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Abstract

This paper describes gradient methods based on a scaled metric on the Grassmann
manifold for low-rank matrix completion. The proposed methods significantly
improve canonical gradient methods, especially on ill-conditioned matrices, while
maintaining established global convegence and exact recovery guarantees. A con-
nection between a form of subspace iteration for matrix completion and the scaled
gradient descent procedure is also established. The proposed conjugate gradient
method based on the scaled gradient outperforms several existing algorithms for
matrix completion and is competitive with recently proposed methods.

1 Introduction

Let A ∈ R
m×n be a rank-r matrix, wherer ≪ m,n. The matrix completion problem is to re-

constructA given a subset of entries ofA. This problem has attracted much attention recently
[8, 14, 13, 18, 21] because of its broad applications, e.g., in recommender systems, structure from
motion, and multitask learning (see e.g. [19, 9, 2]).

1.1 Related work

Let Ω = {(i, j)|Aij is observed}. We definePΩ(A) ∈ R
m×n to be the projection ofA onto the

observed entriesΩ: PΩ(A)ij = Aij if (i, j) ∈ Ω andPΩ(A)ij = 0 otherwise. If the rank is
unknown and there is no noise, the problem can be formulated as:

Minimize rank(X) subject toPΩ(X) = PΩ(A). (1)

Rank minimization is NP-hard and so work has been done to solve a convex relaxation of it by
approximating the rank by the nuclear norm. Under some conditions, the solution of the relaxed
problem can be shown to be the exact solution of the rank minimization problem with overwhelming
probability [8, 18]. Usually, algorithms to minimize the nuclear norm iteratively use the Singular
Value Decomposition (SVD), specifically the singular valuethresholding operator [7, 15, 17], which
makes them expensive.

If the rank is known, we can formulate the matrix completion problem as follows:

Find matrixX to minimize||PΩ(X) − PΩ(A)||F subject to rank(X) = r. (2)

Keshavan et al. [14] have proved that exact recovery can be obtained with high probability by solv-
ing a non-convex optimization problem. A number of algorithms based on non-convex formulation
use the framework of optimization on matrix manifolds [14, 22, 6]. Keshavan et al. [14] propose
a steepest descent procedure on the product of Grassmann manifolds of r-dimensional subspaces.
Vandereycken [22] discusses a conjugate gradient algorithm on the Riemann manifold of rank-r ma-
trices. Boumal and Absil [6] consider a trust region method on the Grassmann manifold. Although
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they do not solve an optimization problem on the matrix manifold, Wei et al. [23] perform a low rank
matrix factorization based on a successive over-relaxation iteration. Also, Srebro and Jaakkola [21]
discuss SVD-EM, one of the early fixed-rank methods using truncated singular value decomposition
iteratively. Dai et al. [10] recently propose an interesting approach that does not use the Frobenius
norm of the residual as the objective function but instead uses the consistency between the current
estimate of the column space (or row space) and the observed entries. Guaranteed performance for
this method has been established for rank-1 matrices.

In this paper, we will focus on the case when the rankr is known and solve problem (2). In fact,
even when the rank is unknown, the sparse matrix which consists of observed entries can give us a
very good approximation of the rank based on its singular spectrum [14]. Also, a few values of the
rank can be used and the best one is selected. Moreover, the singular spectrum is revealed during
the iterations, so many fixed rank methods can also be adaptedto find the rank of the matrix.

1.2 Our contribution

OptSpace [14] is an efficient algorithm for low-rank matrix completion with global convergence and
exact recovery guarantees. We propose using a non-canonical metric on the Grassmann manifold to
improve OptSpace while maintaining its appealing properties. The non-canonical metric introduces
a scaling factor to the gradient of the objective function which can be interpreted as an adaptive
preconditioner for the matrix completion problem. The gradient descent procedure using the scaled
gradient is related to a form of subspace iteration for matrix completion. Each iteration of the
subspace iteration is inexpensive and the procedure converges very rapidly. The connection between
the two methods leads to some improvements and to efficient implementations for both of them.

Throughout the paper,AΩ will be a shorthand forPΩ(A) and qf(U) is the Q factor in the QR
factorization ofU which gives an orthonormal basis for span(U). Also,PΩ̄(.) denotes the projection
onto the negation ofΩ.

2 Subspace iteration for incomplete matrices

We begin with a form of subspace iteration for matrix completion depicted in Algorithm 1. If the

Algorithm 1 SUBSPACEITERATION FOR INCOMPLETE MATRICES.
Input: Matrix AΩ, Ω, and the rankr.
Output: Left and right dominant subspacesU andV and associated singular values.
1: [U0,Σ0, V0] = svd(AΩ, r), S0 = Σ0; // Initialize U , V andΣ
2: for i = 0,1,2,...do
3: Xi+1 = PΩ̄(UiSiV

T
i ) + AΩ // Obtain new estimate ofA

4: Ui+1 = Xi+1Vi; Vi+1 = XT
i+1Ui+1 // Update subspaces

5: Ui+1 = qf(Ui+1); Vi+1 = qf(Vi+1) // Re-orthogonalize bases
6: Si+1 = UT

i+1Xi+1Vi+1 // Compute newS for next estimate ofA
7: if conditionthen
8: // DiagonalizeS to obtain current estimate of singular vectors and values
9: [RU ,Σi+1, RV ] = svd(Si+1); Ui+1 = Ui+1RU ; Vi+1 = Vi+1RV ; Si+1 = Σi+1.

10: end if
11: end for

matrix A is fully observed,U andV can be randomly initialized, line 3 is not needed and in lines
4 and 6 we useA instead ofXi+1 to update the subspaces. In this case, we have the classical two-
sided subspace iteration for singular value decomposition. Lines 6-9 correspond to a Rayleigh-Ritz
projection to obtain current approximations of singular vectors and singular values. It is known that
if the initial columns ofU andV are not orthogonal to any of the firstr left and right singular vectors
of A respectively, the algorithm converges to the dominant subspaces ofA [20, Theorem 5.1].

Back to the case when the matrixA is not fully observed, the basic idea of Algorithm 1 is to use
an approximation ofA in each iteration to update the subspacesU andV and then from the newU
andV , we can obtain a better approximation ofA for the next iteration. Line 3 is to compute a new
estimate ofA by replacing all entries ofUiSiV

T
i at the known positions by the true values inA.

The update in line 6 is to get the newSi+1 based on recently computed subspaces. Diagonalizing
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Si+1 (lines 7-10) is optional for matrix completion. This step provides current approximations
of the singular values which could be useful for several purposes such as in regularization or for
convergence test. This comes with very little additional overhead, sinceSi+1 is a smallr×r matrix.
Each iteration of Algorithm 1 can be seen as an approximationof an iteration of SVD-EM where a
few matrix multiplications are used to updateU andV instead of using a truncated SVD to compute
the dominant subspaces ofXi+1. Recall that computing an SVD, e.g. by a Lanczos type procedure,
requires several, possibly a large number of, matrix multiplications of this type.

We now discuss efficient implementations of Algorithm 1 and modifications to speed-up its conver-
gence. First, the explicit computation ofXi+1 in line 3 is not needed. Let̂Xi = UiSiV

T
i . Then

Xi+1 = PΩ̄(UiSiV
T
i ) + AΩ = X̂i + Ei, whereEi = PΩ(A − X̂i) is a sparse matrix of errors at

known entries which can be computed efficiently by exploiting the structure of̂Xi. Assume that each
Si is not singular (the non-singularity ofSi will be discussed in Section 4). Then if we post-multiply
the update ofU in line 4 byS−1

i , the subspace remains the same, and the update becomes:

Ui+1 = Xi+1ViS
−1
i = (X̂i + Ei)ViS

−1
i = Ui + EiViS

−1
i , (3)

The update ofV can also be efficiently implemented. Here, we make a slight change, namely
Vi+1 = XT

i+1Ui (Ui instead ofUi+1). We observe that the convergence speed remains roughly the
same (whenA is fully observed, the algorithm is a slower version of subspace iteration where the
convergence rate is halved). With this change, we can derivean update toV that is similar to (3),

Vi+1 = Vi + ET
i UiS

−T
i , (4)

We will point out in Section 3 that the updating termsEiViS
−1
i andET

i UiS
−T
i are related to the

gradients of a matrix completion objective function on the Grassmann manifold. As a result, to
improve the convergence speed, we can add an adaptive step sizeti to the process, as follows:

Ui+1 = Ui + tiEiViS
−1
i and Vi+1 = Vi + tiE

T
i UiS

−T
i .

This is equivalent to usinĝXi + tiEi as the estimate ofA in each iteration. The step size can be
computed using a heuristic adapted from [23]. Initially,t is set to some initial valuet0 (t0 = 1 in
our experiments). If the error‖Ei‖F decreases compared to the previous step,t is increased by a
factorα. Conversely, if the error increases, indicating that the step is too big,t is reset tot = t0.

The matrixSi+1 can be computed efficiently by exploiting low-rank structures and the sparsity.

Si+1 = (UT
i+1Ui)Si(V

T
i Vi+1) + tiU

T
i+1EiVi+1 (5)

There are also other ways to obtainSi+1 onceUi+1 andVi+1 are determined to improve the current
approximation ofA . For example we can solve the following quadratic program [14]:

Si+1 = argminS‖PΩ(A − Ui+1SV T
i+1)‖

2
F (6)

We summarize the discussion in Algorithm 2. A sufficiently small error ‖Ei‖F can be used as a

Algorithm 2 GENERIC SUBSPACEITERATION FOR INCOMPLETE MATRICES.
Input: Matrix AΩ, Ω, and numberr.
Output: Left and right dominant subspacesU andV and associated singular values.
1: Initialize orthonormal matricesU0 ∈ R

m×r andV0 ∈ R
n×r.

2: for i = 0,1,2,...do
3: ComputeEi and appropriate step sizeti
4: Ui+1 = Ui + tiEiViS

−1
i andVi+1 = Vi + tiE

T
i UiS

−T
i

5: OrthonormalizeUi+1 andVi+1

6: FindSi+1 such thatPΩ(Ui+1Si+1V
T
i+1) is close toAΩ (e.g. via (5), (6)).

7: end for

stoppping criterion. Algorithm 1 can be shown to be equivalent to LMaFit algorithm proposed in
[23]. The authors in [23] also obtain results on local convergence of LMaFit. We will pursue a
different approach here. The updates (3) and (4) are reminiscent of the gradient descent steps for
minimizing matrix completion error on the Grassmann manifold that is introduced in [14] and the
next section discusses the connection to optimization on the Grassmann manifold.
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3 Optimization on the Grassmann manifold

In this section, we show that using a non-canonical Riemann metric on the Grassmann manifold,
the gradient of the same objective function in [14] is of a form similar to (3) and (4). Based on this,
improvements to the gradient descent algorithms can be madeand exact recovery results similar
to those of [14] can be maintained. The readers are referred to [1, 11] for details on optimization
frameworks on matrix manifolds.

3.1 Gradients on the Grassmann manifold for matrix completion problem

LetG(m, r) be the Grassmann manifold in which each point corresponds toa subspace of dimension
r in R

m. One of the results of [14], is that under a few assumptions (to be addressed in Section 4),
one can obtain with high probability the exact matrixA by minimizing a regularized version of the
functionF : G(m, r) × G(n, r) → R defined below.

F (U, V ) = min
S∈Rr×r

F(U, S, V ), (7)

whereF(U, S, V ) = (1/2)‖PΩ(A − USV T )‖2
F , U ∈ R

m×k andV ∈ R
n×k are orthonormal

matrices. Here, we abuse the notation by denoting byU andV both orthonormal matrices as well
as the points on the Grassmann manifold which they span. NotethatF only depends on the sub-
spaces spanned by matricesU andV . The functionF (U, V ) can be easily evaluated by solving
the quadratic minimization problem in the form of (6). IfG(m, r) is endowed with the canonical
inner product〈W,W ′〉 = Tr (WT W ′), whereW andW ′ are tangent vectors ofG(m, r) at U (i.e.
W,W ′ ∈ R

m×r such thatWT U = 0 andW ′T U = 0) and similarly forG(n, r), the gradients of
F (U, V ) on the product manifold are:

gradFU (U, V ) = (I − UUT )PΩ(USV T − A)V ST (8)

gradFV (U, V ) = (I − V V T )PΩ(USV T − A)T US. (9)

In the above formulas,(I−UUT ) and(I−V V T ) are the projections of the derivativesPΩ(USV T −
A)V ST andPΩ(USV T −A)T US onto the tangent space of the manifold at(U, V ). Notice that the
derivative terms are very similar to the updates in (3) and (4). The difference is in the scaling factors
where gradFU and gradFV useST andS while those in Algorithm 2 useS−1 andS−T .

Assume thatS is a diagonal matrix which can always be obtained by rotatingU andV appropriately.
F (U, V ) would change more rapidly when the columns ofU andV corresponding to larger entries
of S are changed. The rate of change ofF would be approximately proportional toS2

ii when the
i-th columns ofU andV are changed, or in other words,S2 gives us an approximate second order
information ofF at the current point(U, V ). This suggests that the level set ofF should be similar to
an “ellipse” with the shorter axes corresponding to the larger values ofS. It is therefore compelling
to use a scaled metric on the Grassmann manifold.

Consider the inner product〈W,W ′〉D = Tr (DWT W ′), whereD ∈ R
r×r is a symmetric positive

definite matrix. We will derive the partial gradients ofF on the Grassmann manifold endowed with
this scaled inner product. According to [11], gradFU is the tangent vector ofG(m, r) atU such that

Tr (FT
U W ) = 〈(gradFU )T ,W 〉D, (10)

for all tangent vectorsW at U , whereFU is the partial derivative ofF with respect toU . Recall
that the tangent vectors atU are thoseW ’s such thatWT U = 0. The solution of (10) with the
constraints thatWT U = 0 and(gradFU )T U = 0 gives us the gradient based on the scaled metric,
which we will denote by gradsFU and gradsFV .

gradsFU (U, V ) = (I − UUT )FUD−1 = (I − UUT )PΩ(USV T − A)V SD−1. (11)

gradsFV (U, V ) = (I − V V T )FV D−1 = (I − V V T )PΩ(USV T − A)T USD−1. (12)

Notice the additional scalingD appearing in these scaled gradients. Now if we useD = S2 (still
with the assumption thatS is diagonal) as suggested by the arguments above on the approximate
shape of the level set ofF , we will have gradsFU (U, V ) = (I − UUT )PΩ(USV T − A)V S−1 and
gradsFV (U, V ) = (I − V V T )PΩ(USV T − A)T US−1 (note thatS depends onU andV ).
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If S is not diagonalized, we useSST andST S to derive gradsFU and gradsFV respectively, and the
scalings appear exactly as in (3) and (4).

gradsFU (U, V ) = (I − UUT )PΩ(USV T − A)V S−1 (13)

gradsFV (U, V ) = (I − V V T )PΩ(USV T − A)T US−T (14)

This scaling can be interpreted as an adaptive preconditioning step similar to those that are popular
in the scientific computing literature [4]. As will be shown in our experiments, this scaled gradient
direction outperforms canonical gradient directions especially for ill-conditioned matrices.

The optimization framework on matrix manifolds allows to define several elements of the manifold
in a flexible way. Here, we use the scaled-metric to obtain a good descent direction, while other
operations on the manifold can be based on the canonical metric which has simple and efficient
computational forms. The next two sections describe algorithms using scaled-gradients.

3.2 Gradient descent algorithms on the Grassmann manifold

Gradient descent algorithms on matrix manifolds are based on the update

Ui+1 = R(Ui + tiWi) (15)

whereWi is the gradient-related search direction,ti is the step size andR(U) is a retraction on the
manifold which defines a projection ofU onto the manifold [1]. We useR(U) = span(U) as the
retraction on the Grassmann manifold where span(U) is represented by qf(U), which is theQ factor
in the QR factorization ofU . Optimization on the product of two Grassmann manifolds canbe done
by treating each component as a coordinate component.

The step sizet can be computed in several ways, e.g., by a simple back-tracking method to find the
point satisfying the Armijo condition [3]. Algorithm 3 is anoutline of our gradient descent method
for matrix completion. We let gradsF

(i)
U ≡ gradsFU (Ui, Vi) and gradsF

(i)
V ≡ gradsFV (Ui, Vi). In

line 5, the exactSi+1 which realizesF (Ui+1, Vi+1) can be computed according to (6). A direct
method to solve (6) costsO(|Ω|r4). Alternatively,Si+1 can be computed approximately and we
found that (5) is fast (O((|Ω| + m + n)r2)) and gives the same convergence speed. If (5) fails
to yield good enough progress, we can always switch back to (6) and computeSi+1 exactly. The
subspace iteration and LMaFit can be seen as relaxed versions of this gradient descent procedure.
The next section goes further and described the conjugate gradient iteration.

Algorithm 3 GRADIENT DESCENT WITH SCALED-GRADIENT ON THE GRASSMANN MANIFOLD.
Input: Matrix AΩ, Ω, and numberr.
Output: U andV which minimizeF (U, V ), andS which realizesF (U, V ).
1: Initialize orthonormal matricesU0 andV0.
2: for i = 0,1,2,...do
3: Compute gradsF

(i)
U and gradsF

(i)
V according to (13) and (14).

4: Find an appropriate step sizeti and compute

(Ui+1, Vi+1) = (qf(Ui − tigradsF
(i)
U ), qf(Vi − tigradsF

(i)
V ))

5: ComputeSi+1 according to (6) (exact) or (5) (approximate).
6: end for

3.3 Conjugate gradient method on the Grassmann manifold

In this section, we describe the conjugate gradient (CG) method on the Grassmann manifold based
on the scaled gradients to solve the matrix completion problem. The main additional ingredient we
need is vector transport which is used to transport the old search direction to the current point on the
manifold. The transported search direction is then combined with the scaled gradient at the current
point, e.g. by Polak-Ribiere formula (see [11]), to derive the new search direction. After this, a line
search procedure is performed to find the appropriate step size along this search direction.

Vector transport can be defined using the Riemann connection, which in turn is defined based on the
Riemann metric [1]. As mentioned at the end of Section 3.1, wewill use the canonical metric to
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derive vector transport when considering the natural quotient manifold structure of the Grassmann
manifold. The tangentW ′ at U will be transported toU + W asTU+W (W ′) whereTU (W ′) =
(I − UUT )W ′. Algorithm 4 is a sketch of the resulting conjugate gradientprocedure.

Algorithm 4 CONJUGATE GRADIENT WITH SCALED-GRADIENT ON THE GRASSMANN MANIFOLD.
Input: Matrix AΩ, Ω, and numberr.
Output: U andV which minimizeF (U, V ), andS which realizesF (U, V ).
1: Initialize orthonormal matricesU0 andV0.
2: Compute(η0, ξ0) = (gradsF

(0)
U , gradsF

(0)
V ).

3: for i = 0,1,2,...do
4: Compute a step sizeti and compute(Ui+1, Vi+1) = (qf(Ui + tiηi), qf(Vi + tiξi))
5: Computeβi+1 (Polak-Ribiere) and set

(ηi+1, ξi+1) = (−gradsF
(i)
U + βi+1TUi+1

(ηi),−gradsF
(i)
V + βi+1TVi+1

(ξi))

6: ComputeSi+1 according to (6) or (5).
7: end for

4 Convergence and exact recovery of scaled-gradient descent methods

Let A = U∗Σ∗V
T
∗ be the singular value decomposition ofA, whereU∗ ∈ R

m×r, V∗ ∈ R
n×r and

Σ∗ ∈ R
r×r. Let us also denotez = (U, V ) a point onG(m, r) × G(n, r). Clearly,z∗ = (U∗, V∗)

is a minimum ofF . Assume thatA is incoherent [14];A has bounded entries and the minimum
singular value ofA is bounded away from 0. Letκ(A) be the condition number ofA. It is shown
that, if the number of observed entries is of orderO(max{κ(A)2n log n, κ(A)6n}) then, with high
probability,F has Lipschitz continuous first partial gradients andz∗ is the unique stationary point of
F in a sufficiently small neighborhood ofz∗ ([14, Lemma 6.4&6.5]). From these observations, given
an initial point that is sufficiently close toz∗, a gradient descent procedure onF (with an additional
regularization term to keep the intermediate points incoherent) converges toz∗ and exact recovery
is obtained. The singular value decomposition of a trimmed version of the observerd matrixAΩ can
give us the initial point that ensures convergence. The readers are referred to [14] for details.

From [14], letG(U, V ) =
∑m

i=1 G1(
‖U(i)‖2

Cinc

) +
∑n

i=1 G1(
‖V (i)‖2

Cinc

), whereG1(x) = 0 if x ≤ 1

andG1(x) = e(x−1)2 − 1 otherwise;Cinc is a constant depending on the incoherence assumptions.
We consider the regularized version ofF : F̃ (U, V ) = F (U, V ) + ρG(U, V ), whereρ is chosen
appropriately so thatU andV remain incoherent during the execution of the algorithm. Wecan see
thatz∗ is also the minimum of̃F . We will now show that the scaled-gradients ofF̃ are well-defined
during the iterations and they are indeed descent directions of F̃ and only vanish atz∗. As a result,
the scaled-gradient-based methods can inherit all the convergence results in [14].

First,S must be non-singular during the iterations for the scaled-gradients to be well-defined. As a
corollary of Lemma 6.4 in [14], the extreme singular values of any intermediateS are bounded by
extreme singular valuesσ∗

min andσ∗
max of Σ∗: σmax ≤ 2σ∗

max andσmin ≥ 1
2σ∗

min. The second
inequality implies thatS is well-conditioned during the iterations.

The scaled-gradient is the descent direction ofF̃ as a direct result from the fact that it is in-
deed the gradient of̃F based on a non-canonical metric. Moreover, by Lemma 6.5 in [14],
‖gradF̃ (z)‖2 ≥ Cnǫ2(σ∗

min)4d(z, z∗)
2 for some constantC, where‖.‖ and d(., .) are the canonical

norm and distance on the Grassmann manifold respectively. Based on this, a similar lower bound of
‖gradsF̃‖ can be derived. LetD1 = SST andD2 = ST S be the scaling matrices. Then,

‖gradsF̃ (z)‖2 = ‖gradF̃U (z)D−1
1 ‖2

F + ‖gradF̃V (z)D−1
2 ‖2

F

≥ σ−2
max(‖gradF̃U (z)‖2

F + ‖gradF̃V (z)‖2
F )

≥ (2σ∗
max)−2‖gradF̃ (z)‖2

≥ (2σ∗
max)−2Cnǫ2(σ∗

min)4d(z, z∗)
2 = C(σ∗

min)4(2σ∗
max)−2nǫ2d(z, z∗)

2.

Therefore, the scaled gradients only vanish atz∗ which means the scaled-gradient descent procedure
must converge toz∗, which is the exact solution [3].
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5 Experiments and results

The proposed algorithms were implemented in Matlab with some mex-routines to perform matrix
multiplications with sparse masks. For synthesis data, we consider two cases: (1)fully random
low-rank matrices, A = randn(m, r) ∗ randn(r, n) (in Matlab notations) whose singular values
tend to be roughly the same; (2)random low-rank matrices with chosen singular valuesby letting
U = qf(randn(m, r)), V = qf(randn(n, r)) andA = USV T whereS is a diagonal matrix with
chosen singular values. The initializations of all methodsare based on the SVD ofAΩ.

First, we illustrate the improvement of scaled gradients over canonical gradients for steepest descent
and conjugate gradient methods on5000 × 5000 matrices with rank 5 (Figure 1). Note that Canon-
Grass-Steep is OptSpace with our implementation. In this experiment,Si is obtained exactly using
(6). The time needed for each iteration is roughly the same for all methods so we only present the
results in terms of iteration counts. We can see that there are some small improvements for the fully
random case (Figure 1a) since the singular values are roughly the same. The improvement is more
substantial for matrices with larger condition numbers (Figure 1b).
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Figure 1: Log-RMSE for fully random matrix (a) and random matrix with chosen spectrum (b).

Now, we compare the relaxed version of the scaled conjugate gradient which uses (5) to computeSi

(ScGrass-CG) to LMaFit [23], Riemann-CG [22], RTRMC2 [6] (trust region method with second
order information), SVP [12] and GROUSE [5] (Figure 2). These methods are also implemented in
Matlab with mex-routines similar to ours except for GROUSE which is entirely in Matlab (Indeed
GROUSE does not use sparse matrix multiplication as other methods do). The subspace iteration
method and the relaxed version of scaled steepest descent converge similarly to LMaFit, so we omit
them in the graph. Note that each iteration of GROUSE in the graph corresponds to one pass over
the matrix. It does not have exactly the same meaning as one iteration of other methods and is
much slower with its current implementation. We use the beststep sizes that we found for SVP
and GROUSE. In terms of iteration counts, we can see that for the fully random case (upper row),
RTRMC2 is the best while ScGrass-CG and Riemann-CG convergereasonably fast. However, each
iteraton of RTRMC2 is slower so in terms of time, ScGrass-CG and Riemann-CG are the fastest in
our experiments. When the condition number of the matrix is higher, ScGrass-CG converges fastest
both in terms of iteration counts and execution time.

Finally, we test the algorithms on Jester-1 and MovieLens-100K datasets which are assumed to
be low-rank matrices with noise (SVP and GROUSE are not tested because their step sizes need
to be appropriately chosen). Similarly to previous work, for the Jester dataset we randomly se-
lect 4000 users and randomly withhold 2 ratings for each userfor testing. For the MovieLens
dataset, we use the common dataset prepared by [16], and keep50% for training and 50% for
testing. We run 100 different randomizations of Jester and 10 randomizations of MovieLens and
average the results. We stop all methods early, when the change of RMSE is less than10−4, to
avoid overfitting. All methods stop well before one minute. The Normalized Mean Absolute Errors
(NMAEs) [13] are reported in Table 1. ScGrass-CG is the relaxed scaled CG method and ScGrass-
CG-Reg is the exact scaled CG method using a spectral-regularization version ofF proposed in
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Figure 2: Log-RMSE. Upper row is fully random, lower row is random with chosen singular values.

Rank ScGrass-CG ScGrass-CG-Reg LMaFit Riemann-CG RTRMC2
5 0.1588 0.1588 0.1588 0.1591 0.1588
7 0.1584 0.1584 0.1581 0.1584 0.1583
5 0.1808 0.1758 0.1828 0.1781 0.1884
7 0.1832 0.1787 0.1836 0.1817 0.2298

Table 1: NMAE on Jester dataset (first 2 rows) and MovieLens 100K. NMAEs for a random guesser
are 0.33 on Jester and 0.37 on MovieLens 100K.

[13]: F̃ (U, V ) = minS(1/2)(‖PΩ(USV T − A)‖ + λ‖S‖2
F ). All methods perform similarly and

demonstrate overfitting whenk = 7 for MovieLens. We observe that ScGrass-CG-Reg suffers the
least from overfitting thanks to its regularization. This shows the importance of regularization for
noisy matrices and motivates future work in this direction.

6 Conlusion and future work

The gradients obtained from a scaled metric on the Grassmannmanifold can result in improved
convergence of gradient methods on matrix manifolds for matrix completion while maintaining
good global convergence and exact recovery guarantees. We have established a connection between
scaled gradient methods and subspace iteration method for matrix completion. The relaxed versions
of the proposed gradient methods, adapted from the subspaceiteration, are faster than previously
discussed algorithms, sometimes much faster depending on the conditionining of the data matrix.
In the future, we will investigate if these relaxed versionsachieve similar performance guarantees.
We are also interested in exploring ways to regularize the relaxed versions to deal with noisy data.
The convergence condition of OptSpace depends onκ(A)6 and weakening this dependency for the
proposed algorithms is also an interesting future direction.
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