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Abstract

This letter proposes an algorithm for linear whitening thatminimizes the mean squared error

(MSE) between the original and whitened data without using the truncated eigen decomposi-

tion (ED) of the covariance matrix of the original data. Thisalgorithm uses Lanczos vectors to

accurately approximate the major eigenvectors and eigenvalues of the covariance matrix of the

original data. The major advantage of the proposed whitening approach is its low computational

cost when compared with that of the truncated ED. This gain comes without sacrificing accuracy

as illustrated on an experiment of whitening a real high dimensional fMRI data set.
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1 Introduction

The univariate and multivariate linear regression models are simple and widely used parametric

models for fMRI data analysis Ashby (2011), Lazar (2010). In these models the linear (deter-

ministic) part is used to characterize the activation response in a single voxel for the univariate

model or a group of voxels for the multivariate model and the baseline drift whereas the second

(stochastic) part of the model characterizes the noise fromboth physical and physiological pro-

cesses Ashby (2011), Lazar (2010).

On the one hand, the univariate linear regression model usesa hemodynamic response func-

tion (HRF) as a parameter vector with extra parameters for thedrift and a univariate temporally

correlated noise to model the fMRI time series at each voxel toinfer task-related activations

with estimates of the level of significance Ardekani & Kershaw & Kashikura & Kanno (1999),

Seghouane & Shah (2012). As a consequence, the sensitivity of hypothesis methods based on

this model across a group of voxel is crucially dependent on the group correction post processing

step Genovese & Lazar & Nichols (2002).

On the other hand, multivariate linear regression models have mainly been used in data-driven

methods Esposito & al. (2002), Calhoun & Adali & Pearlson & Pekar (2001). They allow the

exploitation of the relationships between voxels. Among the multivariate data-driven techniques

used in fMRI, independent component analysis (ICA) Hyvarien &Karhunen & Oja (2001), Jol-

liffe (2002) has been widely applied to fMRI to find componentsthat are spatially independent

Esposito & al. (2002) (sICA) or temporally independent Calhoun & Adali & Pearlson & Pekar

(2001) (tICA).

A common pre-processing step used with both the above modelsis prewhitening. In the case

of the univariate model, this allows the generation of the best linear unbiased estimates of the

parameters vector and therefore more accurate activation tests. In the ICA case, it has the ad-

vantage to reduce the complexity and improve the convergence of the ICA algorithm Hyvarien
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& Karhunen & Oja (2001).

Prewhitening is obtained by multiplying the fMRI data by the square root of the inverse covari-

ance matrix which can be obtained from the Cholesky factorization or the eigen decomposition

of the inverse covariance matrix. As it is well known, however, the Cholesky factorization or

the eigen decomposition are computationally expensive, scaling O(p3) for a densep × p co-

variance matrix. While this is not a major inconvenience whendealing with univariate linear

regression modeling of fMRI time series or sICA, this can be a major problem for tICA when

the number of voxels considered is very large. In fMRI analysis, the spatial resolution is often

at least about64× 64 over32 slices resulting in 131072 voxels. Prewhitening needs substantial

computational work to get the eigen decomposition, to overcome this inconvenient an alterna-

tive approach for prewhitening large dimensional multivariate vectors is proposed in this paper.

The proposed subspace method constructs an approximated whitened vector based on Krylov se-

quences of subspaces reachable from the unwhitened vector.The goal of the proposed algorithm

is identical with the approach based on ED, namely to preserve the quality of the resulting prod-

uct between the inverse square root of the covariance matrixand the data vector to be whitened

in the major eigen directions of the covariance matrix. A Lanczos based approach is used to

achieve this goal by using a relatively small numberr of Lanczos vectors. The advantage of the

proposed approach is its computational complexity which isO(rp2) with r ≪ p compared with

theO(p3) associated with the ED-based approach. Like the Cholesky factorization or the eigen

decomposition, the proposed method involves an eigen decomposition (factorization) but it is

implemented on a much smaller matrix resulting in a much computationally cheaper whitening

method in comparison toO(p3). The proposed method is particularly appealing when a reduced

rank approximation of the covariance matrix is used for prewhitening.

The rest of the paper is organized as follows: the prewhitening preprocessing step of multivariate

temporal fMRI time series is reviewed in the next section. Theproposed prewhitening algorithm

is described in Section 3. The choice of the dimension of the krylov subspace is discussed in
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Section 4. The performance of the proposed whitening methodon real fMRI data is illustrated

in Section 5. Concluding remarks are given in Section 6.

2 Prewhitening and multivariate fMRI temporal model

ICA has become the main model for multivariate data-driven fMRI analysis. With this model,

an observed data vectory = (y1, y2, ..., yp)
⊤ is modeled as a mixture of an unobservable source

vectorx = (x1, x2, ..., xm)
⊤ as follows

y = Ax (1)

whereA ∈ Rp×m is a mixing matrix. In tICA, a measurement matrixY = (y1, y2, ..., yn) ∈

Rp×n is formed by collecting fMRI times series of time lengthn acrossp voxels. The matrix

X ∈ Rm×n containsm temporally independent sources of lengthn. In the prewhitening step,

the mixed vectory is processed by

z = V −
1

2 (y− µ) (2)

whereµ andV are the mean vector and covariance matrix ofy, such thatz is N(0, σ2Ip). In the

classical prewhitening, they are estimated by

µ̂ =
1

n

n
∑

i=1

yi and V̂ =
1

n− 1

n
∑

i=1

(y− µ̂)(y− µ̂)⊤

in a batch way sampling.

A prewhitened data set is necessary in some ICA algorithms. Itreduces the complexity of the

ICA problems Hyvarien & Karhunen & Oja (2001). GivenV assumed full rank positive definite,

V −
1

2 is usually obtained from the eigen decomposition as follows

V −
1

2 = US−
1

2U⊤ (3)

whereS = diag(s1, s2, ..., sp) is the diagonal matrix of eigenvalues andU the unitary matrix of

eigenvectors. However, as in many scientific fields including tICA in fMRI, where the number
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of samplesn is much smaller than the number of variablesp, although the data are presented in

a high dimensional space, they actually have a much lower intrinsic dimensionalityk ≪ p. In

this caseV is generally rank deficient and the best full rank-k approximation ofV in the2-norm

(obtained by truncating the ED) is used instead ofV

V
−

1

2

k = UkS
−

1

2

k U⊤

k (4)

whereUk consists of the firstk columns ofU andSk is the k-th principal submatrix ofS. When

a very large number of voxels is considered, prewhitening iscomputationally expensive since it

requires a computational complexity of orderO(np2) for the covariance matrix andO(p3) for the

eigen decomposition. The usefulness of the later is questionable since only the major eigenvalues

and eigenvectors ofV are needed in (4). Furthermore, the least-squares residualassociated to

the centered whitened vector with (4) is given by

Rk = ||V 1

2 z− y||2

= ||V 1

2UkS
−

1

2

k U⊤

k y− y||2

= ||U⊤

k y− U⊤y||2

=

p
∑

i=k+1

(u⊤

i y)2 (5)

Relation (5) shows that the truncated ED used for choosing theorder in which to include compo-

nents is unnatural. Based on the least squares residual, the components should be chosen using

the magnitude of the components ofU⊤y. The singular values (principal components) are or-

dered in such a way that they reflect the directions of largestvariation in the covariance matrix

V . However, the purpose of the whitening procedure is to reduce the least squares residual us-

ing a smaller dimension projection subspace, then the choice of the components should be done

according to the components of the vectorU⊤y.

In what follows, based on Krylov sequences of subspaces reachable from the vectory, a compu-

tationally efficient approach is proposed for generating the major eigenvectors and eigenvalues
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of V without computing its eigendecomposition. An eigendecomposition is still necessary but is

applied on a much smaller matrix of dimensionr ≪ p.

3 Krylov subspace approximations for prewhitening

Given a symmetric matrixV ∈ Rp×p and an initial vectory, a Krylov subspace is a subspace of

the form

Kr(V, y) = span
{

y, V y, V 2y, ..., V r−1y
}

.

Increasing the dimensionr allow us to reach the entire subspace of the pair(V, y). The dimension

r ≤ p. In our computation we not only use the Krylov subspaceKr(V, y) but also an orthonormal

basis of it. The Lanczos algorithm builds such orthonormal basis.

The Lanczos algorithm generates a set ofr vectorsqi, i = 1, ..., r that form an orthonormal basis

of the Krylov subspaceKr(V, y). These vectors satisfy the 3-term recurrence

βi+1qi+1 = V qi − αiqi − βiqi−1

with β1q0 = 0. The coefficientsαi andβi+1 are computed so as to ensure that〈qi+1, qi〉 = 0

and ||qi+1|| = 1. The time cost of this algorithm isO(rp2) for a dense matrixV . If Qr =

[q1, q2, ..., qr] ∈ Rp×r, then an important equality that results from the algorithmis

Q⊤

r V Qr = Tr =



























α1 β2

β2 α2 β3

.. . .. . . ..

βr−1 αr−1 βr

βr αr



























. (6)

whereTk is a tridiagonal matrix. The eigenvalues ofTr are called Ritz values and for an eigen-

vectorw of Tr,Qrw defines the Ritz vector. Asr increases more Ritz values and vectors will con-

verges towards the eigenvalues and eigenvectors ofV Golub & Van Loan (1996), Saad (1992),
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Chen & Saad (2009).

The Krylov subspaceKr(V, y) reached from a small number ofr of naive vectors is used for the

construction of an approximation ofz. The eigen decomposition ofTr defined in (6) obtained

fromKr(V, y) is easily computed in practice becauser is assumed to be small

Tr = WDW⊤ and T
−

1

2

r = WD−
1

2W⊤. (7)

The eigenvalues inD are known to approximate the extremal eigenvalues ofV andQrW are the

approximate eigenvectors.

The problem of linear whitening can be formulated as searching for the vectorz such that Eldar

& Oppenheim (2005)

E
{

(z− y)2
}

(8)

is minimum subject to

E
{

zz⊤
}

= σ2Ip. (9)

Assuming the vectorz ∈ Kr(V, y), hence it can be written as

z = Kra (10)

for some appropriatea ∈ Rr. The orthonormal basisQr generated by the Lanczos algorithm is

used to represent this vector. In the basisQr, z ∈ Kr(V, y) can be written as

ẑ = Qrb = QrWW⊤b ≡ U t (11)

for some appropriateb ∈ Rr andt is N(0, σ2Ir) sinceU is orthogonal. With this the MSE (8)

above can be written as

E
{

(z− y)2
}

= E
{

(t− U⊤y)2
}

= rσ2 +
r
∑

i=1

si − 2
r
∑

i=1

E
(

ti(U
⊤y)i

)

≃ rσ2 +
r
∑

i=1

di − 2
r
∑

i=1

E
(

ti(U
⊤y)i

)

(12)
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whereti is N(0, σ2) and(U⊤y)i is N(0, si). the minimum of (12) is obtained for the maximum

of the last term of the right hand side of (12). Using Cauchy-Schwartz inequality

E
(

ti(U
⊤y)i

)

≤
√

var(ti)var((U⊤y)i) = σ
√

var((U⊤y)i) (13)

the maximum of (12) is obtained for

ti = σ
(U⊤y)i√

si
≃ σ

(U⊤y)i√
di

. (14)

Therefore

b ≃ σWD−1/2W⊤Q⊤

r y = σT−1/2
r Q⊤

r y (15)

and

z ≃ σQrT
−1/2
r Q⊤

r y. (16)

By replacingt = σD−1/2U⊤y in (12) and minimizing with respect toσ, we have

σ̂ =
1

r

r
∑

i=1

√

di. (17)

Using (17),z becomes

z ≃ σ̂βQrT
−

1

2

r e1 (18)

whereβ = ||y||2, e1 is the first column of ther×r identity matrix and the first vector of the basis

Qr is q1 = y/||y||2. The approximate whitened vector is then based on computingthe inverse

square root of a matrix of substantially smaller dimensionr ≪ p, where it is inexpensive to

compute exactly.

The above procedure is captured in the algorithm below.

Algorithm: Lanczos procedure for whitening

Input: V, r, y

1. Setβ1 ← 0, q0 ← 0.

2. Chooseq1 = y/||y||2.

3. For i=1,...,rdo
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4. li ← V qi − βiqi−1

5. αi ← (li, qi)

6. li ← li − αiqi

7. βi+1 ← ||li||2

8. qi+1 ← li/βi+1

9. EndFor

10. SetQr ← [q1, q2, ..., qr], Tr ← tridiag{βj, αj , βj}.

11. Compute the eigendecomposition ofTr = WDW⊤

12. Set̂σ ← 1

r

∑r
i=1

√
di.

13. Return z = σ̂βQrT
−

1

2

r e1

Since the whitened vector of interest is of the formz = V
−

1

2

k y, the vector̂z defined in (18) is a

good alternative. Using

T
−1

2

r = WD
−1

2 W⊤ = Q⊤

r QrWD−
1

2W⊤Q⊤

r Qr

≃ Q⊤

r V
−

1

2Qr (19)

where the last term is valid for sufficiently larger, in (18) gives

ẑ = σ̂QrQ
⊤

r V
−

1

2 y (20)

which is the orthogonal projection of the exact solution (2)onto the Krylov subspace. When

projected to the subspace spanned by the major eigenvectorsof V , this approximation is very

close to the projection ofz if r is sufficiently large.

The proposed approach (16) as well as the truncated ED (4) aretwo methods for biased esti-

mation. Each of these methods generate a filtered version ofz given in (2). In the case of the

truncated ED we have

z1 = V
−

1

2

k y =

p
∑

i=1

f1(si)
u⊤

i y√
si

ui (21)
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where the shrinkage functionf1(si) is given by

f1(si) =











1 for 1 ≤ i ≤ k

0 for k < i ≤ p

The bias is introduced in the directions that are responsible for the high variance. The hope is

that the increase in bias is small compared to the decrease invariance leading to a reduction in

the mean square error. If the shrinkage functionf1(.) above does not depends ony, that isẑ is

linear in y, anyf1(si) 6= 1 will increase the bias in the ith direction. The proposed whitening

procedure in (16) is a filtering estimator as well. The shrinkage function in this case is closely

related to the Ritz values and vectors and is given by Sluis & Vorst (1997)

f2(si) = 1−
r
∏

j=1

(

1−
√
si

√

dj

)

.

In comparison to (21),

z2 = σQrT
−

1

2

r Q⊤

r y =

p
∑

i=1

f2(si)u⊤

i yui

is nonlinear iny. The valuesf(si) depend on the eigenvalues ofTr andTr in turn depends on

y in a complicated manner.f2 is related to (5) throughK1, ..., Kr which are subspaces of the

space spanned by the vectorsui for which u⊤

i y 6= 0. Qr is obtained through a Gram-Schmidt

orthonormalization (GSO) ofKr

Qr = GSO {Kr(V, y)} = GSO
{

y, V y, V 2y, ..., V r−1y
}

= GSO
{

UU⊤y, USU⊤y, US2U⊤y, ..., USr−1U⊤y
}

= U.GSO
{

U⊤y, SU⊤y, S2U⊤y, ..., Sr−1U⊤y
}

.

The values off2(si) automatically take into account both (5) and the variances in V whereas the

value off1 extract only the directionsui that explain the maximum variance in V.

The convergence of̂z to z in the directions of the major eigenvectors ofV asr increases can be

analyzed using

|〈(z− ẑ), uj〉| ≤ cj||z||2T−1

m (γj) (22)
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Figure 1: An illustration of the shrinkage functionf2 for different values ofr. The symmetric

matrix V is of dimension 10. The shrinkage is high ifr is small
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whereuj is thejth eigenvector ofV ,m = r−j with r ≥ j, cj > 0 andγj > 1 are constants inde-

pendent ofr (not considerinĝσ) andTm(.) is the Chebyshev polynomial of degreem. Therefore

the approximation error projected onuj decays asT−1
m (γj). The derivation of this inequality is

given in the Appendix.

The Chebyshev polynomialTm(x) for x > 1 largem is

Tm(x) =
1

2

(

emλ + e−mλ
)

≃ 1

2
emλ

whereλ = arccosh(x). Thereforêz converge geometrically.

4 Choosing the dimension r

Similar to the problem of determining the most appropriate dimensionk when using (4), the

dimensionr of the Krylov subspaceKr(V, y) plays a crucial role in finding the accurate approx-

imation of the major eigenvectors and eigenvalues ofV . This numberr also corresponds to the

number of steps in the algorithm described above. It can be chosen beforehand using a model

selection criterion Seghouane & Bekara (2004), Seghouane & Cichocki (2007) or determined

by a convergence rule tested at the end of each iteration of the algorithm. In this later case, the

whitened vector is computed at the end of each step i of the algorithm.

Different convergence rule can be used, in this letter the relative norm of the difference between

two consecutive approximation

τ =
||ẑi+1 − ẑi||2
||ẑi||2

is used as a convergence criterion. The algorithm above is stopped when this is below a certain

threshold.
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5 Application to fMRI Time Series Whitening

The data used to assess the performance of the proposed prewhitening method was generated

from an fMRI experiment performed to investigate an event related right finger tapping task.

A 3.0 T functional MRI system was used to acquire the whole brain BOLD/EPI images. Each

acquisition consisted of 35 contiguous slices (64× 64× 64 3.44mm× 3.44mm× 4mm voxels).

The data was recorded for a total of650 s with TR= 2 s. First30 dummy scans were discarded.

After the first30 s of rest, the task and resting period activity consisted of14 s window was

repeated40 times followed by an additional30 s of rest. The task period consisted of2 s of right

finger tapping. For the resting period that comes after the task, the interstimulus interval (ISI)

ranged between4 and20 s with an average ISI period of12 s Lee & Tak & Ye (2011).

Four data sets of sizep = 1000, p = 5000, p = 10000 andp = 40000 voxels were constructed

from both activated and non activated voxels. These data sets were whitened using the pro-

posed algorithm and the truncated SVD approach implementedin the GIFT software Calhoun

& Adali & Pearlson & Pekar (2001). The Q-Q plots (with Mahalanobis distance) were used to

compare the underlying distribution of each of the whiteneddata sets with the standard normal

distribution. As it can be seen on figure 1, the Q-Q plots approximately follow the liney = x

for whitened data sets obtained with both methods (second and third line of subfigures). This

indicates that the underlying distribution of the whiteneddata sets on the vertical axis are identi-

cal to the standard normal. On the other hand, when looking atthe computational time, table 1

indicates that the proposed whitening method is computationally more efficient than the classical

approach of truncated ED or SVD.

6 Conclusion

This letter introduces a computationally efficient method for whitening high dimensional fMRI

data sets based on Krylov subspaces. The gain in the computational cost of the method is
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Figure 2:QQ plots of the whitened data sets obtained from the two different methods versus the

χ2
p distribution.

achieved by avoiding the use of the ED of V which has a computational cost ofO(p3). In-

stead, a Lanczos based approach is used to accurately approximate the major eigenvectors and

eigenvalues of V. This has the advantage of avoiding the computation of the eigenvectors and

eigenvalues which are not associated with the intrinsic dimension of the data leading to a re-

duced computational cost ofO(rp2), r ≪ p. As illustrated on an experiment of whitening high

dimensional fMRI data, this comes without sacrificing accuracy.

No. of voxels 1000 5000 10000 40000

GIFT 4.62 10.07 17.61 64.25

Proposed 0.10 0.86 1.64 8.13

Table 1:Computation time in seconds for the three data sets whitening obtained for the method

implemented in GIFT software and the proposed method.
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Appendix

The bound on the angle between thejth eigenvectoruj of V and the Krylov subspace defined by

Qr is given by Saad (1980)

||(I −QrQ
⊤

r )uj|| ≤ cjT
−1

m (γj).

Applying the above inequality to (22)

|〈(z− ẑ), uj〉| = |〈(I −QrQ
⊤

r )z, uj〉|

= |〈(I −QrQ
⊤

r )uj, z〉|

≤ ||(I −QrQ
⊤

r )uj||2||z||2

≤ cj||z||2T−1

m (γj).
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