
AN ALGEBRAIC MULTILEVEL PRECONDITIONER WITH

LOW-RANK CORRECTIONS FOR GENERAL SPARSE

SYMMETRIC MATRICES∗

YUANZHE XI† , RUIPENG LI† , AND YOUSEF SAAD†

Abstract. This paper describes a multilevel preconditioning technique for solving linear sys-
tems with general sparse symmetric coefficient matrices. This “multilevel Schur low rank” (MSLR)
preconditioner first builds a tree structure T based on a hierarchical decomposition of the matrix
and then computes an approximate inverse of the original matrix level by level. Unlike classical
direct solvers, the construction of the MSLR preconditioner follows a top-down traversal of T and
exploits a low-rank property that is satisfied by the difference between the inverses of the local Schur
complements and specific blocks of the original matrix. A few steps of the generalized Lanczos
tridiagonalization procedure are applied to capture most of this difference. Numerical results are
reported to illustrate the efficiency and robustness of the MSLR preconditioner with both two- and
three-dimensional discretized PDE problems as well as some publicly available test problems.

Key words. Low-rank approximation, Schur complements, multilevel preconditioner, domain
decomposition, incomplete factorization, Krylov subspace methods, nested dissection ordering.

AMS subject classifications. 65F08, 65N22, 65N55, 65Y05, 65Y20

1. Introduction. In this paper, we consider iterative methods for solving large
symmetric sparse linear systems

Ax = b, (1.1)

where A ∈ R
n×n and b ∈ R

n. Krylov subspace methods belong to a class of general-
purpose techniques that are usually combined with a preconditioner to solve the above
system. Preconditioning consists of modifying the original system into, for example,
the left-preconditioned system M−1Ax = M−1b. The preconditioner M is an ap-
proximation to A such that solving linear systems with it is relatively inexpensive.
Often, the preconditioning matrix M is built from an Incomplete LU (ILU) factor-
ization extracted from a form of approximate Gaussian elimination process in which
“fill-ins”, i.e., nonzero entries appearing in zero locations in the original matrix, are
removed. ILU preconditioners are fairly easy to implement and robust for a large
class of problems.

The success of these ILU methods for solving certain systems arising from Partial
Differential Equations (PDEs), has been widely illustrated in the literature. At the
same time it has also become clear in recent years that they fall short of providing
robust and scalable solvers for handling harder problems. The situation has been ac-
centuated by the increased complexity of linear systems encountered on the one hand
and the parallelization requirements on the other. The preconditioners developed so
far in the literature, often face one, or both, of the following issues. First, they fail for
highly indefinite systems because in these situations they will either encounter some
small/zero pivots during the ILU factorization process or produce unstable triangular
factors [4, 28]. Second, their performance in the new breed of highly parallel archi-
tectures, such as computers equipped with GPUs [20] or Intel Xeon Phi processors,

∗This work was supported by NSF under grant NSF/DMS-1216366 and by the Minnesota Super-
computing Institute

†Address: Department of Computer Science & Engineering, University of Minnesota, Twin Cities.
{yxi,rli,saad} @cs.umn.edu

1

2 Y. XI, R. LI AND Y. SAAD

is unacceptably poor due to the sequential nature of the construction and the appli-
cation of the preconditioner. Approximate inverse preconditioners were developed in
the 1990s as an alternative to ILUs [3, 5, 6] to address these issues but their success
has been limited because they rely on the inverse of A being well approximated by a
sparse matrix. In the end, when considering construction cost, storage requirement,
and number of iterations needed for convergence by these techniques, users found
them non-competitive for solving systems with general matrices.

Both of the issues just mentioned can be addressed by low-rank approximation
techniques. To begin with, several rank structured representations of matrices have
been developed for the fast solutions of structured systems, PDEs, integral equations,
eigenvalue problems and for building preconditioners [7, 17, 18, 23, 34, 35, 39, 40].
They include the work on H-matrices [11, 12] and on the variant of hierarchically
semiseperable (HSS) matrices [34, 38]. These matrix representations partition the
given matrix into appropriate blocks and approximate certain off-diagonal blocks with
low-rank matrices. They have also been integrated into sparse matrix techniques
to speed up the intermediate dense matrix operations and provided a new class of
sparse direct solvers [14, 37] and preconditioners [9, 36]. Although these methods
have lower asymptotic complexity bounds than standard methods, the prefactors in
these bounds are large, and the methods generally require much more sophisticated
implementations. They often also require some information on the underlying physical
structure [9].

More recently, a few articles focused on a new class of approximate inverse precon-
ditioners. Within the domain decomposition framework, these preconditioners seek
data sparsity rather than the standard non-zero sparsity in the inverse matrices, and
approximate these inverses with various low-rank correction techniques. The start-
ing point is the Multilevel Low-Rank (MLR) preconditioner proposed in [19]. The
Domain Decomposition based Low-Rank (DD-LR) preconditioner [21] is a variant
geared towards distributed sparse matrices on massively distributed memory com-
puters. The Schur complement based Low-Rank (SLR) preconditioner [22] further
extends this framework to provide preconditioners designed for classical Schur com-
plement methods. In general, these low-rank correction based approximate inverse
preconditioners reach a good balance between robustness and efficiency and thus offer
promising alternatives to the ILU-type preconditioners on modern high performance
computers.

1.1. Contributions. In this paper, we generalize the SLR preconditioner in-
troduced in [22] and propose a multilevel-level Schur complement based Low-Rank
(MSLR) preconditioner. Its main advantages are outlined below.

(1) HID ordering for general sparse matrices. In contrast to the SLR preconditioner
where the adjacency graph of the matrix is only partitioned into subdomains and
interface points, the MSLR preconditioner applies the Hierarchical Interface Decom-
position (HID) ordering [15] to exploit the hierarchy among the interface points such
that a block independent set structure [30] appears at each level of the HID tree T .
The MSLR preconditioner construction algorithm can then fully take advantages of
this structure from two aspects. First, all the diagonal blocks in the reordered matrix
can be factored simultaneously. Second, the rank used in the low-rank corrections at
each level can be estimated for some model problems. The HID ordering can be ob-
tained from graph partitioning tools and is applicable to both 2D and 3D discretizated
PDEs as well as general sparse matrices.

(2) Enhanced efficiency and robustness to indefiniteness. After the HID ordering is

MULTILEVEL PRECONDITIONING WITH LOW-RANK CORRECTIONS 3

obtained and applied, the MSLR preconditioner follows a top-down traversal of T
and constructs an approximate inverse by exploiting a low-rank property in the Schur
complement inverse at each level of T . This construction procedure traverses the tree
T in an order that is the reverse of that used in direct methods and significantly
reduces fill-ins, especially for large 3D problems. We prove that, for some 2D/3D
model problems, the storage for the MSLR preconditioner is nearly O(n). In ad-
dition, the MSLR preconditioner gains in efficiency in the application phase since
irregular computations, such as the backward and forward substitutions, are lim-
ited to the diagonal blocks where these operations can be performed independently
for the blocks at the same level of T . The remaining operations only involve the
sparse/dense matrix-vector products. Extensive numerical experiments further show
that the MSLR preconditioner is not as sensitive to indefinite systems as the classical
ILU-type preconditioners.
(3) Easy update. The quality of the MSLR preconditioner is highly dependent on the
rank used in the low-rank corrections. These low-rank corrections are computed by
the generalized Lanczos algorithm. When the current preconditioner does not achieve
good performance, it can be quickly updated by simply computing more eigenvectors
and adding them into the constructed low-rank correction terms.

1.2. Outline. The remaining sections are organized as follows. Section 2 reviews
the SLR preconditioner proposed in [22]. A hierarchical interface decomposition or-
dering is introduced in Section 3. We study the low-rank property associated with
a sequence of local Schur complement inverses in Section 4 and propose the MSLR
preconditioner in Section 5. The complexity of the MSLR preconditioner is analyzed
in Section 6. Numerical examples with some 2D and 3D PDEs as well as general
sparse matrices are reported in section 7 and a conclusion is drawn in Section 8. In
the presentation, we use the following notation:

• [W,Σ] = eigs(A, k) denotes the application of the Lanczos algorithm to com-
pute k largest eigenpairs of A, where the columns of W contain the desired
eigenvectors and the diagonal entries of Σ are the k largest eigenvalues of A;

• diag(σi) represents a diagonal matrix with σi along its diagonal;
• |A| denotes the dimension of A for a square matrix.

2. Review of the SLR preconditioner. The MSLR preconditioner and the
SLR preconditioner both rely on a low-rank property associated with the Schur com-
plement inverse. The goal of this section is to briefly review this property and give
some details that were not provided in [19, 22]. Assume A is an SPD matrix and let
it be partitioned in 2× 2 block form as

A =

(
B E
ET C

)

, (2.1)

where C ∈ R
s×s. We define the Schur complement matrix S = C − ETB−1E. Since

A is SPD, C is also SPD and admits a Cholesky factorization

C = LLT .

Define the matrix

G = L−1ETB−1EL−T = L−1 (C − S)L−T , (2.2)

and call σi, i = 1, · · · , s, its eigenvalues labeled decreasingly. It can be easily shown
that [22]

0 ≤ σs ≤ σs−1 ≤ · · · ≤ σ1 < 1.

4 Y. XI, R. LI AND Y. SAAD

We are interested in the separation of the eigenvalues of S−1 − C−1 or those of
X ≡ LT

(
S−1 − C−1

)
L. The second is easier to analyze. The following result explains

the observed ‘decay’ property of the eigenvalues of X.
Proposition 2.1. The eigenvalues θs ≤ θs−1 ≤ · · · ≤ θ1 of X are related to

those of G = L−1(C − S)L−T by

θi =
σi

1− σi

, i = 1, · · · , s. (2.3)

In particular the gaps θi− θi+1 between two consecutive eigenvalues of X are given by

θi − θi+1 =
σi − σi+1

(1− σi+1)(1− σi)
, i = 1, · · · , s− 1. (2.4)

These gaps are bigger than the gaps σi − σi+1 associated with the matrix G, and they
are much bigger for those eigenvalues σi close to one, i.e., for the largest ones.

Proof. We have

S = L(I − L−1ETB−1EL−T)LT = L(I −G)LT .

From the above expression and the Cholesky factorization of C we have:

S−1 − C−1 = L−T
[
(I −G)−1 − I

]
L−1 = L−T

[
G(I −G)−1

]
L−1.

Therefore, X = LT (S−1 − C−1)L = G(I − G)−1 and so the eigenvalues of X and
those of G are related by (2.3). The gap formula (2.4) results from a straightforward
calculation.

Proposition 2.1 shows the relation between the eigenvalues of L−1 (C − S)L−T

and LT
(
S−1 − C−1

)
L. It shows that as long as the largest σi’s do not cluster around

1, the largest θi’s will be very well separated in general.
We were initially interested in the difference between S−1−C−1 which is equal to

L−TXL−1. First we observe that X has the same eigenvalues as the matrix S−1C−I
which is equal to (S−1 − C−1)C. In many applications the matrix A originates
from a discretized PDE and in these applications the matrix C is strongly diagonally
dominant.

Based on the eigenvalue inequality (Lidskiis product inequalities and their further
developments [24]), we know that

θiλs(C
−1) ≤ λi(S

−1 − C−1) ≤ θiλ1(C
−1).

Assume that

θk+1 ≤ τθ1 and λ1(C
−1) = cλs(C

−1) (2.5)

for some constants τ and c, then the following estimation holds

λk+1(S
−1 − C−1) ≤ τθ1λ1(C

−1) = cτθ1λs(C
−1) ≤ cτλ1(S

−1 − C−1).

Therefore, if the gap between θ1 and θk+1 is relatively big which means τ in (2.5) is
small, then the gap between λ1(S

−1 − C−1) and λk+1(S
−1 − C−1) will be preserved

except that it will be damped by the condition number of C to a certain degree.
It is not easy to measure the decay rate of S−1−C−1 for a general matrix. It can be

explicitly analyzed for a 2-D Laplacian on a regular grid when 2 domains are used [22].

MULTILEVEL PRECONDITIONING WITH LOW-RANK CORRECTIONS 5

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

i (index of eigenvalue σ
i
)

σ
i

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

i (index of eigenvalue θ
i
)

θ
i
 = σ

i
/(1−σ

i
)

(i) σi decays linearly between [0, 0.999]. (ii) θi =
σi

1−σi
decays between [0, 1000].

Fig. 2.1. Example: Eigenvalue decay rate comparison between σi and σi/(1− σi). Here we
assume σis decay linearly from 0.999 to 0 for 1000 points.

The decay property was fully illustrated in [22] for 2-D Laplacian matrices discretized
on a regular grid. Here we illustrate Proposition 2.1, by considering a simpler example
where 1000 eigenvalues values σi are assumed to decay linearly between (0, 0.999),
see Figure 2.1 (i). The values of θi = σi/(1− σi) are also plotted in Figure 2.1 (ii) for
a comparison.

We see that the values of θi decay much faster than those of σi in this special
example. When θ11 equals only 9% of θ1, σ11 is still 99% as large as σ1. This means
S−1 can be well approximated by C−1 plus a rank-10 matrix in this case. In contrast,
C−S cannot be approximated by a low-rank matrix. The usefulness of this property
for developing preconditioners of general matrices was also demonstrated through
numerical examples in [22].

The SLR preconditioner proposed in [22] incorporates the result of Proposition
2.1 into the domain decomposition framework for general sparse matrices. The idea is
to first partition the adjacency graph of the input matrix into p disjoint subdomains
and interface points and label the unknowns associated with each subdomain before
the unknowns associated with interface points such that B in (2.1) corresponds to
the points of subdomains and is in a block diagonal form. The matrices B and C are
factored using a form of incomplete Cholesky factorization, so we have B ≈ LBL

T

B
,

and C ≈ LCL
T

C
. The SLR preconditioner M then has the following form

M =

(
LB

ETL−T

B
I

)(
I

S̃

)(
LT

B
L−1
B

E
I

)

,

where S̃−1 = L−T

C

(
I +WTWT

)
L−1
C

, and L−T

C
WTWTL−1

C
is a low-rank approxima-

tion for S−1−C−1 obtained from approximating L−1
C

ETB−1EL−T

C
using the Lanczos

algorithm.

The numerical tests reported in [22] indicated that the SLR preconditioner is quite
robust, making it an attractive alternative to ILU-type preconditioners for certain
types of problems. However, its efficiency deteriorates for large 3D problems. This
is due to the fact that the number of the interface points can be relatively big for
those problems and a direct factorization of the matrix C in (2.1) becomes costly.
This observation provides a motivation for exploring a multilevel scheme to improve
performance.

6 Y. XI, R. LI AND Y. SAAD

3. Hierarchical interface decomposition ordering. An interesting class of
domain decomposition methods, that exploits a hierarchy of “interfaces”, is based on
so-called wirebasket orderings [32, 33]. These techniques take advantages of cross-
points in the partitioned mesh to derive preconditioners with good convergence prop-
erties. In [15] a similar idea is introduced for general sparse matrices not necessarily
originating from partial differential equations. This paper defines a so-called “Hier-
archical Interface Decomposition (HID)” ordering for a general graph through “con-
nectors”. In an HID ordering with L levels, connectors of level l are a set of subsets
of vertices that are disjoint with other connectors on the same level and separated in
the original graph by connectors of higher levels. When labeled by levels the resulting
matrix will have a block-diagonal structure for each level and very efficient parallel
preconditioners based on parallel Gaussian elimination can be developed. However, we
will not seek to develop ILU-type preconditioners, but rather to incorporate low-rank
approximations in this context as is explained in the following sections.

An HID ordering can be obtained in a number of ways, see [15] for an example
from a standard graph partitioning. They can also be obtained from the standard
Nested Dissection (ND) algorithm [10] . Let G = (V,E) be the adjacency graph
associated with a symmetric sparse matrix A. The main idea of the ND ordering is
to recursively bi-partition the graph using vertex separators. Here, a vertex separator
is a small set of nodes in V whose removal separates the graph into two disjoint
subgraphs. Suppose we have L levels. The first bisection produces two subsets and a
separator. At this level (L = 3) we will have one connector and it is just the separator.
This set is the line of vertices labeled 15 in Figure 3.1 (i). Descending to the next
level (L − 1 = 2) we now have two connectors consisting of the two separators of
each of the resulting subsets. These are labeled 13 and 14 in Figure 3.1 (i). The
separators produced at step i of ND ordering (i = 1, . . . , L − 1) are the connectors
of level L − i + 1. The zero-th level consists of the subsets of points interior to each
subdomain. The level information of these connectors can be represented by an HID
tree T . See Figure 3.1 (ii) for an example. The matrix is ordered by level, starting
with nodes of level 0 and ending with nodes of level L. Figure 3.1 (iii) shows the
non-zero pattern for the mesh in Figure 3.1 (i) when this ordering is used.

The reordered matrix with the HID ordering has the following multilevel recursive
form:

Al =

(
Bl El

ET

l
Cl

)

and Cl = Al+1 for l = 0 : L− 1, (3.1)

where A0 is the reordered matrix of A from the HID ordering and AL represents
the submatrix associated with the top-level connector. Each leading block Bl in Al

has the desired block-diagonal structure resulting from the block independent set [30]
nature of this ordering. In the example of Figure 3.1 (iii), B0, B1 and B2 correspond
to the matrices containing the blocks labeled 1-8, 9-12 and 13-14, respectively.

The HID ordering forms the block independent sets in a preprocessing stage. In
contrast, the methods in [27, 30, 31] determine these block independent sets dynam-
ically since each Al+1, which is an approximate Schur complement matrix at level
l, is only available after the factorization of Al. Once the block independent set at
each level l is determined, classical multilevel algorithms [27, 30, 31] explore different
strategies to approximate the following factorization of Al:

Al =

(
I

ET

l
B−1

l
I

)(
Bl

Sl

)(
I B−1

l
El

I

)

, (3.2)

MULTILEVEL PRECONDITIONING WITH LOW-RANK CORRECTIONS 7

1
2

3
 7

5

4

8

6

9

10

11

12

13

14

15

Levels

9

13 14 2

15 3

12 1
10 11

 01 2 3 4 5 6 7 8

(i) 3-level partition of a 2-D domain. (ii) An HID tree with connector level information.

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

2

6

5

4

3

1

8

10

15

14

13

12

11

9

7

(iii) Non-zero pattern of the reordered matrix.

Fig. 3.1. An illustration of the hierarchical domain decomposition ordering for a 2D problem.

where Sl = Cl − ET

l
B−1

l
El is the Schur complement. The next section discusses

the low rank property of S−1
l

− C−1
l

for each l and derives an efficient multilevel
preconditioner based on this property.

4. Low-rank property of S−1

l
−C−1

l
. In this section, we examine the rank

of the matrix S−1
l

− C−1
l

obtained from the HID ordering for some model problems.
We start our analysis from the exact rank of S−1

l
−C−1

l
. First we need to define the

cross points in the HID ordering since these points are closely related to the rank of
S−1
l

− C−1
l

. Similar definitions can also be found in [15, 33].

Definition 4.1. Cross points at level l are subsets of connectors of level l that
intersect with connectors of higher levels.

In Figure 3.1 (i) for example, the cross points of level 2 are those points at the
intersection of the lines labeled 13 and 14 with the line labeled 15. Similarly, cross
points of level 1 are those points at the intersection of the lines labeled 9, 10, 11, 12
with the lines labeled 13, 14. The relation between the cross points and the rank of
S−1
l

− C−1
l

is shown in the following lemma.

Lemma 4.2. The exact rank of S−1
l

−C−1
l

is bounded by the number of the cross
points at level l.

Proof. Since El represents the couplings between the connectors at level l and
upper levels k for k > l, the rank of El should equal the number of cross points at
level l which is generally smaller than the dimension of Cl. This means El admits a
low-rank representation

El = UlV
T

l ,

8 Y. XI, R. LI AND Y. SAAD

where the column size of Vl equals the number of cross points at level l. Thus,

Sl = Cl − Vl U
T

l B−1
l

Ul
︸ ︷︷ ︸

Gl

V T

l .

Applying the Sherman-Morrison-Woodbury (SMW) formula to Sl,

S−1
l

= C−1
l

+ C−1
l

Vl(G
−1
l

− V T

l C−1
l

Vl)
−1V T

l C−1
l

,

shows clearly that the rank of S−1
l

−C−1
l

is bounded by the rank of Vl, which is equal
to the rank of El.

Lemma 4.2 shows that we can bound the rank of S−1
l

− C−1
l

based on the rank
of El. For the 2D and 3D PDE problems discretized on the regular grids (N ×N for
2D or N ×N ×N for 3D), the rank of El can be analytically derived.

Lemma 4.3. Suppose an L level HID ordering is applied to a 2D/3D regular grid.
Then the rank of S−1

l
− C−1

l
has order O(2L−l) for 2D problems and O(2L−lN) for

3D problems when l > 0.
Proof. Based on Lemma 4.2, we know that we only need to count the number

of the cross points at each level. For the 2D case, each connector at level l connects
to upper level connectors through at most 2 points. There are 2L−l connectors in all
at level l, so the rank of S−1

l
− C−1

l
is bounded by O(2L−l). The ranks in the 3D

case are much larger since the connectors are all 2D planes. Each connector at level l
connects to upper level ones through at most four lines. The length of those lines is
bounded by N . Thus, the rank of S−1

l
− C−1

l
has order O(2L−lN).

Lemma 4.3 shows that the rank of S−1
l

− C−1
l

can be considered small when l
is near L. When l = 0, the rank of S−1

l
− C−1

l
no longer satisfies the rank bound

estimation in Lemma 4.2 and is proportional to the number of boundary points of
all subdomains on level 0, which is O(2

L

2 N) for the 2D case and O(2
L

3 N2) for the
3D case. See Figures 4.1, 4.2, 4.3 and 4.4 for a Laplacian example. The eigenvalues
are computed by the matlab built in function eig and the resulting ranks are slightly
different from the estimation in Lemma 4.3. The reason is that we use the graph
partitioning tool Metis [16] to achieve the HID ordering so that the connectors may
have irregular connectivity and do not strictly follow the assumptions in the theoretical
analysis.

Figures 4.2 and 4.4 numerically confirm the claim of Lemma 4.3 and show that
the exact rank of S−1

l
−C−1

l
almost doubles as we go down one level on T until level

1. But a more interesting property is in regard to the numerical rank. Based on
Proposition 2.1, we can expect that the numerical rank rl of S

−1
l

− C−1
l

should be
much smaller. We report these numerical ranks with respect to different tolerances
τ in Tables 4.1 and 4.2 for the Laplacian examples in Figures 4.1 and 4.3. Here the
numerical rank rl = k with respect to τ , or relative to τ , just means that the kth
singular value is larger than τ × the 1st singular value while the (k + 1)st singular
value is less than or equal to τ × the 1st singular value. (In these Laplacian examples,
the eigenvalues and the singular values are the same.)

From Table 4.1, we find that the numerical ranks in the 2D Laplacian example
are all less than 7 for τ = 2 × 10−1. From Table 4.2 we also observe that the ranks
for the 3D problem are slightly larger than the 2D problem. Their ranks are all less
than 38 when τ = 2× 10−1.

From the above analysis, we see that S−1
l

−C−1
l

can be well approximated with a
low-rank matrix. Next, we will derive an efficient method to compute such an approx-
imation without having to form S−1

l
explicitly. This low-rank approximation method

MULTILEVEL PRECONDITIONING WITH LOW-RANK CORRECTIONS 9

0 2000 4000 6000 8000 10000 12000 14000 16000

0

2000

4000

6000

8000

10000

12000

14000

16000

nz = 81408

Fig. 4.1. Nonzero pattern of a reordered discretized negative 2D Laplacian with a 4–level HID
ordering. The original matrix is discretized on a 128× 128 regular grid with 5-point stencil.

Table 4.1

Numerical rank rl of S−1
l

− C−1
l

for the 2D Laplacian example in Figure 4.1 for varying
tolerances τ .

Matrix S−1
0 − C−1

0 S−1
1 − C−1

1 S−1
2 − C−1

2 S−1
3 − C−1

3

dim 797 504 269 135

τ r0 r1 r2 r3
2× 10−1 6 7 2 1
10−1 12 7 2 1
10−2 126 7 2 1
10−3 371 7 2 1

will be used extensively in the construction of the multilevel low-rank preconditioner
introduced in the next section. Based on the proof in Proposition 2.1, we know that

S−1
l

− C−1
l

= L−T

l
Ul

(
Σl(I − Σl)

−1
)
UT

l L−1
l

, (4.1)

where Ll is the Cholesky factor of Cl and UlΣlU
T

l
is the eigen-decomposition of

L−1
l

ET

l
B−1ElL

−T

l
. Notice that if we simply follow the approximation method used

in the SLR preconditioner, we would have to compute the incomplete Cholesky fac-
torization of each Cl. Obviously, this would prove highly inefficient because it is not
possible to reuse the factorization information among these factors even though Cl is
a submatrix of Cl−k for k < l.

It is easy to see that C−1
l

ET

l
B−1

l
El has the same eigenvalues as L−1

l
ET

l
B−1ElL

−T

l

and the columns of L−T

l
Ul in (4.1) are the eigenvectors of C−1

l
ET

l
B−1

l
El due to the

following relation

L−1
l

ET

l B
−1ElL

−T

l
Ul = UlΣl ⇐⇒ C−1

l
ET

l B
−1
l

ElL
−T

l
Ul = L−T

l
UlΣl.

Thus, the computation of a low-rank approximation to (4.1) can be obtained through
the following generalized eigenvalue problem

ET

l B
−1
l

Elx = λClx.

10 Y. XI, R. LI AND Y. SAAD

0 100 200 300 400 500 600 700 800
10

−3

10
−2

10
−1

10
0

10
1

10
2

0 20 40 60 80 100 120
10

−35

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

(i) Eigenvalues of S−1
0 − C−1

0 . (ii) Eigenvalues of S−1
1 − C−1

1 .

0 10 20 30 40 50 60
10

−35

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

1 2 3 4 5 6 7 8 9 10 11
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

(iii) Eigenvalues of S−1
2 − C−1

2 . (ii) Eigenvalues of S−1
3 − C−1

3 .

Fig. 4.2. The eigenvalues of S−1
l

− C−1
l

at different levels l for the 2D example in Figure 4.1.

Table 4.2

Numerical rank rl of S
−1
l

−C−1
l

for the 3D Laplacian example in Figure 4.3 relative to different
tolerance τ .

Matrix S−1
0 − C−1

0 S−1
1 − C−1

1 S−1
2 − C−1

2 S−1
3 − C−1

3

dim 1790 1137 780 400

τ r0 r1 r2 r3
2× 10−1 10 38 17 13
10−1 28 63 32 21
10−2 275 103 63 30
10−3 1268 103 63 30

We compute the k largest eigenpairs of the above problem and denote this computa-
tion as

[Wl,Σl] = eigs(C−1
l

ET

l B
−1
l

El, k). (4.2)

Then, a rank k approximation to S−1
l

− C−1
l

can be chosen as

S−1
l

− C−1
l

≈ WlHlW
T

l , (4.3)

where the diagonal matrix Hl is computed by

Hl = Σl(I − Σl)
−1.

MULTILEVEL PRECONDITIONING WITH LOW-RANK CORRECTIONS 11

0 1000 2000 3000 4000 5000 6000 7000 8000

0

1000

2000

3000

4000

5000

6000

7000

8000

nz = 53600

Fig. 4.3. Nonzero pattern of a reordered discretized negative 3D Laplacian with a 4–level HID
ordering. The original matrix is discretized on a 20× 20× 20 regular grid with 7-point stencil.

This low-rank approximation method has the advantage that it only requires a system
solution with the matrix Cl in the eigenvalue computation. In the next section, we will
introduce a recursive formula to solve systems with Cl based on the approximation of
Ck for k > l.

5. Multilevel low-rank correction preconditioner construction. In this
section, we will show how to utilize the low-rank property discussed in Section 4 to
develop an efficient multilevel Schur complement based Low-Rank (MSLR) precon-
ditioner for general symmetric sparse matrices. Even though the above analysis is
derived from symmetric positive definite (SPD) systems, the proposed method can
also be extended to the indefinite systems where only B0 is indefinite and the remain-
ing Bl’s for l > 0 are all SPD. This situation often occurs in discretized PDE problems
[22].

5.1. Basic idea of the 3 level scheme. The basic idea of the MSLR precon-
ditioner can be illustrated with a 3 level algorithm. The major steps are as follows:

1. Apply a 3 level HID ordering to reorder the matrix A such that the top level
connector is at level 3.

2. At level 0, factorize A0 as follows

A0 =

(
I

ET
0 B

−1
0 I

)(
B0

S0

)(
I B−1

0 E0

I

)

.

Thus,

A−1
0 =

(
I −B−1

0 E0

I

)(
B−1

0

S−1
0

)(
I

−ET
0 B

−1
0 I

)

.

This shows that the original system A can be easily solved if S−1
0 is available.

Based on the discussion in Section 4, we know that S−1
0 can be approximated

by C−1
0 plus a low-rank correction term as follows

S−1
0 ≈ C−1

0 +W0H0W
T

0 .

12 Y. XI, R. LI AND Y. SAAD

0 200 400 600 800 1000 1200 1400 1600 1800
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

0 200 400 600 800 1000 1200
10

−20

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

(i) Eigenvalues of S−1
0 − C−1

0 . (ii) Eigenvalues of S−1
1 − C−1

1 .

0 100 200 300 400 500 600 700 800
10

−20

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

0 50 100 150 200 250 300 350 400
10

−20

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

(iii) Eigenvalues of S−1
2 − C−1

2 . (ii) Eigenvalues of S−1
3 − C−1

3 .

Fig. 4.4. The eigenvalues of S−1
l

− C−1
l

at different levels l for the 3D example in Figure 4.3.

Notice that this low-rank term also involves the information from C−1
0 . Thus

the problem reduces to finding C−1
0 . A direct factorization of C0 is too costly

if its dimension is large, so we go upward to the next level (level 1) and try
to find an approximation to C−1

0 .
3. At level 1, we have

C−1
0 ≡ A−1

1 =

(
I −B−1

1 E1

I

)(
B−1

1

S−1
1

)(
I

−ET
1 B

−1
1 I

)

.

Following the same reasoning as in level 0, the matrix of S−1
1 can be approx-

imated by C−1
1 plus a correction

S−1
1 ≈ C−1

1 +W1H1W
T

1 .

We then move to level 2 to compute C−1
1 .

4. At level 2, we have

C−1
1 ≡ A−1

2 =

(
I −B−1

2 E2

I

)(
B−1

2

S−1
2

)(
I

−ET
2 B

−1
2 I

)

.

and similarly to previous levels

S−1
2 ≈ C−1

2 +W2H2W
T

2 .

MULTILEVEL PRECONDITIONING WITH LOW-RANK CORRECTIONS 13

We assume the size of C2 is small enough to admit a direct incomplete
Cholesky factorization

C2 ≈ L2L
T

2 .

5. Therefore, a 3-level scheme to compute an approximation to A−1 follows the
following dependencies

A−1 → A−1
0 → S−1

0 → A−1
1 → S−1

1 → A−1
2 → S−1

2 → C−1
2 → L2.

See Figure 5.1 for a pictorial illustration of this dependence.

B

CE SS
S

0

 0
0

 2
0

 C

B1

C
2

2

2L
B

1
1 1

1
1

ET
1

T

E 2
T

Fig. 5.1. An illustration of the dependencies in the 3 level algorithm.

Algorithm 1

Multilevel Schur complement based Low-Rank (MSLR) preconditioner construction

1: procedure MSLR

2: Apply an L-level HID ordering to A and denote the reordered matrix as A0.
3: Factor CL−1 by an incomplete Cholesky factorization

CL−1 ≈ ML−1M
T

L−1.

4: for level l from L− 1 to 0 do

5: Factor Bl by an incomplete Cholesky/LDL factorization

Bl ≈ LlDlL
T

l .

6: Compute the k largest eigenpairs ⊲ Call Algorithm 2 to apply C−1
l

except
when l = L− 1

[Wl,Σl] = eigs(C−1
l

ET

l B
−1
l

El, k)

by the generalized Lanczos algorithm.
7: Compute Hl = Σl(I − Σl)

−1.
8: end for

9: end procedure

Once an approximation to C−1
l

is available, the low-rank correction matrices Wl

and Hl can be computed with the method in (4.2).

14 Y. XI, R. LI AND Y. SAAD

5.2. The multilevel scheme. The 3-level algorithm introduced in the previous
section illustrates the basic idea of a multilevel algorithm. In a real implementation,
the MSLR preconditioner construction follows a reverse order and proceeds from level
L− 1 to level 0. In this section we provide more details on this construction process.

First we apply an L-level HID ordering to reorder the matrix A and compute an
incomplete Cholesky factorization of CL−1:

CL−1 ≈ ML−1M
T

L−1.

We then traverse the HID tree from level L−1. We compute an incomplete Cholesky
factorization of BL−1:

BL−1 ≈ LL−1L
T

L−1,

and derive the low-rank correction by computing the largest k eigenpairs of the matrix
C−1

L−1E
T

L−1B
−1
L−1EL−1,

[WL−1,ΣL−1] = eigs(C−1
L−1E

T

L−1B
−1
L−1EL−1, k).

A diagonal matrix HL−1 is then modified from ΣL−1 given by

HL−1 = ΣL−1(I − ΣL−1)
−1.

Based on the analysis in Section 4, we know that

S−1
L−1 ≈ C−1

L−1 +WL−1HL−1W
T

L−1.

We then go downward the HID tree and repeat the same operations performed on
level L− 1 for the remaining levels. At level 0, if B0 is still an SPD matrix, we apply
the incomplete Cholesky factorization to it, otherwise we apply the incomplete LDL
factorization.

When applying the generalized Lanczos algorithm to compute Wl and Σl at each
level l, we need to compute the matrix-vector products of C−1

l
ET

l
B−1

l
El with arbitrary

vectors. Since we have the factors of Bl, the matrix-vector product associated B−1
l

can be carried out by one forward and one backward substitutions. However, the
same strategy cannot be applied to C−1

l
since we do not have the incomplete factors

of Cl except at level L− 1. Recall that C−1
l

≡ A−1
l+1 for l < L− 1 and an approximate

factorization of Al+1 has already been available after the computation at level l + 1.
Thus, in order to reduce computational cost, we can use this approximation to apply
C−1

l
to an arbitrary vector. More specifically, we take the following approximation

form

Cl ≡ Al+1 ≈
(
Ll+1

Y T

l+1 I

)(
Dl+1

Tl+1

)(
LT

l+1 Yl+1

I

)

,

where Yl+1 = D−1
l+1L

−1
l+1El+1 and T−1

l+1 = C−1
l+1 +Wl+1Hl+1W

T

l+1 ≈ S−1
l+1 for l < L− 1,

and CL−1 ≈ ML−1M
T

L−1. Note thatDl+1 equals to the identity matrix if Bl+1 is SPD.
Algorithm 1 provides a detailed illustration of the multilevel construction scheme. A
recursive scheme for computing the product of C−1

l
with a vector b is described in

Algorithm 2.
Note that the block independent set structure from the HID ordering can greatly

improve the efficiency of the MSLR preconditioner in a number of ways. First, in the

MULTILEVEL PRECONDITIONING WITH LOW-RANK CORRECTIONS 15

Algorithm 2

A recursive formula for the approximation of y = C−1
l

b

1: procedure RSC(l,b)
2: if l = L− 1 then

3: return y = M−T

L−1M
−1
L−1b.

4: else

5: Split b = (b1, b2)
T .

6: Compute z1 = L−1
l+1b1.

7: Compute z2 = b2 − ET

l+1L
−T

l+1D
−T

l+1z1.

8: Compute z1 = D−1
l+1z1.

9: Compute y2 = RSC(l + 1, z2).
10: Compute y2 = y2 +Wl+1Hl+1W

T

l+1z2.

11: Compute y1 = L−T

l+1

(
z1 −D−1

l+1L
−1
l+1El+1y2

)
.

12: return y = (y1, y2)
T .

13: end if

14: end procedure

Table 6.1

Application cost ξappl and storage cost σmem of the MSLR preconditioner for the matrix A
discretized on a regular grid, where r is the maximal rank used in the low-rank corrections.

Grid ξappl σmem

2D (N ×N , n = N2) O(
√
rn) O(

√
rn)

3D (N ×N ×N , n = N3) O((r
2
3 + log n)n) O((r

2
3 + log n)n)

MSLR construction algorithm, all the diagonal blocks in Bl can be factored simulta-
neously. Second, in the application of the MSLR preconditioner to a vector v, which
corresponds to applying Algorithm 2 by setting l = −1, i.e, RSC(−1, v), the triangular
solves associated with Bl can be performed independently for each diagonal block
in Bl. The computation of the matrix vector products in the generalized Lanczos
algorithm can also benefit from this structure.

6. Complexity analysis. In this section, we show the computational complex-
ity and the storage cost of the MSLR preconditioner for some model problems. For
simplicity, we consider the case where the maximal rank used in the approximation of
S−1
l

−C−1
l

is bounded by a constant r. We also want to emphasize that the prefactors
in these bounds can be large.

Theorem 6.1. Suppose the matrix A is discretized on a 2D N×N grid (n = N2)
or a 3D N × N × N grid (n = N3), and the maximal rank used in the low-rank
approximation of S−1

l
−C−1

l
is bounded by a constant r. Then the optimal application

cost ξappl and storage cost σmem for the MSLR preconditioner on this matrix A satisfy
the estimates listed in Table 6.1.

Proof. The MSLR preconditioner requires to store the triangular factors and the
low-rank correction matrices at each level. For the 2D case, each diagonal block in Bl

has the size of O(N

2
⌊
L−l+1

2
⌋
) and there are 2L−l blocks in total, thus |Bl| is O(2⌊

L−l

2
⌋N).

The row size of Wl is equal to the row size of Cl, which is N when l = L − 1 and
∑L−1

k=l+1 |Bk| + N for l < L − 1 . Therefore, the storage for the low-rank correction

16 Y. XI, R. LI AND Y. SAAD

σlrkmem can be estimated as follows

σlrkmem =

L−2∑

l=0

(
L−1∑

k=l+1

|Bk|+N

)

r +Nr + Lr = O(2
L

2 Nr),

which is an increasing function of L. On the other hand, the storage σlumem for the
triangular factors can be estimated in the following way

σlumem =

L∑

l=1

2L−lO

(
N

2⌊
L−l+1

2
⌋

)

+ 2LO

(

(
N

2⌊
L+1

2
⌋
)3
)

= O(2
L

2 N) +O(
N3

2
L

2

).

Here, we assume each diagonal block in Bl for l > 0 is a tridiagonal matrix and each
diagonal block in B0 is a banded matrix with bandwidth O(N

2
⌊
L+1

2
⌋
). Therefore, the

optimal σmen = O(
√
rn) is obtained when 2L = O(N

2

r
) for the 2D case.

Similarly, the complexity for the 3D case can be analyzed as follows.

σlrkmem =
L−2∑

l=0

(
L−1∑

k=l+1

|Bk|+N2

)

r +N2r + Lr = O(2
L

3 N2r),

and

σlumem =

L∑

l=1

2L−lO

(

(
N

2⌊
L−l+1

3
⌋
)3
)

+ 2LO

(

(
N

2⌊
L+1

3
⌋
)5
)

= O(N3L) +O(
N5

2
2L
3

).

The optimal σmen = O((r
2
3 +log n)n) is obtained when 2L = O(N

3

r
). The application

cost ξappl of the MSLR preconditioner is the same as in the memory storage.
Note that in practice, we need to merge a few nodes on the binary HID tree

into a new node to reduce the height of the HID tree and thus reduce the length
of the recursion in the MSLR construction algorithm for better performance. More
specifically, for those non-leaf nodes, we merge one node and its two children nodes
into a new node for the 2D problems and merge one node, its two children nodes
and four children nodes of those two children nodes into one new node for the 3D
problems. See Figure 6.1 for a 2D example. In fact, this modification corresponds
a quad/octa-partitioning of the mesh for 2D/3D cases, which will create fewer but
larger connectors than the original binary HID ordering.

7. Numerical experiments. In this section, we illustrate the efficiency and
robustness of the MSLR preconditioner with some sparse matrices from both 2D and
3D simulations. The testing platform consists of two Intel Xeon X5560 processors (8
MB cache, 4 cores each at 2.8 GHz) and 24 GB of memory. The MSLR preconditioner
was implemented in C/C++, and the code was compiled by the Intel C compiler using
the -O2 optimization level. We also used BLAS and LAPACK routines from Intel
Math Kernel Library to boost the performance on multiple cores. The computation
of the MSLR preconditioner was parallelized using OpenMP [25].

MULTILEVEL PRECONDITIONING WITH LOW-RANK CORRECTIONS 17

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(i) A binary HID tree. (ii) A merged HID quadtree.

Fig. 6.1. An illustration of the merged HID tree from a binary HID tree. Here, every three
non-leaf nodes in the same blue dotted ellipse in the left binary tree are merged into a new node in
the right quadtree.

The HID ordering in the MSLR preconditioner was implemented through the
PartGraphRecursive from Metis [16]. Each diagonal block in a MSLR precondi-
tioner was reordered by the approximate minimum degree (AMD) ordering [1, 2] to
reduce the fill-ins in the incomplete Cholesky or LDL factorizations. We consider
those reordering procedures as a preprocessing step and do not include these in the
MSLR preconditioner construction time. In the generalized Lanczos algorithm, we
used the full reorthogonalization algorithm and set the maximal number of Lanczos
steps to not exceed five times the number of required eigenvalues.

We compared the MSLR preconditioner with the incomplete Cholesky factoriza-
tion with threshold dropping (ICT), the incomplete LDL factorization with threshold
dropping (ILDLT) and the restricted additive Schwarz (RAS) method with one-level
overlapping in the following tests. The accelerators we used included the conjugate
gradient (CG) method [13] for the SPD cases, and the generalized minimal residual
(GMRES) [26, 29] method with a restart dimension of 40, denoted by GMRES(40)
for the indefinite cases. Since the RAS preconditioner is nonsymmetric even for the
symmetric matrices, we used it along with GMRES(40) for all the numerical tests.
For the ICT and the ILDLT preconditioners, the test matrices were first reordered by
the AMD ordering. The right-hand side in all the tests was formed by taking b = Ae,
where e is the vector of all ones.

The following notation is used throughout the section:

• fill: ratio of the number of non-zeros in the preconditioners over the number
of non-zeros in the original matrix;

• p-t: wall clock time to build the preconditioners in seconds;
• its: number of iterations using CG or GMRES(40) with preconditioners to
reduce the initial residual by a factor of 10−6. We use “F” to indicate non-
convergence within 300 iterations;

• i-t: wall clock time required in the iteration phase;
• rk: maximal rank used in the low-rank corrections;
• lev: number of levels in the binary tree from the HID ordering;
• mg: number of levels merged into one level in the binary HID tree.

18 Y. XI, R. LI AND Y. SAAD

Table 7.1

The fill-factor and iteration counts for
solving a discretized negative Laplacian on a
503 grid along with the CG-MSLR method.
Here, the rank used in the low-rank correction
is 16 and the threshold used in the incomplete
Cholesky factorization is 10−3.

lev fill from ICTfill from low-rank fill its

5 11.6 .629 12.2 16

6 7.77 1.01 8.79 18

7 5.74 1.50 7.24 22

8 3.50 2.16 5.66 23

9 2.32 3.00 5.32 27

10 1.65 4.01 5.66 30

11 1.12 5.26 6.38 31

5 6 7 8 9 10 11
0

2

4

6

8

10

12

level

fil
l−

fa
ct

or

fill−factor from ICT
fill−factor from low−rank correction

Fig. 7.1. Illustration of fill-factors from
ICT and low-rank correction with respect to dif-
ferent levels in Table 7.1.

7.1. Model problems. We begin our tests of the MSLR preconditioner with
the following model problem

−∆u− cu = f in Ω,

u = φ(x) on ∂Ω, (7.1)

where the PDEs are defined over Ω = (0, 1)
d
with d = 2 or 3 and with Dirichlet

boundary conditions. These PDEs are discretized by the 5-point stencil in 2D and
7-point stencil in 3D.

7.1.1. Effect of the number of levels. One important consideration when
using the MSLR preconditioner is the number of levels. We studied its effect by
solving (7.1) with c = 0 and discretizing it on a 503 grid. We fixed the rank to 16
and the threshold to 10−3 and gradually increased the number of levels from 5 to 11.
We did not merge the levels of the binary HID tree in this example. As can be seen
from Table 7.1, the total fill-factor first decreases from 12.2 to 5.32 as the number of
levels increases from 5 to 9 and then increases to 6.38 as the number of levels further
increases to 11. This shows that the fill-factor from the incomplete factorization is a
decreasing function with lev while the fill-factor from the low-rank corrections is an
increasing function with lev. The optimal fill-factor was obtained when the fill-factors
from these two parts were almost the same which is when lev = 9 in this example, see
Figure 7.1. The results in Table 7.1 and Figure 7.1 are consistent with our complexity
analysis in Section 6.

7.1.2. Effect of the rank in the low-rank corrections. We next varied
the rank used in the MSLR preconditioner and compared the iteration counts and
the corresponding fill-factors to solve a discretized negative Laplacian on a 503 grid
with the CG method. We fixed the threshold to 10−3 for the incomplete Cholesky
factorization, lev to 7 and mg to 3 for this test matrix. The convergence results with
respect to different ranks can be found in Table 7.2.

As the rank increases from 10 to 50, one can observe a steady improvement in
the convergence in Table 7.2. However, larger ranks also lead to larger fill-factors
and more computational time to compute the low-rank corrections. In the following
numerical examples, we chose a moderate rank for the SPD problems and a relatively
larger rank for the indefinite problems.

MULTILEVEL PRECONDITIONING WITH LOW-RANK CORRECTIONS 19

Table 7.2

Ranks and iteration counts for solving a discretized negative Laplacian on a 503 grid with the
CG-MSLR method. Here we fix the grid size to 503, lev to 7 and the threshold used in the incomplete
Cholesky factorization to 10−3.

rk fill from ICT fill from low-rank fill its

10 3.56 .826 4.38 24

20 3.56 1.65 5.21 21

30 3.56 2.48 6.03 18

40 3.56 3.30 6.56 18

50 3.56 4.13 7.69 16

7.1.3. Preconditioning model problems. We first solve (7.1) with c = 0 and
various grid sizes. We compared the convergence behavior between the MSLR, the
ICT and the RAS preconditioners and reported the results in Table 7.3. As the grid
size increased, we increased lev accordingly to control the fill-ins from the incomplete
Cholesky factorization. For the 2D problem, we set lev to 5, 7 and 9 for the grid size
2562, 5122 and 10242, respectively. For the 3D problem, we chose lev to be 7, 10 and
13 for the grid size 323, 643 and 1283, respectively. Here, the rank in the low-rank
corrections was fixed to 16.

Table 7.3

Comparison of the ICT, the RAS and the MSLR preconditioners for solving SPD linear systems
from the 2-D/3-D PDE in (7.1) with the CG or the GMRES methods when c = 0.

Grid
ICT-CG RAS-GMRES MSLR-CG

fill p-t its i-t fill p-t its i-t lev mg rk fill p-t its i-t

2562 4.86 0.08 34 0.17 4.96 0.19 83 4.96 5 2 16 4.80 0.05 49 0.11

5122 4.55 0.31 67 1.33 4.74 0.86 211 1.87 7 2 16 4.72 0.27 78 0.74

10242 4.58 1.20 128 11.1 5.21 4.38 F – 9 2 16 4.74 1.16 159 6.49

323 4.27 0.06 16 0.05 4.31 0.17 26 0.03 7 3 16 4.13 0.10 17 0.03

643 4.14 0.46 30 0.76 4.12 1.63 49 0.53 10 3 16 4.07 0.85 35 0.47

1283 4.29 3.67 57 12.40 4.20 21.90 121 19.90 13 3 16 4.16 10.18 66 8.21

Table 7.3 shows that with almost the same fill-factors, the CPU time to con-
struct a MSLR preconditioner is the smallest among these three for 2D problems
and becomes more expensive than the ICT preconditioner for 3D problems. In fact,
the construction time of the MSLR preconditioner is dominated by the generalized
Lanczos algorithm since the computation of each Lanczos vector needs a sequence of
triangular solves and sparse/dense matrix-vector products. But the MSLR precondi-
tioner can greatly reduce the CPU time in the iteration phases in both cases. We find
that even though the iteration number of the MSLR-CG method is slightly larger than
that of the ICT-CG method in Table 7.3, the MSLR-CG method only costs about 60%
of the iteration time used by the ICT-CG method to achieve the same accuracy. This
can be explained from two factors. First, all the triangular solves associated with the
diagonal blocks in the same Bl can be performed independently. We have exploited
this property with the simple thread-level parallelism by OpenMP. Second, a large
portion of the fill-factor in the MSLR preconditioner is from the low-rank corrections.
These dense matrix vector multiplication operations are quite efficient on modern

20 Y. XI, R. LI AND Y. SAAD

computer architectures. We expect to see a more substantial performance improve-
ment when implementing the MSLR preconditioner on SIMD-type parallel machines
such as those equipped with GPUs or Intel Xeon Phi processors in the future.

It is also interesting to compare the MSLR and the SLR [22] preconditioners
on these model problems. We controlled lev, rk and the threshold such that the
SLR preconditioner had roughly the same fill-factors as the MSLR and reported its
performance in Table 7.4.

Table 7.4

Performance of the SLR-CG on the 3D model problems in Table 7.3.

Grid fill p-t its i-t
323 4.18 0.15 16 0.03
643 4.14 1.05 37 0.61
1283 4.17 10.80 78 10.9

We find that the when the grid size is 323, SLR-CG method requires almost
the same number of iterations and iteration times to converge as does the MSLR-
CG method. However, as the grid size increases, the SLR-CG method becomes less
efficient. The MSLR-CG method not only requires less CPU time to construct but
also requires slightly fewer iterations and less iteration time to converge.

We then consider solving indefinite systems by setting c > 0 in (7.1). Here,
we shifted the discretized negative Laplacian by sI. We fixed s = 0.01 for the 2D
problems and s = 0.04 for the 3D problems. The convergence results are tabulated in
Table 7.5. We can see that ILDLT-GMRES and RAS-GMRES methods failed on 5
out of the 6 test matrices while the MSLR-GMRES method only failed on the largest
3D test matrix. Compared with the SPD test matrices in Table 7.3, we observe that
the MSLR preconditioner requires larger fill-factors to converge for these indefinite
systems. The reason is twofold. First, for the indefinite matrices, we need to apply
a smaller threshold in the incomplete factorization. We also noticed that the MSLR-
GMRES method failed to converge when we chose the same number of levels as the
SPD matrices in Table 7.3. This forced us to reduce the number of levels. Thus,
the fill-factors from the incomplete factorization are larger than those in the SPD
cases. Second, the MSLR preconditioner also required larger ranks in the low-rank
corrections for indefinite systems. This factor not only contributed to a larger fill-
factor but also significantly increased the CPU time in the construction of the MSLR
preconditioner.

7.2. Preconditioning general matrices. To show that the MSLR precondi-
tioner is generally applicable, we further tested it on 9 symmetric matrices from the
University of Florida sparse matrix collection [8]. These matrices arise from different
backgrounds, see Table 7.6 for a short description.

The convergence results of the three preconditioned methods are reported in Table
7.7. For the MSLR preconditioner, we chose lev and mg according to the matrix
order, and nnz such that most fill-factors are around 4.5 and the largest one is 6.02
for the matrix thermal2. As can be seen, with almost the same fill-factors, the
Krylov methods with the MSLR preconditioner achieved convergence for all the test
matrices whereas they failed to converge with the other preconditioners on many cases,
especially for the indefinite matrices. Although the MSLR preconditioner requires
slightly more CPU time to construct than the ILDLT preconditioner for the matrices

MULTILEVEL PRECONDITIONING WITH LOW-RANK CORRECTIONS 21

Table 7.5

Comparison of the ILDLT, the RAS and the MSLR preconditioners for solving symmetric
indefinite linear systems from the 2-D/3-D PDE in (7.1) with the GMRES methods when c > 0.

Grid
ILDLT-GMRES RAS-GMRES MSLR-GMRES

fill p-t its i-t fill p-t its i-t lev mg rk fill p-t its i-t

2562 8.18 0.18 F – 7.56 0.26 F – 4 2 64 6.58 0.29 20 0.07

5122 8.39 0.71 F – 7.84 1.19 F – 5 2 80 7.68 3.17 36 0.60

10242 12.6 5.34 F – 19.40 22.90 F – 6 2 180 9.13 41.09 76 6.30

323 5.89 0.11 21 0.11 5.78 0.09 40 0.06 7 3 32 5.60 0.25 17 0.04

643 7.05 1.03 F – 11.40 3.01 F – 10 3 64 7.06 7.44 187 3.97

1283 9.35 12.20 F – 10.2 31.20 F – 13 3 64 8.07 80.20 F –

Table 7.6

Example 2: Test matrices from the University of Florida Sparse Matrix Collection, where nnz
stands for the number of non-zeros in the matrix.

Matrix order nnz SPD Origin
cfd1 70, 656 1, 825, 580 yes CFD problem

cfd2 123, 440 3, 085, 406 yes CFD problem

Dubcova3 146, 689 3, 636, 643 yes 2-D/3-D PDE problem

thermal1 82, 654 574, 458 yes thermal problem

thermal2 1, 228, 045 8, 580, 313 yes thermal problem

F2 71, 505 5, 294, 285 no structural problem

Lin 256, 000 1, 766, 400 no structural problem

qa8fk 66, 127 1, 660, 579 no 3-D acoustics problem

vibrobox 12, 328 301, 700 no vibroacoustic problem

Lin and qa8fk, the Krylov methods with the MSLR preconditioner required the
smallest iteration time to converge for all cases.

8. Conclusion. The MSLR preconditioner presented in this paper exploits a
hierarchical graph decomposition called HID, that reorders the matrix into a multilevel
block form where at each level the (1,1) block is block-diagonal. One such structure
can be obtained from adapting the nested dissection ordering for example and this is
what was used in the paper. The preconditioner is built by obtaining approximate
inverses of certain Schur complements, exploiting in this process a low-rank property
associated with these Schur complements at each level of the the HID tree. The
proposed MSLR preconditioner appears to be more efficient and robust than ILU-
type preconditioners, especially for indefinite systems. In our future work, we plan on
extending these techniques to nonsymmetric and to complex (non-Hermitian) systems.
We also plan to explore other low-rank approximation methods to reduce the pre-
processing costs. Finally, another topic that is worth investigating further concerns
the obtention of effective HID orderings, other than those extracted from Nested
Dissection.

REFERENCES

22 Y. XI, R. LI AND Y. SAAD

Table 7.7

Comparison of the ICT or the ILDLT, the RAS and the MSLR preconditioners for solving
general symmetric linear systems with the CG or GMRES(40) methods.

Matrix
ICT/ILDLT RAS MSLR

fill p-t its i-t fill p-t its i-t lev mg rk fill p-t its i-t

cfd1 5.81 3.40 298 11.7 5.61 1.83 F – 7 1 64 5.00 1.42 85 0.96

cfd2 4.47 3.20 271 13.60 4.52 2.65 F – 8 2 50 4.47 1.53 155 2.58

Dubcova3 1.19 0.47 45 0.93 1.18 1.17 54 0.45 5 1 64 1.17 0.39 20 0.18

thermal1 4.57 0.20 52 0.50 4.55 0.38 235 0.77 6 3 50 4.50 0.18 42 0.16

thermal2 5.98 4.21 90 17.80 5.87 8.11 F – 8 3 64 6.02 3.29 87 6.02

F2 2.82 3.43 F – 2.90 3.46 F – 6 2 64 2.49 1.24 79 1.51

Lin 4.61 0.53 F – 5.36 4.63 F – 10 3 22 4.55 0.88 185 2.96

qa8fk 1.90 0.26 17 0.20 4.56 1.16 25 0.20 7 2 32 1.89 0.44 21 0.14

vibrobox 4.13 0.43 F – 4.35 0.36 F – 5 1 16 3.86 0.18 57 0.16

[1] P. R. Amestoy, T. A. Davis, and I. S. Duff, An approximate minimum degree ordering
algorithm, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 886–905.

[2] , Algorithm 837: An approximate minimum degree ordering algorithm, ACM Trans.
Math. Software, 30 (2004), pp. 381–388.

[3] M. Benzi and M. Tuma, A sparse approximate inverse preconditioner for nonsymmetric linear
systems, SIAM J. Sci. Comput., 19 (1998), pp. 968–994.

[4] E. Chow and Y. Saad, Experimental study of ilu preconditioners for indefinite matrices, J.
Comput. Appl. Math., 86 (1997), pp. 387 – 414.

[5] , Approximate inverse preconditioners via sparse-sparse iterations, SIAM J. Sci. Com-
put., 19 (1998), pp. 995–1023.

[6] , Preconditioned krylov subspace methods for sampling multivariate gaussian distribu-
tions, SIAM J. Sci. Comput., 36 (2014), pp. A588–A608.

[7] E. Corona, P.-G. Martinsson, and D. Zorin, An O(N) direct solver for integral equations
on the plane, Appl. Comput. Harmon. Anal., (2014), pp. –.

[8] T. A. Davis and Y. Hu, The University of Florida Sparse Matrix Collection, ACM Trans.
Math. Software, 38 (2011), pp. 1:1–1:25.

[9] B. Engquist and L. Ying, Sweeping preconditioner for the helmholtz equation: Hierarchical
matrix representation, Commun. Pure Appl. Math., 64 (2011), pp. 697–735.

[10] A. George, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., 10
(1973), pp. 345–363.

[11] W. Hackbusch, A sparse matrix arithmetic based on h-matrices. Part I: Introduction to H-
matrices, Computing, 62 (1999), pp. 89–108.

[12] W. Hackbusch and B. N. Khoromskij, A sparse H-matrix arithmetic. Part II: Application
to multi-dimensional problems, Computing, 64 (2000), pp. 21–47.

[13] M. R. Hestenes and E. L. Stiefel, Methods of conjugate gradients for solving linear systems,
J. Res. Natl. Bur. Stand., 49 (1952), pp. 409–436.

[14] K. L. Ho and L. Ying, Hierarchical interpolative factorization for elliptic operators: differen-
tial equations. Preprint, 2013, arXiv:1307.2895 [math.NA].

[15] P. Hnon and Y. Saad, A parallel multistage ilu factorization based on a hierarchical graph
decomposition, SIAM J. Sci. Comput., 28 (2006), pp. 2266–2293.

[16] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular
graphs, SIAM J. Sci. Comput, 20 (1998), pp. 359–392.

[17] S. Le Borne, H-matrices for convection-diffusion problems with constant convection, Com-
puting, 70 (2003), pp. 261–274.

[18] S. Le Borne and L. Grasedyck, H-matrix preconditioners in convection-dominated problems,
SIAM J. Matrix Anal. Appl., 27 (2006), pp. 1172–1183.

[19] R. Li and Y. Saad, Divide and conquer low-rank preconditioners for symmetric matrices,
SIAM J. Sci. Comput., 35 (2013), pp. A2069–A2095.

MULTILEVEL PRECONDITIONING WITH LOW-RANK CORRECTIONS 23

[20] , GPU-accelerated preconditioned iterative linear solvers, Journal Supercomput., 63
(2013), pp. 443–466.

[21] , Low-rank correction methods for algebraic domain decomposition preconditioners. Sub-
mitted, 2014.

[22] R. Li, Y. Xi, and Y. Saad, Schur complement based low-rank correction method for algebraic
domain decomposition preconditioners. Submitted, 2014.

[23] P.G. Martinsson and V. Rokhlin, A fast direct solver for boundary integral equations in two
dimensions, J. Comput. Phys., 205 (2005), pp. 1–23.

[24] J. K. Merikoski and R. Kumar, Inequalities for spreads of matrix sums and products, Appl.
Math. E-Notes, 4 (2004), pp. 150–159.

[25] OpenMP Architecture Review Board, OpenMP application program interface version 3.1,
July 2011.

[26] Y. Saad, A flexible inner-outer preconditioned gmres algorithm, SIAM J. Sci. Comput., 14
(1993), pp. 461–469.

[27] , Ilum: A multi-elimination ilu preconditioner for general sparse matrices, SIAM J. Sci.
Comput., 17 (1996), pp. 830–847.

[28] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edition, SIAM, Philadelpha, PA,
2003.

[29] Y. Saad and M. Schultz, Gmres: A generalized minimal residual algorithm for solving non-
symmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.

[30] Y. Saad and B. Suchomel, Arms: an algebraic recursive multilevel solver for general sparse
linear systems, Numer. Linear Algebra Appl., 9 (2002), pp. 359–378.

[31] Y. Saad and J. Zhang, Bilum: Block versions of multielimination and multilevel ilu precondi-
tioner for general sparse linear systems, SIAM J. Sci. Comput., 20 (1999), pp. 2103–2121.

[32] B. Smith, Domain decomposition algorithms for the partial differential equations of linear
elasticity, tech. report, New York, 1990.

[33] B. Smith, P. Bjørstad, and W. Gropp, Domain Decomposition: Parallel Multilevel Methods
for Elliptic Partial Differential Equations, Cambridge University Press, New York, NY,
USA, 1996.

[34] Y. Xi, J. Xia, S. Cauley, and V. Balakrishnan, Superfast and stable structured solvers for
toeplitz least squares via randomized sampling, SIAM J. Matrix Anal. Appl., 35 (2014),
pp. 44–72.

[35] Y. Xi, J. Xia, and R. Chan, A fast randomized eigensolver with structured ldl factorization
update, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 974–996.

[36] J. Xia, Efficient structured multifrontal factorization for general large sparse matrices, SIAM
J. Sci. Comput., 35 (2013), pp. A832–A860.

[37] , Randomized sparse direct solvers, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 197–227.
[38] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Fast algorithms for hierarchically semisep-

arable matrices, Numer. Linear Algebra Appl., 17 (2010), pp. 953–976.
[39] , Superfast multifrontal method for large structured linear systems of equations, SIAM

J. Matrix Anal. Appl., 31 (2010), pp. 1382–1411.
[40] J. Xia and M. Gu, Robust approximate cholesky factorization of rank-structured symmetric

positive definite matrices, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 2899–2920.

