
Chebyshev-filtered subspace iteration method free of sparse

diagonalization for DFT calculations

Yunkai Zhou∗, James R. Chelikowsky†, and Yousef Saad‡

January 27, 2014

Abstract

The Kohn-Sham equation in first-principles density functional theory (DFT) calculations
is a nonlinear eigenvalue problem. Solving the nonlinear eigenproblem is usually the most
expensive part in DFT calculations. Sparse iterative diagonalization methods that compute
explicit eigenvectors can quickly become prohibitive for large scale problems. The Chebyshev-
filtered subspace iteration (CheFSI) method avoids most of the explicit computation of eigen-
vectors, which results in significant speedup over iterative diagonalization methods for the
DFT self-consistent field (SCF) calculations. However, the original CheFSI method utilized
a sparse iterative diagonalization at the first SCF iteration to provide initial vectors for latter
subspace filtering, and this diagonalization is expensive for large scale problems. We develop a
new initial filtering step to fully avoid this first step diagonalization, thus making the CheFSI
method free of sparse iterative diagonalizations. The new approach saves memory usage and
can be two to three times faster than the original CheFSI method.

Key words: Density functional theory, self-consistency, Chebyshev filters, Hamiltonian,
diagonalization, nonlinear eigenvalue problem, subspace filtering

1 Introduction

Density functional theory (DFT) [11, 15] plays a critical role in electronic structure calculations
based on first principles. DFT greatly simplifies the multi-electron Shrödinger equation into the
Kohn-Sham equation, which is effectively one-electron, where all non-classical electronic interac-
tions are replaced by a functional of the charge density. Further aided by pseudopotential theory

(e.g. [28, 4, 23]), which replaces the true atomic potential with a much smoother pseudopotential

that can take into account the effect of core electrons, DFT significantly reduces the number
of one-electron wave-functions that need to be computed. Nevertheless, even with the simplifi-
cations resulted from using pseudopotentials, it is still computationally challenging to solve the
Kohn-Sham equation related to complex systems containing many thousands of atoms.

∗Department of Mathematics, Southern Methodist University, Dallas, TX 75275, USA (yzhou@smu.edu.) Sup-
ported in part by the NSF under grant DMS-1228271 and a J. T. Oden fellowship at Univ. of Texas at Austin

†Center for Computational Materials, Institute for Computational Engineering and Science, and Department
of Physics and Chemical Engineering, University of Texas, Austin, TX 78712, USA (jrc@.ices.utexas.edu.)
Supported in part by

‡Department of Computer Science and Engineering, University of Minnesota, MN 55455, USA
(saad@cs.umn.edu.) Supported in part by

1

Traditional approaches for solving the Kohn-Sham equation include methods using explicit
bases, especially the planewave methods (e.g., [26, 16]) which expand wave-functions for periodic
structures using planewave bases; and methods without using explicit bases, e.g., the real-space
methods [5, 6, 32, 3].

Here we focus on solving the Kohn-Sham equation in the real-space setting. The advantages of
a real-space approach include that parallel implementation is conceptually simple, that no super-
cells is necessary for non-periodic structures, and that application of potentials onto electron
wave-functions can be performed directly in real-space. Although Hamiltonian matrices from a
real-space discretization is larger than that from a planewave expansion, they are very sparse
and need not be stored explicitly, and they only need to be accessed via matrix-vector products
that represent the application of the Hamiltonians on wave-functions.

It is well-known that the intrinsic nonlinearity in the Kohn-Sham equation can be addressed
by utilizing a self-consistent-field (SCF) iteration, which involves solving a sequence of linearized
Kohn-Sham equation. The most computationally expensive part of DFT calculations is the
repeated solving of a linearized eigenvalue problem at each SCF iteration step.

Diagonalization methods are needed to solve the linear eigenvalue problem. Dense diagonal-
ization methods that compute all eigenvectors quickly become impractical for relatively large
systems due to the cubic order complexity, thus sparse iterative diagonalization methods such
as [31, 19, 40, 13, 46] are used. However, larger systems can still render sparse diagonalization
methods impractical.

We developed a nonlinear Chebyshev-filtered subspace iteration (CheFSI) method to alleviate
the computational cost ([48, 47]). CheFSI tries to directly address the nonlinearity of the original
Kohn-Sham equation by constructing a nonlinear subspace iteration. Explicit eigenvectors of
the intermediate linearized Kohn-Sham eigenvalue problems no longer need to be computed,
instead they are replaced by approximate basis vectors of a progressively refined subspace. Since
approximate basis vectors are much easier to compute than eigenvectors, CheFSI significantly
reduces the diagonalization cost. An order of magnitude speedup over eigenvector based methods
was routinely obtained (see e.g. [47, 38]).

The CheFSI approach seeks a self-consistent solution via an SCF iteration, therefore it has
the same accuracy as other SCF DFT approaches that are based on diagonalizations.

However, CheFSI as proposed in [48, 47] is not free of sparse diagonalization, mainly because
its first SCF iteration step calls an iterative diagonalization solver in order to provide a good
initial subspace for further refinement. For large problems, this first diagonalization step can be
quite expensive and may constitute about 35%–45% of the total SCF CPU time, even if we call
state-of-the-art solvers such as ARPACK [19], TRLanc [40], and ChebDav [46, 43].

This paper develops a filtering technique that completely avoids sparse diagonalization at the
first SCF step. The filters used are again based on Chebyshev filters. In contrast to our former
filtering approach in CheFSI, where the filtering lower bounds can be obtained from the Ritz
values computed at the previous SCF iteration, here we do not have Ritz values from a previous
SCF step since it is at the first SCF iteration. We overcome this difficulty by utilizing Ritz values
generated from a Lanczos procedure. Since this procedure is needed in order to estimate a filter
upper bound, by using its byproduct Ritz values, we can obtain a filter lower bound for the first
SCF step, with only minor extra computation.

Recent progresses in [9] used localized nonorthogonal wave functions to reduce the cost in
reorthogonalization, which showed improvement over the filtering approach proposed in [48].
Localized orbitals (e.g. [10]) are also utilized in e.g. [25, 22, 21] for accelerating DFT calculations.

2

We mention that similar localization techniques can be employed to further accelerate the method
proposed in this paper, which will be part of our future works. Other interesting works that target
to avoid diagonalizations include [24, 33, 20], they are based on approximating the Fermi-Dirac
operator.

The organization of the paper is as follows: Section 2 briefly summarizes the eigenproblems in
DFT calculations via SCF iteration; Section 3 discusses in some details the Chebyshev filters that
play a significant role in our acceleration schemes; Section 4 presents the framework of the CheFSI
method; Section 5 presents the filtering algorithm that avoids the first step diagonalization in an
SCF iteration; and Section 6 presents numerical results and some discussions.

2 Eigenvalue problems in DFT calculations

The multi-electron Schrödinger equation is simplified into the following Kohn-Sham equation
using density functional [11, 15],

[

−
~

2

2M
∇2 + Vtotal(ρ(r), r)

]

Ψi(r) = λiΨi(r), i = 1, 2, . . . (1)

where Ψi(r)’s are orthogonal wavefunctions also called eigenfunctions, λi’s are Kohn-Sham eigen-
values, ~ is the Planck constant, and M is the electron mass. When atomic units are used,
~ = M = 1.

The ρ(r) in (1) is the charge density, which is defined by the wavefunctions,

ρ(r) =

nocc
∑

i=1

|Ψi(r)|
2. (2)

Here nocc is the number of occupied states, which equals to half of the number of valence electrons

in the system. Equation (2) can be easily extended to address spin multiplicity or situations where
the highest occupied states have fractional occupancy.

The operator inside the brackets in (1) is called Hamiltonian, it contains a kinetic energy
term and a total potential term Vtotal. The Vtotal, also referred to as the effective potential, is
defined as

Vtotal(ρ(r), r) = VH(ρ(r), r) + Vion(r) + VXC(ρ(r), r). (3)

The Vtotal contains three potentials: VH the Hartree potential, which describes the electron-
electron Coulomb repulsion; Vion the ionic potential, which is approximated by pseudo-potentials;
and VXC the exchange-correlation potential, which includes all the many-particle interactions.
VXC is often approximated by LDA, GGA[27], OEP [18], or their variants such as LDA+U and
GGA+U (e.g. [1, 7, 17]). Interested readers may consult recent books (e.g. [14, 23, 8]) for more
details on DFT.

Both the Hartree potential and the exchange-correlation potential depend on the charge
density ρ(r). The ionic potential Vion does not depend on ρ(r), therefore it only needs to be
calculated once in the SCF loop.

The most computationally expensive part of first principles DFT calculations is in solving
the Kohn-Sham equation (1). The Hamiltonian in (1) depends on the charge density ρ(r), which
in turn depends on the wavefunctions of (1). Therefore (1) is essentially a nonlinear eigenvalue
problem.

3

The nonlinearity in (1) is often addressed by a standard SCF iteration. At the first SCF
iteration, an initial guess of the charge density is provided, from which one can calculate an
initial Vtotal. This fixed Vtotal is substituted in (1), and after discretization it becomes a linearized
eigenproblem of form Hψi = λiψi. The H is the discretized Hamiltonian, it is a hermitian
matrix, and ψi is the eigenvector corresponding to the discretized wavefunction Ψi(r). The first
nocc wavefunctions of the linearized eigenproblem are then used to update ρ(r) and Vtotal to
obtained a new linearized eigenproblem of (1), which is solved again for the new Ψi(r)’s. The
process is iterated until Vtotal (and hence the Ψi(r)’s) becomes stationary, at which stage the
self-consistency is reached.

To be more specific, at each SCF step, say the ℓ-th step, the linearized eigenproblem

H [ℓ]ψ
[ℓ]
i = λ

[ℓ]
i ψ

[ℓ]
i , ℓ = 1, 2, . . . , (4)

is solved for at least number nocc of smallest eigen-pairs. Let the dimension of each of these
eigenproblems be n. For large n, dense eigensolvers are impractical due to their O(n3) complex-
ity. Sparse eigensolvers can also become too expensive for two reasons: First, it has O(n2nocc)
complexity, and nocc is often relatively large when n is large, moreover, the scalar implicit in
the big-O notation in O(n2nocc) is usually not small; second, the SCF iteration requires solving
(4) several times, not just once. All these can make the accumulated sparse diagonalizations
overwhelmingly expensive for the SCF loop to reach self-consistency.

The goal of the CheFSI acceleration is to significantly reduce the computational cost related
to the sparse diagonalizations.

3 Spectrum filters for acceleration

We focus on Chebyshev polynomials (of the first kind) as spectrum filters due to their significant
properties in introducing favorable gaps among wanted eigenvalues.

The degree-m Chebyshev polynomial is defined as (see e.g. [2, p.180])

Cm(x) =

cos(m cos−1(x)), |x| ≤ 1,
cosh(m cosh−1(x)), x > 1,
(−1)m cosh(m cosh−1(−x)), x < −1.

(5)

Associated with this orthogonal polynomial is the following 3-term recurrence

Cm+1(x) = 2x Cm(x) − Cm−1(x), m = 1, 2, ..., (6)

which can be used to compute higher degree Cm from C0(x) = 1 and C1(x) = x.
To accelerate convergence of an invariant subspace, we exploit one of the most significant

properties of the Chebyshev polynomials, namely the exponential growth of Cm outside the
[−1, 1] interval. This property is illustrated in Figure 1. Under comparable conditions, the
exponential growth rate of Cm outside the [−1, 1] interval is the fastest among all polynomials
with degree ≤ m ([29, p.31]).

The idea of using polynomial filters for accelerating eigenvalue calculations is based on the
following well-known observation: Denote the eigenbasis of the Hamiltonian H as ψi’s, with
corresponding eigenvalues λi’s, i.e., Hψi = λiψi. Then any initial vector x0 can be expanded in
the eigenbasis as

x0 = α1ψ1 + α2ψ2 + · · · + αnψn.

4

−4 −3 −2 −1 0 1 2 3 4
10

−2

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
18

x

y

semilogy, y = |C
m

(x)| + 0.01

m=4
m=7
m=10
m=13
m=16
m=19

−4 −3 −2 −1 0 1 2 3 4
−6

−4

−2

0

2

4

6
x 10

16

x

y

Degree m Chebyshev polynomial: y = C
m

(x)

m=4
m=7
m=10
m=13
m=16
m=19

Figure 1: The fast growth of Cm(x) outside the [−1, 1] interval. The first figure uses semilog
for the y-axis, for which we take the absolute value of Cm(x) and add a small shift 0.01. The
second figure does not use semilog, which shows the complete dominance of the highest degree
polynomial over lower degree counterparts outside the [−1, 1] interval.

Applying a polynomial filter p(x) to H through a matrix-vector product leads to

p(H)x0 = α1p(λ1)ψ1 + α2p(λ2)ψ2 + · · · + αnp(λn)ψn,

where it is assumed that α1 6= 0, which is almost always true in practice if x0 is a random vector.
If the goal is to compute ψ1 as fast as possible, then a suitable filter would be a p(x) such that

p(λ1) dominates p(λj), j 6= 1. That is, the filter introduces a significant gap between the wanted
eigenvalue and the unwanted ones, so that after normalization p(H)x0 will be mostly parallel to
ψ1. This is the well-known fact that the convergence rate of an eigen-algorithm mainly depends
on the gap-ratio.

Our main approach for acceleration thus centers on utilizing the exponential growth property
outside [−1, 1] of the Chebyshev filters to introduce optimal gap-ratio of the filtered matrix.
Interestingly, to construct a suitable filter we mainly concern what is inside the [−1, 1] interval
instead of what is outside of it. This is because for all x ∈ [−1, 1] we have |Cm(x)| ≤ 1. If
we apply an affine mapping to map unwanted spectrum inside the [−1, 1] interval, then the
wanted spectrum will be automatically mapped outside [−1, 1], the exponential growth property
of Cm will then be automatically applied to the wanted spectrum, introducing better gap-ratio
of wanted eigenvalues for faster convergence.

Therefore, the main concern is to figure out the unwanted part of the spectrum. More
precisely, to find the two bounds that enclose the unwanted spectrum. If we have these two
bounds, then it becomes easy to map the unwanted spectrum into [−1, 1] for damping. The
effectiveness of the constructed filter depends on these two filtering bounds.

In DFT calculations, the wanted eigenvalues are located at the lower end of the spectrum,
since smaller eigenvalues correspond to the more stable lower energy occupied states.

The upper bound of the unwanted spectrum should be a value larger than all the eigenvalues
of a given Hamiltonian. This is because we do not want to map any unwanted eigenvalues to
be larger than 1, otherwise better gap-ratio will be introduced by the filter for the unwanted

5

eigenvalues located at the higher end (as shown in Figure 1), this will prevent the algorithm
from converging to the wanted invariant subspace corresponding to occupied states.

The upper bound can be obtained via the estimator developed in [48]. Here we use the refined
estimator in [45], which provides a sharper upper bound and better filter performance in general.
It is a Lanczos estimator with a safe-guard step to ensure that a true upper bound of the full
spectrum is obtained, we refer to [45] for details.

The lower bound of the unwanted spectrum would be a value corresponding to the energy
related to the highest occupied state. In theory this value is not easy to find, however, for the
practical purpose of filtering that targets at improving gap-ratio, we only need a filtering lower
bound that is greater than the energy of the highest occupied state. We will discuss how to
obtain this lower bound in the next two sections.

Now we assume that the two filtering bounds are available and denote them as a and b, with
a < b. The standard affine mapping that maps the interval [a, b] into [−1, 1] is

L(x) =

(

x −
b − a

2

)

/

(

b + a

2

)

, x ∈ R. (7)

This same mapping will map the wanted eigenvalues located to the left of [a, b] into a region to
the left of [−1, 1], for which the exponential growth property of the filter can be automatically
utilized simply by calling the 3-term recurrences (6).

Since the upper bound b obtained using the estimator in [45] bounds the full spectrum of
the Hamiltonian from above, the higher end of the spectrum that contains unwanted eigenvalues
will be mapped inside [−1, 1] for damping. Only the wanted lower end of the spectrum that is
mapped to the left of [−1, 1] will be magnified by the filter.

The affine mapping L(x) in (7) maps the smaller eigenvalues further away from [−1, 1] than
it does to larger eigenvalues, therefore the smaller eigenvalues will be magnified more by the
polynomials (as seen from figure 1).

With suitably chosen filtering bounds, one can readily construct a degree-m Chebyshev poly-
nomial Cm(·) to achieve desired filtering. Starting from X0 ∈ R

n×d that contains d initial vectors,
let p(H) be H pre-processed by (7) with the suitable bounds a and b, and then filtered by Cm(·),
i.e.,

p(H) = Cm(L(H)),

then the filtered matrix-vector product p(H)X0 can quickly approximate a subspace spanned by
the eigenvectors associated with the d smallest eigenvalues of H.

The filtered matrix-vector product p(H)X0 = Cm(L(H))X0 can be computed via the 3-term
recurrences as

Xk+1 =
4

b + a
(H −

b − a

2
I)Xk − Xk−1, k = 1, 2, . . . , m − 1 . (8)

A pseudocode implementing the iteration (8) is listed in Algorithm 3.1.
One can introduce a scaling factor aL which is smaller than a and apply the scaled filter

p̃(H) = p(H)/p(aL). (9)

The reason for the scaling is to prevent potential overflow, which may happen if m is large or
if the smallest eigenvalue of H, denoted as λmin(H), is mapped far away from −1. Both of the
potential overflow situations can be addressed by choosing aL as a rough estimate of λmin(H).

6

Algorithm 3.1: [Y] = Chebyshev filter(X, m, a, b)

e = (b − a)/2; c = (a + b)/2;
Y = (H ∗ X − c ∗ X)/e;
for i = 2 to m do

Yt = (H ∗ Y − c ∗ Y) ∗ (2/e) − X;
X = Y ; Y = Yt;

The filter used in [48] is essentially the same as the Algorithm 3.1. Note that aL is set to
a in [48], which corresponds to p(aL) = 1. This corresponds to a non-scaled Chebyshev filter.
The non-scaled filter has its advantage as long as the two conditions for potential overflow are
avoided. However, the scaled version with aL < a is the more stable filter, especially when a
suitable aL can be obtained with no extra computation. Since we can easily use the smallest
Ritz value computed at each SCF step as aL, we realize the scaled filtering with only marginal
overhead.

By some algebra based on [30], we see that the 3-term recurrences using the scaled filter (9)
are

Xk+1 =
2σk+1

e
(H − cI)Xk − σk+1σkXk−1, k = 1, 2, . . . , m − 1 , (10)

where c and e are respectively the center and half-width of the interval [a, b], and the σi’s are

updated from σ1 = e/(c − aL) as σk+1 = 1/
(

2
σ1

− σk

)

. See [44] for derivation and analysis of

iteration (10).
The pseudocode for computing the filtered vectors Y = p̃(H)X using iteration (10) is listed

in Algorithm 3.2. This algorithm as well as Algorithm 3.1 plays a significant role in the CheFSI
framework.

Algorithm 3.2: [Y] = Chebyshev filter scaled(X, m, a, b, aL)

e = (b − a)/2; c = (a + b)/2; σ = e/(c − aL); τ = 2/σ;
Y = (H ∗ X − c ∗ X) ∗ (σ/e);
for i = 2 to m do

σnew = 1/(τ − σ);
Yt = (H ∗ Y − c ∗ Y) ∗ (2 ∗ σnew/e) − (σ ∗ σnew) ∗ X;
X = Y ; Y = Yt; σ = σnew;

A closer examination of Algorithms 3.2 and 3.1 reveals that three matrices X, Y, Yt are used,
each contains d columns. This clearly is not desirable memory-wise, especially if d is large, i.e., if
X contains many columns. The merit of our approach is that the filtered subspace approach can
be implemented in a memory economical way by performing block-wise filtering. Since essentially
we only need the filtered subspace Y , we can overwrite X with Y . In a more memory economical
implementation, we only need two temporary work arrays of size n × db, where db ≪ d, and do
block-by-block filtering over X with block size no greater than db. If db = 1, then essentially we
do column by column filtering over each column of X, the memory requirement of Algorithms 3.2
and 3.1 in this case is only n×d plus the memory for two length-n temporary vectors. This is to

7

be contrasted with LOBPCG [13] that requires n× 3d memory since its subspace contains three
blocks, each of size d. Our method uses about one third of the memory required by LOBPCG,
thus more memory feasible when d is very large.

4 CheFSI framework for solving the Kohn-Sham equation

The main acceleration of CheFSI is achieved by computing basis vectors of an invariant subspace
instead of eigenvectors. This is because the Hamiltonians during the intermediate SCF iterations
are not exact (since the charge density is unknown), therefore there is no need to compute
eigenvectors to high accuracy, but one should be careful not to miss wanted eigenvalues.

Clearly the invariant subspace of interest is the one that includes occupied states. Chebyshev
filters can be designed to effectively compute this invariant subspace without risk of missing
wanted eigenvalues.

Approximate eigenvectors can be obtained by a subspace rotation step, which is called
Rayleigh-Ritz refinement. This rotation is of O(n) complexity in contrast to the O(n2) complex-
ity for sparse diagonalization. With targeted filtering and subspace rotation, one can gradually
refine the computed basis vectors and converge them to the eigenvectors corresponding to occu-
pied states. This is why CheFSI approach has the same accuracy as approaches that perform
diagonalization at each SCF steps, but with much reduced computational cost.

Algorithm 4.1: CheFSI framework for DFT SCF calculations:

Start from an initial guess of ρ(r), compute Vtotal(ρ(r), r);

Solve the linearized Kohn-Sham equation
[

− ~
2

2M
∇2 + Vtotal(ρ(r), r)

]

Ψi(r) = EiΨi(r) for

Ψi(r), i = 1, 2, ..., s, (where s is an integer slightly larger than nocc);
Compute new charge density ρ(r) =

∑nocc

i=1 |Ψi(r)|
2;

Solve for new Hartree potential VH from ∇2VH(r) = −4πρ(r);

Update VXC and VH ; Compute the new total potential Ṽtotal (with a potential-mixing
step) Ṽtotal(ρ, r) = VH(ρ, r) + Vion(r) + VXC(ρ, r);

If
∥

∥

∥
Ṽtotal − Vtotal

∥

∥

∥
< tol, then stop (self-consistency reached).

Vtotal ← Ṽtotal; Construct and apply Chebyshev filter to compute s number of
approximate wavefunctions as follows:
7.1 Compute bup by calling the Lanczos estimator in [45];

7.2 Set blow and aL as the largest and smallest Ritz values from the previous iteration,
respectively;

7.3 Apply degree-m Chebyshev filter to Ψ as Ψ = Chebyshev filter(Ψ, m, blow, bup),
or Ψ = Chebyshev filter scaled(Ψ, m, blow, bup, aL), (here Ψ is a matrix whose s
columns are the discretized wavefunctions of Ψi(r), i = 1, ..., s);

7.4 Ortho-normalize the s columns of Ψ by an iterated Gram-Schmidt method;

7.5 Perform the Rayleigh-Ritz refinement step: (i) Compute the projection Ĥ = ΨTHΨ;
(ii) Compute the eigendecomposition of Ĥ: ĤQ = QD, where D contains eigen-
values of Ĥ in nonincreasing order, and Q contains the corresponding eigenvectors;
(iii) Refine the basis as Ψ := ΨQ.

Goto step 3 (use the first nocc columns of Ψ as the discretized wavefunctions)

8

Algorithm 4.1 lists the main steps of the CheFSI framework for solving the Kohn-Sham
equation using an SCF iteration. The main difference from a diagonalization-based approach
SCF loop is that, after the first diagonalization at step 4.1 used to generate an initial basis
vectors for filtering, CheFSI avoids diagonalization by replacing it with a subspace filtering step,
as describe in step 4.1. The updated Hamiltonian H is implicitly applied throughout step 4.1
via matrix-vector products with the updated H.

As mentioned in the introduction, Algorithm 4.1 is not free of iterative sparse diagonalization,
because step 4.1 calls a sparse diagonalization solver in order to provide a good initial subspace
for refinement. This diagonalization can be expensive especially for large problems.

In the next section we propose a method to avoid this iterative diagonalization at the first
SCF step.

5 First SCF step diagonalization by subspace filtering

There were two concerns that prevented us from using Chebyshev filters to replace the first diag-
onalization (step 4.1) in Algorithm 4.1. The first concern was that the filter bounds (especially
the lower bound) were not available at the first SCF step. The second was that we wanted to
generate a good initial basis Ψ0 such that latter filtering could quickly refine it into the basis of
the subspace associated with occupied states.

The first concern is not an issue after the first SCF step, since bounds to construct filters
are readily available from the Ritz values computed at the previous SCF step. While at the first
SCF step there are no previously computed Ritz values.

These two concerns made us apply iterative diagonalization to solve the linearized Kohn-Sham
equation at the first SCF step in [48, 47].

However, by a careful reexamination of the structure of CheFSI, we realize that both concerns
can be addressed and that we can apply Chebyshev filtered subspace method at the first SCF
step, without using a sparse iterative diagonalization.

We can address the difficulty related to filter bounds by fully exploiting the modified Lanczos
procedure [45, 43] used to estimate upper bound. This estimator computes a k-step Lanczos
decomposition

HVk = VkTk + fke
T
k, (11)

where V T
k Vk = Ik, fT

k Vk = 0, and ek is the k-th canonical basis of R
k. As proved in [45], the

filtering upper bound can be set as

bup := max
i∈{1,··· ,k}

λi(Tk) + ‖f‖2 , (12)

where λi(Tk) are the eigenvalues of the k × k tridiagonal matrix Tk. This bound only requires a
small k in decomposition (11), in practice we use 4 ≤ k ≤ 10.

To obtain a valid filtering lower bound blow, we reuse the byproduct from the Lanczos bound
estimator, namely the Ritz values λi(Tk). The lower bound we use is

blow := β min
i

λi(Tk) + (1 − β)max
i

λi(Tk), where β ∈ [0.5, 1) . (13)

The choice of bound (13) is quite natural if we notice that the variational property of eigen-
values guarantees that

min
i

λi(H) ≤ min
i

λi(Tk) ≤ max
i

λi(Tk) ≤ max
i

λi(H). (14)

9

In addition, by a well-known property of the standard Lanczos procedure, we know that the
extreme eigenvalues of H (instead of the interior ones) are approximated much faster by λi(Tk)’s.
Therefore we can set β ≈ 0.5 in (13), which approximately corresponds to dampening the higher
half of the spectrum of H. If β is set close to 1, then the filter will dampen λi(H) located in the
interval [mini λi(Tk), maxi λi(H)].

In reality this very first blow is not particularly important. As long as it is not too small, which
can cause to miss some occupied states, or too large, which may magnify unoccupied states, then
it works fine. From this understanding and also from practice, we observe that β = 0.5 is a
reasonable parameter and we use it in our computations reported in Section 6.

To address the second concern, we need to generate initial basis vectors that can capture
a relatively significant portion of the wavefunctions corresponding to occupied states. This so
called “good” initial basis will facilitate convergence for the latter subspace filtering.

The algorithm for this purpose turns out to be quite simple, as listed in Algorithm 5.1.
The main idea is to apply Chebyshev filtering a few (say, itmax) times, each time with an
automatically updated filtering lower bound blow.

Algorithm 5.1: [Ψ] = first SCFstep filter(itmax)

Call upper-bound estimator (use formula (12) from [43]) to get bup and Ritz values
λi(Tk), i = 1, . . . , k; set aL = mini λi(Tk);
Set blow = β mini λi(Tk) + (1 − β)maxi λi(Tk), where β ∈ [0.5, 1) is a parameter usually
set to 0.5 ;
Set Ψ as a random matrix with s column vectors (s > nocc);
for i = 1 to itmax do

Call Ψ= Chebyshev filter scaled(Ψ, m, blow, bup, aL);
Orthonormalize Ψ by iterated Gram-Schmidt ;
Compute Rayleigh quotient: G = ΨT ∗ (H ∗ Ψ);
Compute eigen-decomposition of G: G = QDQT;
Sort the current Ritz values in increasing order: [R, indx] = sort(diag(D));
Exit this for-loop if difference between previous and current Ritz values is small;
Reset blow and aL as blow = maxi R, aL = mini R;

Perform subspace rotation: Ψ = Ψ ∗ Q(:, indx);

Note that step 5.1 in Algorithm 5.1 computes an eigendecomposition of the size-s Rayleigh
quotient matrix G, which is used for subspace rotation at step 5.1.

The Ritz values contained in D from step 5.1 can be readily used to adaptively update the
filtering lower bound blow. We base the update rule (step 5.1) on the variational principle of
eigenvalues, which is also called the Courant-Fisher min-max Theorem [12]. The principle is
similar to (14) but with Tk replaced by G.

The first blow is initially set according to (13), then updated according to step 5.1 in Algorithm
5.1. Applying the variational principle, and the fact that s > nocc, we can guarantee that
all occupied states will be magnified, (since blow is always greater than all the wanted nocc

eigenvalues;) and that unwanted higher end of the spectrum of H will be dampened. A few
iterations will result in a Ψ returned from Algorithm 5.1 to be the “good” initial basis which is
suitable for latter subspace refinement.

The iteration number itmax at step 5.1 can be quite small thanks to the optimal magnifying

10

and damping property of the Chebyshev polynomials. In practice three to four iterations suffice
to generate a reasonably good initial Ψ.

As for the bound aL, it is used only for scaling purpose as in (9), therefore any aL ≤ blow can
serve this purpose. The one chosen in Algorithm 5.1 clearly satisfies this condition. In practice,
the filtering Algorithm 3.1 without using aL (or equivalently setting aL = blow) has almost
identical performance as Algorithm 3.2 that uses aL < blow, especially so if the polynomial
degree m is moderate.

The Lanczos procedure is required to obtain the upper bound bup, this procedure also pro-
duces some Ritz values. Moreover, a dense eigen-decomposition (step 5.1 in Algorithm 5.1) is
computed for the purpose of subspace rotation. Therefore by utilizing the available Ritz values,
we obtain the filtering lower bounds with essentially no extra computations.

We apply Algorithm 5.1 to replace the expensive first SCF diagonalization (step 2) in Algo-
rithm 4.1. With this replacement, the CheFSI approach for DFT calculation via an SCF loop
becomes free of sparse iterative diagonalization. The whole process may be understood using as
follows:

Starting from an initial charge density ρ0, we call Algorithm 5.1 to generate an initial basis
Ψ0 = [ψ1, ..., ψs], where s is an integer slightly larger than nocc. After this step, we perform
SCF iteration within a Do-loop,

Do ℓ = 1, 2, ..., nscf

(i) Get new charge density ρℓ = 2 diag(
∑nocc

i=1 ψiψ
T
i);

(ii) Implicitly construct a degree-m Chebyshev filter p
[ℓ]
m(Hℓ) and apply it to Ψℓ−1 to get

Ψℓ = p
[ℓ]
m(Hℓ)Ψℓ−1, (the Hamiltonian Hℓ−1 is implicitly updated to Hℓ by modifying

related matrix-vector products);

(iii) Ortho-normalize Ψℓ to get the new basis [ψ1, ..., ψs].

At the final SCF step (where the nscf denotes the iteration steps to reach self-consistency),
Ψℓ provides a good approximation to the basis of the eigensubspace associated with occupied
states. The final basis may be expressed as

Ψnscf
=

nscf
∏

ℓ=1

p[ℓ]
m(Hℓ)Ψ0 . (15)

The basis from real computations may be different from the one in (15), this is because
of subspace truncations, in which a dimension-s subspace is truncated into a dimension-nocc

subspace by throwing away larger eigen-components that correspond to unoccupied states.
Without consider the implementation details of truncation, the CheFSI method can be un-

derstood as a nonlinear subspace iteration (15), in which the iteration matrix p
[ℓ]
m(Hℓ) is updated

at each step (in contrast, the iteration matrix remains unchanged in a standard subspace iter-
ation). That is, we apply a nonlinear subspace iteration to directly address the nonlinearity in
the Kohn-Sham equation (1), without emphasizing intermediate eigenvectors. It is this shift of
emphasis from eigenvectors to basis vectors that provides the significant speedup of CheFSI over
diagonalization-based approaches.

11

6 Numerical Results

We implement the various “diagonalization” algorithms in a Matlab package called RSDFT,
where RS stands for Real Space. RSDFT is based on [5, 6], it aims to utilize the convenient fea-
tures of Matlab for fast prototyping of new algorithms, as well as for teaching DFT calculations.
(Another Matlab DFT package having similar purpose but based on planewave is [42].)

We use finite difference of eighth order to discretize the Kohn-Sham equation. The test prob-
lems used for the numerical experiments include three benzene molecules (C6H6), a buckmin-
sterfullerene (C60), three perovskite molecules (MgSiO3) [37, 39], fifteen silicon dioxide molecules
(SiO2), forty two water molecules, and fifty two water molecules. Table 1 lists the dimensions
of the Hamiltonian matrices for these molecules and their associated number of occupied states
nocc.

material 3 (C6H6) C60 3 (MgSiO3) 15 (SiO2) 42 (H2O) 52 (H2O)

Hamiltonian dim. 97,336 85,184 314,432 238,328 343,000 343,000

nocc 94 244 76 244 340 420

Table 1: Dimension of the Hamiltonian matrix and its associated number of occupied states
(nocc) for each of the test problems.

For the numerical experiments, we compare the new algorithm with two other algorithms. The
new algorithm is Algorithm 4.1 with its step 2 diagonalization replaced by the filtering Algorithm
5.1. We denote this algorithm as 1stFilt+CheFSI. For the two algorithms to be compared with,
one is SCF by iterative diagonalization at each SCF step, the other calls iterative diagonalization
only at the first SCF step, and then it calls CheFSI for the remaining SCF steps.

Since the Matlab iterative eigensolver eigs is readily available, and it calls the ARPACK
[19] — a de facto Fortran eigenvalue package, we choose to call eigs for the iterative diagonal-
izations. Because of this, we denote the method that does iterative diagonalization at each SCF
step as eigsSCF, and the other method that calls diagonalization only at the first SCF step as
eigs+CheFSI. There are certainly other eigensolvers written in Matlab, which may be used for
the numerical experiments, but the numerical efficiency as well as robustness usually favor the
Fortran ARAPCK package via eigs.

The hardware used for the numerical tests is a Linux workstation with 72GB RAM memory
and dual 12-core Intel Xeon X5650 processors, each core has 2.67GHz CPU. This computer is
dedicated for the reported computations. Note that Matlab can utilize the multi cores auto-
matically, therefore the reported CPU time is the sum of CPU time on all cores. Although the
cputime command in Matlab is known to have slight variance in measurement, our point here
is that the difference in CPU time is quite significant for the three methods being compared,
making the slight measuring variance of the cputime command negligible. Note that all the re-
ported CPU time in this section refers to the total CPU time for “diagonalizations” only, which
is usually over 90% of the total CPU time for the whole SCF simulation.

Figure 2 shows CPU time comparisons among 1stFilt+CheFSI, eigsSCF, and eigs+CheFSI.
The Chebyshev polynomial degree used for 1stFilt+CheFSI and eigs+CheFSI is m = 10. The
itmax in Algorithm 5.1 is set to 4. For the eigs calls in eigsSCF and eigs+CheFSI, we set
the tolerance to 5 × 10−5, this prevents eigs from taking too long to converge to unnecessarily
high precision. However we cannot use a looser tolerance for eigs since it can risk missing some

12

3 C6H6 C60 3 MgSiO3 15 SiO2 42 H2O 52 H2O
102

103

104

105

106

CP
U

se
co

nd
s

CPU time for different methods to reach self-consistency

eigsSCF
eigs+CheFSI
1stFilt+CheFSI

3 C6H6 C60 3 MgSiO3 15 SiO2 42 H2O 52 H2O
0
5

10
15
20
25
30
35
40 CPU time comparision: how many times faster

eigsSCF / 1stFilt+CheFSI

3 C6H6 C60 3 MgSiO3 15 SiO2 42 H2O 52 H2O
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

eigs+CheFSI / 1stFilt+CheFSI

Figure 2: CPU time comparisons. The top figure shows the total CPU time the three methods
took to reach self-consistency for the test problems listed in Table 1. Here m = 10 for all the
tests. We used log scale for the y-axis since otherwise the bar length for eigsSCF would be
overly dominant and make the bars for the other two methods hard to observe. To make the
comparisons easier to observe, we plot the CPU time of eigsSCF and eigs+CheFSI over the
CPU time of 1stFilt+CheFSI. The bottom figure shows that 1stFilt+CheFSI is easily over an
order of magnitude faster than eigsSCF, and over twice faster than eigs+CheFSI on the larger
problems from Table 1.

13

wanted eigenvalues and lead to no SCF convergence.
The comparisons shown in Figure 2 is quite impressive, considering that 1stFilt+CheFSI

is purely Matlab code, while eigs+CheFSI and eigsSCF both call the optimized Fortran code
ARPACK via eigs.

Indeed the majority of the speedup is obtained via the CheFSI framework, which replaces
the expensive diagonalization at each SCF step by a subspace filtering. This leads to the order
of magnitude speedup, as seen from Figure 2. Our current method further reduces the expensive
first step diagonalization that remained in the original CheFSI framework [47], this leads further
to about twice speedup for larger problems.

For the tests shown in Figure 2, we simply set m = 10 as the degree for the filter polynomials.
Clearly the impact of m on the efficiency of our algorithm cannot be seen from this figure. Because
theoretic result guiding the choice of an optimal m is not available, we did many further numerical
experiments with varying degree m to evaluate the impact of this parameter.

We report three representative results in Figure 3, where the convergence history of all three
methods are shown.

Figure 3 shows that for the test problem (3 MgSiO3), as m increases from 8 to 14, the total
SCF steps decrease. However, this trend is not necessary true for other test problems, especially
when nocc is relatively large, as seen in Figures 4 and 5.

In Figures 4 and 5, we focus only on the 1stFilt+CheFSI method, so that more choices of
m can be presented in the same figure without overcrowding it.

There are two reasons for total SCF steps not necessarily going down with increasing degree
m: One is the randomness in the initial vectors; the other is the difference in the automatically
adjusted filtering bounds (the difference may be sizable when nocc is relatively large), which can
affect the filter efficiency.

Our conclusion is that it is better to use a moderate m, especially when the wanted eigenvalues
are not clustered. Since a larger m implies more computation at each SCF filtering step, and it
may not necessarily reduce the total SCF steps, the effect of a relatively large m (say, m ≥ 50)
often does not contribute to reducing the overall CPU time. In fact, for the two problems in
Figures 4 and 5, the smallest m = 8 consumes the least CPU time for each problem respectively.
We do not present the results for m > 20 for these two problems but mention that they do
not further reduce the total SCF steps, hence they tend to use more CPU time with increasing
m > 20.

Although choosing an “optimal” m appears to be a tricky theoretical problem, in practice it
is quite easy to choose an m that performs well for a wide variety of problems. In general we
recommend an m satisfying 8 ≤ m ≤ 40; the larger m in this range is preferred only when the
wanted part of the spectrum is more clustered. We can get some insight from the exponential
growth of the Chebyshev polynomials as shown in Figure 1. This figure implies that m around 20
would be quite sufficient to introduce favorable spectrum gap into the filtered problems, therefore
we think m in the range of 8 and 40 should be sufficient for most problems, including difficult
problems for which the wanted eigenvalues are highly clustered.

Another advantage of our current method is the memory requirement. The standard Lanczos
algorithm usually requires far more memory than the implicit restart Lanczos implemented in
ARPACK, it can become impractical even for moderately large problems. In fact we implemented
the Lanczos algorithm in RSDFT for the first step diagonalization, Matlab always exited with
an “Out of memory” message when calling Lanczos for the larger problems listed in Table 1.

Other well-known iterative diagonalization methods, such as the ARPACK [19], Thick-restart

14

0 2 4 6 8 10 12 14 16 18
10

−4

10
−3

10
−2

10
−1

10
0

10
1

SCF iteration steps

S
C

F
 p

ot
en

tia
l e

rr
or

Reduction in potential difference. m=8

eigsSCF
eigs+CheFSI
1stFilt+CheFSI

0 2 4 6 8 10 12 14
10

−4

10
−3

10
−2

10
−1

10
0

10
1

SCF iteration steps

S
C

F
 p

ot
en

tia
l e

rr
or

Reduction in potential difference. m=10

eigsSCF
eigs+CheFSI
1stFilt+CheFSI

0 2 4 6 8 10 12 14
10

−4

10
−3

10
−2

10
−1

10
0

10
1

SCF iteration steps

S
C

F
 p

ot
en

tia
l e

rr
or

Reduction in potential difference. m=12

eigs
eigs+CheFSI
1stFilt+CheFSI

0 2 4 6 8 10 12
10

−4

10
−3

10
−2

10
−1

10
0

10
1

SCF iteration steps

S
C

F
 p

ot
en

tia
l e

rr
or

Reduction in potential difference. m=14

eigsSCF
eigs+CheFSI
1stFilt+CheFSI

Figure 3: Effect of the polynomial degree m on the number of total SCF steps for the three
perovskite molecules MgSiO3. For this test problem, as m increases, the total SCF steps for the
filtering methods eigs+CheFSI and 1stFilt+CheFSI decrease. (In this figure the same convergence

history of eigsSCF is shown in each subfigure as a quick reference.)

15

0 5 10 15 20 25
SCF steps for 15 SiO2

10-4

10-3

10-2

10-1

100

101

p
o
te
n
ti
a
l
d
if
fe
re
n
c
e

SCF steps vs poly. degree m

m=8

m=10

m=12

m=14

m=16

m=18

m=20

m=8 m=10 m=12 m=14 m=16 m=18 m=20
0

5

10

15

20

25

to
ta
l
S
C
F
 s
te
p
s

15 SiO2 : SCF steps and CPU seconds vs m

m=8 m=10 m=12 m=14 m=16 m=18 m=20
0

2000

4000

6000

8000

10000

C
P
U
 s
e
c
o
n
d
s

Figure 4: Left figure shows the convergence history of the 1stFilt+CheFSI method with varying
m applied to the 15 SiO2 molecules. Right figure shows the total SCF steps and the total CPU
time to reach self-consistency for each m.

0 5 10 15 20
SCF steps for 52 H2O

10-4

10-3

10-2

10-1

100

101

po
te
nt
ia
l d

iff
er
en

ce

SCF steps vs poly. degree m

m=8
m=10
m=12
m=14
m=16
m=18
m=20

m=8 m=10 m=12 m=14 m=16 m=18 m=200

5

10

15

20

25

to
ta
l S

C
F
st
ep

s

52 H2O: SCF steps and CPU seconds vs m

m=8 m=10 m=12 m=14 m=16 m=18 m=200

5000

10000

15000

20000

25000

C
PU

 s
ec
on

ds

Figure 5: Left figure shows the convergence history of the 1stFilt+CheFSI method with varying
m applied to the 52 H2O molecules. Right figure shows the total SCF steps and the total CPU
time to reach self-consistency for each m.

16

Lanczos [40, 41], Davidson-type methods [34, 36, 35], and LOBPCG [13], all require at least 2nocc

as the dimension of the iterative subspace in order to effectively approximate wanted eigenvectors.
By contrast our current method, now solely based on subspace filtering, requires the iterative
subspace dimension to be only slightly larger than nocc. This saves significant memory, especially
for problems with a very high dimension n and a large nocc.

7 Concluding Remarks

In our previous CheFSI method [48, 47], the diagonalization at the first SCF step can be quite
expensive for large problems. We present a filtering method that avoids this diagonalization,
thus making the CheFSI method free of sparse iterative diagonalizations at all SCF iteration
steps. Our current method maintains the strength of the previous CheFSI method, with the
added advantage that the first SCF step is vastly accelerated and that memory requirement
is reduced by half comparing with standard iterative diagonalization methods. The numerical
results obtained via the RSDFT Matlab package show the promise of our current method. We
are in the process of implementing the algorithm in our Fortran package called PARSEC.

References

[1] V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein. First-principles calculations of the
electronic structure and spectra of strongly correlated systems: the LDA+U method. J.

Phys.: Condens. Matter, 9:767–808, 1997.

[2] O. Axelsson. Iterative Solution Methods. Cambridge Univ. Press, 1994.

[3] T. L. Beck. Real-space mesh techniques in density-functional theory. Rev. Mod. Phys.,
72(4):1041–1080, 2000.

[4] J. R. Chelikowsky and M. L. Cohen. Ab initio pseudopotentials for semiconductors. In
Handbook on Semiconductors, volume 1, page 59. Elsevier, Amsterdam, 1992.

[5] J. R. Chelikowsky, N. Troullier, and Y. Saad. Finite-difference-pseudopotential method:
Electronic structure calculations without a basis. Phys. Rev. Lett., 72:1240–1243, 1994.

[6] J. R. Chelikowsky, N. Troullier, K. Wu, and Y. Saad. Higher-order finite-difference pseu-
dopotential method: An application to diatomic molecules. Phys. Rev. B, 50:11355–11364,
1994.

[7] M. Cococcioni and S. de Gironcoli. Linear response approach to the calculation of the
effective interaction parameters in the LDA+U method. Phys. Rev. B, 71(3):035105, 2005.

[8] B. Engel and R. M. Dreizler. Density Functional Theory: An Advanced Course. Theoretical
and Mathematical Physics. Springer, 2011.

[9] C. J. Garćıa-Cervera, J. Lu, Y. Xuan, and Weinan E. Linear-scaling subspace-iteration
algorithm with optimally localized nonorthogonal wave functions for Kohn-Sham density
functional theory. Phys. Rev. B, 79(11):1–13, 2009.

17

[10] S. Goedecker and M. P. Teter. Tight-binding electronic-structure calculations and tight-
binding molecular dynamics with localized orbitals. Phys. Rev. B, 51:9455–9464, 1995.

[11] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864–871, 1964.

[12] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 1985.

[13] A. V. Knyazev. Toward the optimal preconditioned eigensolver: Locally optimal block
preconditioned conjugate gradient method. SIAM J. Sci. Comput., 23(2):517–541, 2001.

[14] W. Koch and M. C. Holthausen. A chemist’s guide to density functional theory. Wiley-VCH,
2nd edition, 2001.

[15] W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation
effects. Phys. Rev., 140:A1133–1138, 1965.

[16] G. Kresse and J. Furthmüller. Efficient iterative schemes for ab initio total-energy calcula-
tions using a plane-wave basis set. Phys. Rev. B, 54(16):11169–11186, 1996.

[17] H. J. Kulik, M. Cococcioni, D. A. Scherlis, and N. Marzari. Density Functional Theory
in Transition-Metal Chemistry: A Self-Consistent Hubbard U Approach. Phys. Rev. Lett.,
97(10):103001, 2006.

[18] S. Kümmel and J. P. Perdew. Optimized effective potential made simple: Orbital functionals,
orbital shifts, and the exact Kohn-Sham exchange potential. Phys. Rev. B, 68(3):035103,
2003.

[19] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK User’s Guide: Solution of Large

Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM, 1998.

[20] L. Lin, J. Lu, L. Ying, and Weinan E. Pole-based approximation of the Fermi-Dirac function.
Chinese Ann. Math. - Ser. B, 30:729–742, 2009.

[21] L. Lin, J. Lu, L. Ying, and Weinan E. Adaptive local basis set for KohnSham density
functional theory in a discontinuous Galerkin framework I: Total energy calculation. J.

Comput. Phys., 231(4):2140–2154, 2012.

[22] L. Lin, J. Lu, L. Ying, and Weinan E. Optimized local basis set for KohnSham density
functional theory. J. Comput. Phys., 231(13):4515–4529, 2012.

[23] R. M. Martin. Electronic structure : Basic theory and practical methods. Cambridge Uni-
versity Press, 2004.

[24] T. Ozaki. Continued fraction representation of the Fermi-Dirac function for large-scale
electronic structure calculations. Phys. Rev. B, 75(3):035123, 2007.

[25] T. Ozaki. Efficient low-order scaling method for large-scale electronic structure calculations
with localized basis functions. Phys. Rev. B, 82(7):075131, 2010.

[26] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos. Iterative
minimization techniques for ab initio total-energy calculations: molecular dynamics and
conjugate gradients. Rev. Mod. Phys., 64:1045–1097, 1992.

18

[27] J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized gradient approximation made simple.
Phys. Rev. Lett., 77(18):3865–3868, 1996.

[28] J. C. Phillips and L. Kleinman. New method for calculating wave functions in crystals and
molecules. Phys. Rev., 116:287–294, 1959.

[29] T. J. Rivlin. An Introduction to the Approximation of Functions. (1969 1st edition), Dover,
2003.

[30] Y. Saad. Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems.
Math. Comp., 42(166):567–588, 1984.

[31] Y. Saad, A. Stathopoulos, J. Chelikowsky, K. Wu, and S. Öğüt. Solution of large eigenvalue
problems in electronic structure calculations. BIT, 36(3):563–578, 1996.

[32] A. P. Seitsonen, M. J. Puska, and R. M. Nieminen. Real-space electronic-structure calcula-
tions: Combination of the finite-difference and conjugate-gradient methods. Phys. Rev. B,
51(20):14057–14061, 1995.

[33] R. B. Sidje and Y. Saad. Rational approximation to the Fermi-Dirac function with appli-
cations in density functional theory. Numerical Algorithms, 56(3):455–479, 2011.

[34] G. L. G. Sleijpen and H. A. van der Vorst. A Jacobi–Davidson iteration method for linear
eigenvalue problems. SIAM J. Matrix Anal. Appl., 17:401–425, 1996.

[35] A. Stathopoulos and J. R. McCombs. Nearly optimal preconditioned methods for hermitian
eigenproblems under limited memory. part II: Seeking many eigenvalues. SIAM J. Sci.

Comput., 29(5):2162–2188, 2007.

[36] A. Stathopoulos, Y. Saad, and K. Wu. Dynamic thick restarting of the Davidson and the
implicitly restarted Arnoldi methods. SIAM J. Sci. Comput., 19:227–245, 1998.

[37] L. Stixrude and B. B. Karki. Structure and freezing of MgSiO3 liquid in earth’s lower mantle.
Science, 310:297–299, 2005.

[38] M. L. Tiago, Y. Zhou, M. Alemany, Y. Saad, and J. R. Chelikowsky. Evolution of magnetism
in iron from the atom to the bulk. Phys. Rev. Lett., 97:147201, 2006.

[39] K. Umemoto, R. M. Wentzcovitch, and P. B. Allen. Dissociation of MgSiO3 in the cores of
gas giants and terrestrial exoplanets. Science, 311:983–986, 2006.

[40] K. Wu, A. Canning, H. D. Simon, and L.-W. Wang. Thick-restart Lanczos method for
electronic structure calculations. J. Comput. Phys., 154:156–173, 1999.

[41] K. Wu and H. Simon. Thick-restart Lanczos method for large symmetric eigenvalue prob-
lems. SIAM J. Matrix Anal. Appl., 22:602–616, 2000.

[42] C. Yang, J. C. Meza, B. Lee, and L.-W. Wang. KSSOLV — a MATLAB Toolbox for Solving
the Kohn-Sham Equations. ACM Trans. Math. Softw., 36(2):10:1–35, 2009.

[43] Y. Zhou. A block Chebyshev-Davidson method with inner-outer restart for large eigenvalue
problems. J. Comput. Phys., 229(24):9188–9200, 2010.

19

[44] Y. Zhou. Practical acceleration for computing the HITS ExpertRank vectors. Journal of

Computational and Applied Mathematics, 236(17):4398–4409, 2012.

[45] Y. Zhou and R.-C. Li. Bounding the spectrum of large hermitian matrices. Linear Algebra

Appl., 435(3):480–493, 2011.

[46] Y. Zhou and Y. Saad. A Chebyshev-Davidson algorithm for large symmetric eigenvalue
problems. SIAM J. Matrix Anal. Appl., 29(3):954–971, 2007.

[47] Y. Zhou, Y. Saad, M. L. Tiago, and J. R. Chelikowsky. Parallel self-consistent-field calcu-
lations using Chebyshev-filtered subspace acceleration. Phys. Rev. E, 74(6):066704, 2006.

[48] Y. Zhou, Y. Saad, M. L. Tiago, and J. R. Chelikowsky. Self-consistent-field calculation using
Chebyshev-filtered subspace iteration. J. Comput. Phys., 219(1):172–184, 2006.

20

