for all different phases. The main computational
cost is caused by the need to perform the local MM product
T = AP and runs at O(nInJ). In contrast, all other operations
at any other phase of PP-BCG cost O(nJ).

TABLE I: Memory complexity per processor and phase.
GALPROJ∗ denotes the limited memory version of GALPROJ
described in Section II-D.

Phase Memory requirements
BCG (Alg. 1) nInJ + 4nJp

GALPROJ (Alg. 2) 2nJp+ 2nJ ζ̂p

GALPROJ∗ 4nJp+ nJ ζ̂p

TABLE II: Computational complexity per processor and it-
eration. GALPROJ∗ denotes the limited memory version of
GALPROJ described in Section II-D.

Phase Computational complexity
BCG (Alg.1) nIp(2nJ − 1) + 6nJp

2 + 3nJp+ 4nJp
2

GALPROJ (Alg. 2) 2(2nJp
2 + nJp) + 2nJp

2

GALPROJ∗ 4(2nJp
2 + nJp) + 2nJp

2

A. Communication cost of information sharing

We next model the communication cost of GALPROJ which
is the process which implements the information sharing
via Eqs. (2) and (3). For the purposes of our analysis, the
communication cost is approximated by a linear model, e.g
[9], [18]

tcomm = `+ µq, (8)

where ` is the startup cost (latency), µ is the message size
(measured in terms of double-precision scalars) and q is
the per-scalar transmission rate (bandwidth). Typically, ` is
several orders of magnitude larger than q. We will assume that
each processor can send/receive data only to/from one other
processor at any given moment. Since each row of processors
of the 2-D grid has its own communicator, the K processors
lying in the first row of the grid communicate independently
and in a binary tree network topology.

Each time we deflate one (or more) direction block(s) from
the residual of each new batch of rhs, we must perform
an mpi_allreduce collective operation (line 5 in GAL-
PROJ). The mpi_allreduce operation can be viewed as
a mpi_reduce-mpi_broadcast pair, and thus a single
deflation step of GALPROJ will introduce a communication
overhead equal to

tτ = dlog(K)e(2`+ 2τp2q + τp2γ), (9)

where τ denotes the number of direction blocks that are simul-
taneously deflated, τp2 is the message size, and γ is the cost
per arithmetic operation [9]. Thus, the total communication
overhead introduced by the Galerkin projections in GALPROJ
for all δ − 1 subsequent batches of p rhs is

t(δ,τ)comm =
(δ − 1)ζ̂tτ

τ
. (10)

Fig. 3 quantifies the above discussion on a synthetic ex-
periment, when n = 64000. We assume that ` = 104q,
i.e., the latency (startup) cost is 104 larger than the cost to
transmit a double-precision scalar, which is typical for current

0 10 20 30 40 50
10

7

10
8

10
9

Batchsize : p

C
o

m
m

u
n

ic
a

ti
o

n
 c

o
s
t

Fig. 3: Communication cost of GALPROJ, as modeled by Eq.
(10). “•”, “�” and “N” represent PP-BCG using τ = 1, τ =
10 and τ = 20, respectively.

architectures. To account for different network architectures,
we did not set an actual value for q. The x-axis runs across
different values of p, while the y-axis shows the modeled
communication cost as determined by (10). The above analysis
shows that deflating one direction block at a time (τ=1) leads
to larger communication cost than when more direction blocks
are deflated simultaneously, with larger values of τ leading to
better performance. As τ increases, the communication pattern
shifts from latency-dominated to bandwidth-dominated. More-
over, as p increases, the communication pattern also becomes
bandwidth-dominated and the choice of τ will have reduced
impact.

IV. EXPERIMENTS AND PERFORMANCE EVALUATION

In this section we present experiments performed in dis-
tributed computing environments. PP-BCG was implemented
in Fortran 90. All local MM multiplications were performed
using the BLAS-3 DGEMM routine in IBM’s ESSL.

For the rest of this section we set tol1 = 10−12, tol2 =
10−6, and ζ̂ = 200. While setting τ > 1 can lead to
an improved performance, its choice enables a non-trivial
numerical study which requires a lengthier exposition. All of
our experiments were performed using τ = 1. Moreover, we
consider 2-D grids of processors G := (M,K) in which M
and K are related as K = M and K = 2M . All computations
were performed in 64-bit arithmetic.

A. Computational system and test matrices

Experiments were performed on an MPP consisting of up to
4 racks of an IBM BlueGene/Q2 (BG/Q) supercomputer [22].
A rack consists of 1024 compute nodes, each hosting an 18
core A2 chip that runs at 1.6 GHz, and 16 GBytes of system
memory. Sixteen of the 18 cores are for computation, one for
the lightweight O/S kernel, and one for redundancy. Every core
supports 4 hardware threads, thus, in total a rack has 16,384
cores and can support up to 65,536 threads. BG/Q nodes are
connected by a 5-dimensional bidirectional network, with a
network bandwidth of 2 GBytes/s for sending and receiving

2IBM and Blue Gene/Q are trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and
service names might be trademarks of IBM or other companies.

0 50 100 150 200
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Estimation of the diagonal of A
−1

of samples (mrhs)

A
b

s
o

lu
te

 M
R

E

θ=0.5, κ=2.0

θ=0.8, κ=2.0

Fig. 4: MRE for Monte Carlo stochastic estimator in (12) for
model covariance matrix with n = 8192, values θ = 0.5, 0.8.

data. Each BG/Q rack features dedicated I/O nodes with 4
GBytes/s I/O bandwidth. The system implements optimized
collective communication and allows specialized tuning of
point-to-point communication. The PP-BCG source files were
compiled using the IBM XL F compiler3 version 14.1.13.
As in [2], [5], [25], we used a synthetic dataset consisting
of model covariance matrices, generated to simulate real-case
scenarios in data UQ, specifically

Aii = 1 + iθ, Aij = 1/|i− j|κ (if i 6= j), i, j = 1, . . . , n,
(11)

for real θ and κ = 2. The progressive decay away from the
main diagonal simulates the fact that features are locally-only
correlated. The condition number of these matrices is known to
scale like nθ. Each batch Z(j) was formed by p n-dimensional
vectors, each vector having entries ±1 with equal probability
(Rademacher variables). We also experimented with a more
general dataset, generated by imposing additional symmetric
perturbations (maintaining the SPDness) at random positions
of (11), that is Aîĵ = Aîĵ+δîĵ , δîĵ = 100/|̂i−ĵ+1|, and î, ĵ ∈
I where I represents a random subset of the integers in [1, n]
and |I| = n/100. Even though, if explicitly available, the
matrices in (11) would be amenable to special fast methods,
for the reasons explained earlier and as in prior literature, we
do not make use of such techniques.

B. A case study and numerical considerations

The application of interest is the approximation of the
diagonal of a matrix that is only available via MV’s using
the so called Hutchinson estimator. The diagonal estimation
method was first proposed in [5] and consists of approximating
the diagonal of A, say D(A−1), via

Dδ(A−1) := [

δ∑
j=1

Z(j) �X(j)]� [

δ∑
j=1

Z(j) � Z(j)], (12)

where X(j) = A−1Z(j) and the symbols �,� denote element-
wise multiplication and division, respectively. Fig. 4 plots the
mean relative error (MRE) of the estimator in (12) for a small

3Flags used: -O5 -qnosave -qdebug=recipf:forcesqrt
-qmaxmem=-1 -qipa=level=2 -qhot=level=2 -qarch=qp
-qtune=qp -qsmp=omp:noauto -qthreaded -qsimd=auto

1.59

1.86

2.24

2.71

1.43

1.63

1.97

2.38

1.25

1.47

1.72

2.08

1.26

1.44

1.69

2.04

1.18

1.32

1.55

1.88

1.13

1.26

1.54

1.79

1.14

1.27

1.50

1.83

1.11

1.24

1.46

1.78

1.11

1.25

1.48

1.74

1.08

1.22

1.44

1.77

p
2

p
1

2 4 6 8 10 12 14 16 18 20

2

4

8

16

1.83

2.32

3.02

3.97

1.47

1.83

2.36

3.03

1.37

1.66

2.13

2.82

1.33

1.56

1.98

2.62

1.22

1.44

1.82

2.41

1.18

1.39

1.77

2.36

1.15

1.34

1.70

2.27

1.11

1.31

1.64

2.18

1.06

1.25

1.60

2.16

1.03

1.22

1.53

2.06

p
2

p
1

2 4 6 8 10 12 14 16 18 20

2

4

8

16

Fig. 5: Speedup in terms of iterations of BCG over PP-BCG for
AX(2) = Z(2) with p2 rhs. Top: θ = 0.5. Bottom: θ = 0.8.

1.01

1.07

1.08

1.01

1.03

1.09

1.08

1.01

1.67

1.12

1.09

1.01

1.72

1.36

1.14

1.07

1.85

1.96

1.38

1.11

2.01

2.04

1.58

1.17

2.11

2.17

1.85

1.60

p
1

Allowed memory overhead in MBs
20 41 62 83 104 125 146

1

2

4

8

Fig. 6: Memory overhead in PP-BCG vs. speedup over BCG for
p1 = 1, 2, 4 and p1 = 8 with p2 = 8, n = 32768, θ = 0.8.

scale model covariance matrix of size n = 8192 as the number
of samples (rhs) increases. As was extensively discussed in
[25], the fast solution of (1) is critical for the success of
stochastic diagonal estimation since for estimators with large
variance, the number of rhs that must be solved might be of
the order O(103).

We next study how the PP-BCG and BCG schemes compare
if different batch sizes were allowed, i.e., the i’th batch has pi
rhs. For simplicity consider only two batches, AX(1) = Z(1)

and AX(2) = Z(2), each one with p1 and p2 rhs, respectively.
Fig. 5 shows the speedup of PP-BCG over BCG (in terms
of iterations to reach convergence) as both p1 and p2 vary.
We used the same matrices as in Fig. 4. The top subfigure
considers the case θ = 0.5 while the bottom subfigure the
case θ = 0.8. The performance gap between the two methods
increases as p1 � p2, since in that case the convergence rate
acceleration offered by the Galerkin projections can be much
higher that the acceleration offered by BCG. On the other
hand, as p2 becomes larger than p1 the convergence rate of
AX(2) = Z(2) is affected more by the blocksize of BCG and
less by the initial guess obtained by the Krylov subspace built
by AX(1) = Z(1). As a result, PP-BCG and BCG converge
similarly.

In the previous example, the matrix equation AX(1) = Z(1)

was always solved for the same accuracy tol1 = 10−12 irre-
spectively of the batch size p1. Thus, the amount of memory
overhead used by PP-BCG was not fixed as p1 varied. It is then
of interest to consider how should the value of p1 be chosen so
that AX(j) = Z(j), j = 2, . . . , δ converge as fast as possible
when storage is limited. For this we prefer to generate a Krylov
subspace of the highest possible dimension, i.e., building the
Krylov subspace using p1 = 1. Fig. 6 demonstrates the
above observation using the model covariance matrix (11) with
n = 32768 and θ = 0.8. We used two batches of rhs with p1
varying and p2 = 8. For any fixed memory overhead allowed

in PP-BCG, the highest speedups over BCG were obtained when
p1 = 1 or p1 = 2. This experiment reveals that with limited
memory, one should store only the matrices Ti in Algorithm
1 and locally regenerate the Pi−1 matrices. This is because
storing only the Tis there is enough space to store a Krylov
subspace whose dimension is approximately doubled.

C. Runtimes and efficiency of PP-BCG

We used three model covariance matrices as in (11), setting
n = 131072, 262144 and n = 524288, for θ = 0.6 and θ =
0.8. For each n, we solved for a total of s = 800 rhs, divided
in batches of size p = 20, 40 and p = 80. For n = 131072
we used 2ν , ν = 4, ..., 10 compute nodes (i.e. up to one rack).
For n = 262144 the values of ν were ν = 6, ..., 12, while for
n = 524288 they were ν = 8, ..., 12 (up to four BG/Q racks).
Since each BG/Q node features 16 compute cores devoted to
computation, the total number of cores used were 16384 (for
n = 13107) and 65536 (for the larger matrices). The number
of MPI processes was always equal to the number of compute
cores and each MPI process utilized 2 hardware threads to
provide maximum bandwidth.

Fig. 7 illustrates the strong scalability plotting runtimes
for all combinations of n, p and θ (log-log scale) as the
compute nodes increase. The runtimes include all different
phases of PP-BCG, i.e., obtaining initial guesses and solving
for all batches. Observe that larger values of p lead to reduced
runtimes for all matrix sizes and condition numbers. We
will see in Section IV-D that this behavior is due to the
faster convergence per rhs of PP-BCG when higher values of
p are used. Fig. 8 plots the efficiency of PP-BCG scheme.
Assuming a reference baseline execution time tr on a baseline
number of Gr MPI processes, parallel efficiency is computed

as Ec =
Grtr
Gctc

, where tc denotes the execution time on

Gc > Gr MPI processes. The efficiencies observed for all runs
follow two different regimes as can be observed by comparing
Fig. 8 with Fig. 9 which reports the efficiencies achieved for
MM. For smaller numbers of compute nodes, the runtime of
PP-BCG is mostly spent on MM products and thus runs at
very high efficiencies, commensurate with those achieved by
MM, which run at almost perfect efficiency. As the number of
compute nodes grows, non-MM operations, i.e., block AXPY
and block inner products, account for a larger portion of the
total computational profile since they scale only along the
second dimension of the 2-D grid of processors (this is also
illustrated in Fig. 10 where we plot the computational profile
of the smallest matrix n = 131072 for all different values of
p). As a consequence, PP-BCG transitions to a regime where
its efficiency is mostly determined by the second dimension
of the 2-D grid.

Overall, as the compute nodes double for the regimes we
have explored, the average observed efficiencies range from
85 to 90%. This demonstrates the high scalability of PP-BCG.

One way to increase the efficiency of PP-BCG when non-
MM operations dominate the computational profile is to use
an M ×K grid of processors with K �M . However, in this

TABLE III: Average number of iterations per batch of p rhs
during PP-BCG and speedup over BCG.

n = 131072 n = 262144 n = 524288

batch size (p) 20 40 80 20 40 80 20 40 80

PP-BCG iterations

θ = 0.6 50 40 35 87 67 60 113 98 83
θ = 0.8 87 67 60 111 86 64 141 119 92

PP-BCG speedup over BCG

θ = 0.6 1.70 1.78 1.75 1.92 2.14 2.01 2.31 2.45 2.41
θ = 0.8 2.18 2.25 2.14 2.32 2.42 2.31 2.65 2.71 2.67

case the efficiency of the MM operation would not remain
the same since the 2-D grid would be “stretched” and become
more similar to a 1-D topology. From extensive experiments
we performed (not reported due to space limitations), we
determined that the optimal topologies were obtained when
K = ρM , with a small ρ > 1. Under a limited memory
regime, from a numerical perspective it is better to store only
matrices Ti and regenerate the Pi−1, i = 1, . . . , ζ̂ on-the-fly
(as shown in Fig. 6); from our HPC perspective, however, we
opt to store these factors even at the price of deflating a smaller
Krylov subspace, e.g. halving ζ̂. This is because regenerating
the Pis utilizes only a subset of the available processors. Fig.
11 illustrates the performance of the PP-BCG scheme in terms
of Tflops per second (TF/s). Results shown are for θ = 0.6.

D. Comparisons with BCG and ScaLAPACK

The only approach we are aware that has been tested in
sizes and computing installations similar to ours is the mix of
”pseudo“-block CG and iterative refinement presented in [4].
Given that in this paper we only consider double precision
arithmetic, we found that BCG can be 1.5-2 times faster
than the method in [4], especially as the condition number
increases.

Table III shows the average number of iterations per batch
of p rhs in PP-BCG, as well as the speedup of PP-BCG over
BCG in terms of average number of iterations per batch of p
rhs for the model covariance matrices in (11). Summarizing
the results we can observe that larger values of p lead to
fewer iterations per batch, since in the latter case the BCG
part of PP-BCG converges faster. Moreover, PP-BCG offers
greater speedup for problems that are less well-conditioned.
Also, as the value of p increases after a certain value, the
speedup ratio of PP-BCG over BCG starts declining (as is the
case when we shift from p = 40 to p = 80). Similar behavior is
observed for the perturbed model covariance matrices in Table
IV with the difference that the perturbation leads to slightly
more challenging linear systems.

We also compare with the ScaLAPACK distributed memory
Cholesky-based solver [6]. In that case, the covariance matrix
A was distributed along a two-dimensional block-cyclic man-
ner among the processors of the 2-D grid. The computational
blocksize in PDPOTRF was held the same for both dimensions
of the 2-D grid and, after some experimental tuning, was set
to mb = 128. Fig. 12 presents comparisons for the matrix of
size n = 262144 when using a fixed number of 16384 MPI

10
2

10
3

10
2

10
3

10
4

of BG/Q compute nodes

T
o
ta

l
ti
m

e
n=131072

10
2

10
3

10
4

10
2

10
3

10
4

of BG/Q compute nodes

T
o
ta

l
ti
m

e

n=262144

10
3

10
2

10
3

10
4

of BG/Q compute nodes

T
o
ta

l
ti
m

e

n=524288

Fig. 7: Runtimes of the PP-BCG solver. • : p = 20, N : p = 40, � : p = 80. Solid lines: θ = 0.6. Dashed lines: θ = 0.8.

0 500 1000
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of BG/Q compute nodes

E
ff
ic

ie
n
c
y

n=131072, θ=0.6

0 500 1000

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

of BG/Q compute nodes

E
ff
ic

ie
n
c
y

n=131072, θ=0.8

0 2000 4000
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of BG/Q compute nodes

E
ff
ic

ie
n
c
y

n=262144, θ=0.6

2000 4000
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of BG/Q compute nodes

E
ff
ic

ie
n
c
y

n=262144, θ=0.8

0 2000 4000

0.6

0.7

0.8

0.9

1

of BG/Q compute nodes

E
ff
ic

ie
n
c
y

n=524288, θ=0.6

0 2000 4000

0.6

0.7

0.8

0.9

1

of BG/Q compute nodes

E
ff
ic

ie
n
c
y

n=524288, θ=0.8

Fig. 8: Efficiency of the PP-BCG solver: • : p = 20, N : p = 40, � : p = 80. Solid lines: θ = 0.6. Dashed lines: θ = 0.8.

0 500 1000

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

of BG/Q compute nodes

E
ff
ic

ie
n
c
y

n=131072, θ=0.6

0 500 1000

0.7

0.8

0.9

1

1.1

of BG/Q compute nodes

E
ff
ic

ie
n
c
y

n=131072, θ=0.8

0 2000 4000

0.6

0.7

0.8

0.9

1

of BG/Q compute nodes

E
ff
ic

ie
n
c
y

n=262144, θ=0.6

0 2000 4000
0.5

0.6

0.7

0.8

0.9

1

of BG/Q compute nodes

E
ff
ic

ie
n
c
y

n=262144, θ=0.8

0 2000 4000

0.75

0.8

0.85

0.9

0.95

1

1.05

of BG/Q compute nodes

E
ff
ic

ie
n
c
y

n=524288, θ=0.6

0 2000 4000

0.75

0.8

0.85

0.9

0.95

1

1.05

of BG/Q compute nodes

E
ff
ic

ie
n
c
y

n=524288, θ=0.8

Fig. 9: Efficiency of the MM product. • : p = 20, N : p = 40, � : p = 80. Solid lines: θ = 0.6. Dashed lines: θ = 0.8.

16 64 256 1024
0

20

40

60

80

100

of BG/Q nodes

P
e

rc
e

n
ta

g
e

MM

AXPY+DOTS

Fig. 10: Performance profile of PP-BCG in terms of compute
primitives for n = 131072, θ = 0.6. For each ensemble
of compute nodes, the leftmost, middle and rightmost bars
correspond to p = 20, 40 and 80, respectively.

processes and varying δ, θ and p. The left subfigure shows the
solution times of ScaLAPACK and PP-BCG as the number of
right-hand sides varies. While the direct solver is practically
oblivious to the number of rhs solved, PP-BCG is affected by
this parameter in a linear manner. Thus, depending on the
condition number of A, there is a value of δ beyond which
is more efficient to use the direct solver instead of PP-BCG,
as can be also seen in the right subfigure of Fig. 12 where

10
0

10
2

10
4

0

5

10

15

20

25

30

P
e

rf
o

rm
a

n
c
e

 (
T

F
/s

)

of BG/Q compute nodes

n=131072, θ=0.6

10
0

10
2

10
4

0

20

40

60

80

100

120

P
e

rf
o

rm
a

n
c
e

 (
T

F
/s

)

of BG/Q compute nodes

n=262144, θ=0.6

10
2

10
3

10
4

0

50

100

150

200

P
e

rf
o

rm
a

n
c
e

 (
T

F
/s

)

of BG/Q compute nodes

n=524288, θ=0.6

Fig. 11: Performance (TF/s). • : p = 20, N : p = 40, � : p = 80.

TABLE IV: Avg. # iterations/p rhs for PP-BCG & speedup over
BCG for symmetrically perturbed model covariance matrices.

n = 32768 n = 65536 n = 131072

batch size (p) 20 40 80 20 40 80 20 40 80

PP-BCG iterations

θ = 0.6 58 44 36 68 54 42 82 78 70
θ = 0.8 76 59 48 104 78 58 130 117 102

PP-BCG speedup over BCG

θ = 0.6 1.75 2.00 2.04 1.95 1.89 1.98 1.80 1.74 1.83
θ = 0.8 2.21 2.34 2.41 2.15 2.25 2.11 2.27 2.04 1.92

0 5 10 15 20
0

100

200

300

400

500

600

700

800

900

1000

δ

T
o
ta

l
ti
m

e

n=262144, 16384 MPI processes

ScaLAPACK

PP−bcg,θ=0.6,p=40

PP−bcg,θ=0.6,p=80

PP−bcg,θ=0.8,p=40

PP−bcg,θ=0.8,p=80

0 5 10 15 20
10

−1

10
0

10
1

10
2

δ
R

a
ti
o

n=262144, 16384 MPI processes

Fig. 12: Comparison of ScaLAPACK and PP-BCG as δ, θ and
p vary. (Left): runtimes; (Right) speedup over ScaLAPACK.

we plot the speedup ratio of PP-BCG over ScaLAPACK as the
number of total batches to be solved varies.

V. CONCLUSIONS - FUTURE DIRECTIONS

We analyzed the numerical aspects of PP-BCG and described
its parallel implementation and a performance model for dis-
tributed memory 2-D processor grids. Experiments on a BG/Q
MPP illustrate the superiority of the method compared to well
known approaches when solving large linear systems with
model covariance matrices and mrhs from a UQ application.
The code is available from the authors upon request. We are
currently pursuing a study of the techniques that we described
on co-processor systems in combination with mixed precision
and iterative refinement. We are also considering the extension
of these techniques for applications in other areas and the study
of the implications of special matrix structure such as sparsity
on the overall performance.

ACKNOWLEDGMENTS

We thank Jie Chen, George Karypis, Giorgos Kollias, Eu-
genia Kontopoulou and Andreas Stathopoulos for their input.

REFERENCES

[1] E. ANDERSON ET AL., LAPACK Users’ Guide, SIAM, 3d ed., 1999.
[2] C.M. ANGERER ET AL., A Fast, Hybrid, Power-Efficient High-Precision

Solver for Large Linear Systems Based on Low-Precision Hardware,
Sustainable Computing: Informatics and Systems, (2015), pp. 1–27.

[3] E. BAVIER, M. HOEMMEN, S. RAJAMANICKAM, AND H. THORN-
QUIST, Amesos2 and Belos - Direct and iterative solvers for large sparse
linear systems., Scientific Programming, (2012).

[4] C. BEKAS, A. CURIONI, AND I. FEDULOVA, Low-cost data uncertainty
quantification, Concur. Comput.: Pract. Exper., 24 (2012), pp. 908–920.

[5] C. BEKAS, E. KOKIOPOULOU, AND Y. SAAD, An estimator for the
diagonal of a matrix, Appl. Numer. Math., 57 (2007), pp. 1214 – 1229.

[6] L.S. BLACKFORD ET AL., ScaLAPACK Users’ Guide, SIAM, 1997.
[7] H. CALANDRA ET AL., Flexible variants of block restarted GMRES

methods with application to geophysics, SIAM J. Sci. Comput., 34
(2012), pp. A714–A736.

[8] , A modified block flexible GMRES method with deflation at each
iteration for the solution of non-hermitian linear systems with multiple
right-hand sides, SIAM J. Sci. Comp., 35 (2013), pp. S345–S367.

[9] E. CHAN, M. HEIMLICH, A. PURKAYASTHA, AND R. VAN DER GEIJN,
Collective communication: Theory, practice, and experience: Research
articles, Concurr. Comput. : Pract. Exper., 19 (2007), pp. 1749–1783.

[10] T.F. CHAN AND W.L. WAN, Analysis of projection methods for solving
linear systems with multiple right-hand sides, SIAM J. Sci. Comput.,
18 (1997), pp. 1698–1721.

[11] J. CHEN, A deflated version of the block conjugate gradient algorithm
with an application to Gaussian process maximum likelihood estimation,
Tech. Report ANL/MCS-P1927-0811, Argonne Nat’l. Lab., 2011.

[12] , How accurately should I solve linear systems when applying
the Hutchinson trace estimator?, SIAM J. Sci. Comput., (to appear).

[13] J. CHEN, T.L.H. LI, AND M. ANITESCU, A parallel linear solver
for multilevel Toeplitz systems with possibly several right-hand sides,
Parallel Comput., 40 (2014), pp. 408 – 424.

[14] A.T. CHRONOPOULOS AND C.W. GEAR, s-step iterative methods for
symmetric linear systems, JCAM, 25 (1989), pp. 153 – 168.

[15] M. CLEMENS, M. HELIAS, T. STEINMETZ, AND G. WIMMER, Multiple
right-hand side techniques for the numerical simulation of quasistatic
electric and magnetic fields, JCAM, 215 (2008), pp. 328 – 338.

[16] P. DRINEAS, M. MAGDON-ISMAIL, M.W. MAHONEY, AND D.P.
WOODRUFF, Fast approximation of matrix coherence and statistical
leverage, JMLR, (2012), pp. 3475–3506.

[17] C. FARHAT, L. CRIVELLI, AND F.-X. ROUX, Extending substructure
based iterative solvers to multiple load and repeated analyses, Comput.
Methods Appl. Mech. Engrg., 117 (1994), pp. 195–209.

[18] E. GALLOPOULOS, B. PHILIPPE, AND A.H. SAMEH, Parallelism in
Matrix Computations, Springer, 2015.

[19] E. GALLOPOULOS AND V. SIMONCINI, Iterative solution of multiple
linear systems: Theory, practice, parallelism, and applications, in Proc.
2nd Int’l. Conf. Comput.Structures Tech., B.H.V. Topping and M. Pa-
padrakakis, eds., Civil-Comp Press, Edinburgh, 1994, pp. 47–51.

[20] A. GAUL, Recycling Krylov subspace methods for sequences of linear
systems: Analysis and applications, PhD thesis, TU Berlin, 2014.

[21] P. GHYSELS AND W. VANROOSE, Hiding global synchronization latency
in the preconditioned conjugate gradient algorithm, Parallel Comput.,
40 (2014), pp. 224 – 238.

[22] M. GILGE, IBM System Blue Gene Solution: Blue Gene/Q Application
Development, IBM Int’l. Tech. Supp. Org., 2nd ed., June 2013.

[23] M.R. HESTENES AND E. STIEFEL, Methods of conjugate gradients for
solving linear systems, J. Res. NBS, 49 (1952), pp. 409–436.

[24] M. HOEMMEN, Communication-Avoiding Krylov Subspace Methods,
PhD thesis, University of California, Berkeley, 2010.

[25] V. KALANTZIS, C. BEKAS, A. CURIONI, AND E. GALLOPOULOS,
Accelerating data uncertainty quantification by solving linear systems
with multiple right-hand sides, Numer.Alg., 62 (2013), pp. 637–653.

[26] A. MURLI ET AL., A multi-grained distributed implementation of the
parallel block conjugate gradient algorithm, Concur. Comput.: Pract.
Exper., 22 (2010), pp. 2053–2072.

[27] D.P. O’LEARY, The block conjugate gradient algorithm and related
methods, Lin. Alg. Appl., 29 (1980), pp. 293 – 322.

[28] , Parallel implementation of the block conjugate gradient algo-
rithm, Parallel Comput., 5 (1987), pp. 127 – 139.

[29] M.L. PARKS ET AL., Recycling Krylov subspaces for sequences of linear
systems, SIAM J. Sci. Comput., 28 (2006), pp. 1651–1674.

[30] M.L. PARKS, K.M. SOODHALTER, AND D.B SZYLD, A block recycled
GMRES method with investigations into aspects of solver performance,
Tech. Report. 16-04-04, Temple U., April 2016.

[31] Y. SAAD, Iterative Methods for Sparse Linear Systems, SIAM, 2003.
[32] Y. SAAD, On the Lanczos method for solving symmetric systems with

several right hand sides, Math. Comp., 48 (Apr. 1987), pp. 651–662.
[33] V. SIMONCINI AND E. GALLOPOULOS, An iterative method for nonsym-

metric systems with multiple right-hand sides, SIAM J. Sci. Comput.,
16 (1995), pp. 917–933.

[34] C.F. SMITH, A.F. PETERSON, AND R. MITTRA, A conjugate gradient
algorithm for the treatment of multiple incident electromagnetic fields,
IEEE Trans. Ant. & Propag., 37 (1989), pp. 1490–1493.

[35] A. STATHOPOULOS AND K. ORGINOS, Computing and deflating eigen-
values while solving multiple right-hand side linear systems with an
application to quantum chromodynamics, SIAM J. Sci. Comput., 32
(2010), pp. 439–462.

[36] M.L. STEIN, J. CHEN, AND M. ANITESCU, Stochastic approximation
of score functions for Gaussian processes, Ann. Appl. Stat., 7 (2013),
pp. 1162–1191.

[37] B. VITAL, Etude de quelques méthodes de résolution de problèmes
linéaires de grande taille sur multiprocesseur, PhD thesis, Université
de Rennes I, Rennes, Nov. 1990.

[38] W. GROPP, ET AL., MPI - The Complete Reference, The MPI Extensions,
vol. 2, MIT Press, 1998.

[39] J. XIA, Y. XI, S. CAULEY, AND V. BALAKRISHNAN, Fast sparse
selected inversion, SIMAX, 36 (2015), pp. 1283–1314.

	Introduction
	The pp-bcg method
	Solving for the first batch of rhs
	Initialization by modified Galerkin projections
	Analysis of deflation by modified Galerkin projections
	Galerkin projections under limited memory scenarios
	The complete distributed scheme

	Distributed implementation
	Communication cost of information sharing

	Experiments and performance evaluation
	Computational system and test matrices
	A case study and numerical considerations
	Runtimes and efficiency of pp-bcg
	Comparisons with bcg and ScaLAPACK

	Conclusions - Future directions
	References

