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Abstract

Hydrodynamic interactions play an important role in the dynamics of macromolecules. The 

most common way to take into account hydrodynamic effects in molecular simulations is in 

the  context  of  a  Brownian  dynamics  simulation.  However,  the  calculation  of  correlated 

Brownian  noise  vectors  in  these  simulations  is  computationally  very  demanding  and 

alternative methods are desirable. This paper studies methods based on Krylov subspaces for 

computing  Brownian noise  vectors.  These  methods  are  related  to  Chebyshev polynomial 

approximations, but do not require eigenvalue estimates. We show that only low accuracy is 

required in the Brownian noise vectors to accurately compute values of dynamic and static 

properties of polymer and monodisperse suspension models. With this level of accuracy, the 

computational time of Krylov subspace methods scales very nearly as O(N2) for the number 

of  particles  N up to  10,000,  which  was the limit  tested.  The performance of  the  Krylov 

subspace  methods,  especially  the  “block”  version,  is  slightly  better  than  that  of  the 

Chebyshev  method,  even  without  taking  into  account  the  additional  cost  of  eigenvalue 

estimates required by the latter. Furthermore, at N = 10,000, the Krylov subspace method is 

13  times  faster  than  the  exact  Cholesky  method.  Thus,  Krylov  subspace  methods  are 

recommended for performing large-scale Brownian dynamics simulations with hydrodynamic 

interactions.
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I. INTRODUCTION

Brownian dynamics (BD) is a computational technique for simulating the motion of 

macromolecules in a fluid environment.1 Globular molecules such as proteins may be treated 

as coarse-grained particles, possibly of different sizes, while polymers such as DNA/RNA or 

proteins may be treated, for example, by a bead-spring model. Interactions between particles 

(or beads) with the solvent are modeled by random forces corresponding to particle collisions 

with solvent molecules, as well as a Stokes drag force proportional to particle velocity.

The solvent also mediates interactions between the particles themselves. This gives 

rise to so-called hydrodynamic interactions (HI), where the motion of one particle through the 

fluid  induces  a  force  on  all  the  other  particles.  If  one  is  only  interested  in  equilibrium 

thermodynamic properties, HI do not play any role and can be neglected.1 On the other hand, 

it  is  essential  to  include  HI  to  correctly  capture  the  dynamics  of  colloidal  spheres, 

macromolecules,  and  swimming  bacteria  at  a  low  Reynolds  number;  in  particular,  their 

collective, intermolecular motions can give rise to qualitatively different dynamic behavior.2-4

Hydrodynamic  interactions  are  modeled  by  a  configuration-dependent  diffusion 

matrix,  D, of size 3N × 3N for a system of  N particles. This matrix is dense, owing to the 

long-ranged nature of HI. The BD propagation equation can be expressed as1

( ) ( ) ( ) gDDFrr +∆⋅∇+∆+=∆+ t
Tk

t
ttt

B

, (1)
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tT ∆== Dggg 2,0 . (2)

Here, r is the position vector of the N particles, t is the time, Δt is the time step length, kB is 

Boltzmann’s  constant,  T is  the  temperature,  and  F is  the  3N-dimensional  force  vector 

determined by the gradient of potential energy. The Rotne-Prager-Yamakawa (RPY) tensor 

has been widely used for estimating  D,  since the tensor is positive definite for all particle 

configurations  even  when  particles  overlap.  The  RPY tensor  also  has  the  property  that 

0=⋅∇ D  so that in this case the third term in the right hand side of Eq. (1) is zero. 1 At each 

time step of the BD algorithm, a Brownian displacement vector g must be computed from a 

multivariate  Gaussian  distribution  with  mean  zero  and  covariance  2DΔt,  which  can  be 

calculated by

Bzyg tt ∆=∆= 22 , (3)

with

TBBD = . (4)

Here  z is  a  standard  normal  vector.  By  the  change-of-variable  formula  for  probability 

distributions,  the  correlated  vector  y =  Bz has  the  Gaussian  distribution  N(0,  D).  The 

factorization  in  Eq.  (4)  is  not  unique,  and  any  B satisfying  Eq.  (4)  can  be  used.  The 

computation of the correlated vector y is generally the bottleneck in a BD simulation with HI.

The standard technique for computing the correlated vector y is to compute B as the 

lower-triangular Cholesky factor of D, and to then form y = Bz. This technique was used by 
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Ermak and McCammon in their original BD algorithm.1 The cost of computing the Cholesky 

factorization is O(N3), although this cost in practice can be amortized over many time steps if 

D changes slowly.

The  other  major  technique  used  in  BD  with  HI  is  the  Chebyshev  polynomial 

approximation  proposed  by  Fixman.7 In  this  approximation  technique,  an  approximate 

correlated vector is computed as p(D)z, where p(D) is a polynomial in D that approximates 

the principal square root of  D. This square root corresponds to the factorization in Eq. (4) 

where B = BT. The technique is based on Chebyshev polynomials and requires estimates of 

the extreme eigenvalues of  D. The matrix  p(D) itself is not necessary and is never formed 

explicitly,  and  thus  O(N3)  matrix-matrix  multiplications  are  avoided.  The  arithmetic 

complexity is observed to grow as O(N2.25).

Recently, a new method called the truncated expansion approximation (TEA) was 

proposed for calculating correlated vectors in BD.11 TEA assumes a particular form for these 

correlated  vectors  and is  particularly  effective  in  cases  where  the  correlations  among all 

particles  are  approximately  equal  and  relatively  weak.  This  method  has  spurred  much 

interest, attesting to the growing importance of fast methods for computing HI.12 TEA has 

been found to work efficiently for bead-spring random polymers. However, when multiple 

beads are assembled into compact structures, the TEA method does not show the correct 

scaling of translational diffusivity with N.14
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In this paper, we study Krylov subspace methods for computing correlated Brownian 

displacements  for  use  in  BD.  The  methods  are  not  new  in  the  numerical  analysis 

community,15-17 but  to the best of our knowledge, they appear  to be unknown in the BD 

literature.  These  methods  have  two  major  advantages  over  Chebyshev  polynomial 

approximations. First, estimates of the extreme eigenvalues of D, required in the Chebyshev 

approximation, are not required in Krylov subspace methods. This is a great simplification 

over  Chebyshev  approximations.  Second,  block  versions  of  Krylov  subspace  methods 

converge faster than Chebyshev approximations, and therefore require fewer computations 

for the same level of accuracy. Block versions of Krylov subspace methods are applicable 

when D changes slowly and can be reused for several consecutive time steps. Finally, in this 

paper, we also study the accuracy required by Krylov subspace methods in BD simulations. 

This is done for three different simulation models.

II. THEORY

A. Chebyshev Polynomial Approximations

The  principal  square  root  of  a  symmetric,  positive  definite  matrix  D may  be 

approximated by a polynomial,  p(D),  where  p(λ) is small,  when  λ  is an eigenvalue of  D. 

Fixman7 proposed an approximation to the Brownian correlated vector  y ≈  p(D)z based on 

Chebyshev polynomials.  Such polynomial  approximations  of  the  square  root  of  a  matrix 
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times  a  vector  (and  in  general,  any  function  of  a  matrix  times  a  vector)  appeared  soon 

afterward in the numerical analysis literature,15-17 but these studies were unaware of Fixman's 

contribution. An essential feature of these approximations is that  p(D) is not needed and is 

never computed explicitly; rather, only p(D)z is required, which can be computed much more 

efficiently.

Chebyshev polynomials have the property that they are small in the interval [−1, 1]. 

To approximate  f(D),  where the function  f in  our  case is  the square root,  and where the 

spectrum of D lies in the interval [a, b], we approximate instead the function g(Ds), where 

IDD
ab

ba

ab −
+−

−
= 2

s , (5)

which has eigenvalues in the interval [−1, 1]. The function g is then defined as

( ) 




 ++−= IDD

22 ss

baab
fg (6)

where  I in  the  above  expressions  denotes  the  identity  matrix.  In  other  words,  we  use 

Chebyshev polynomials  to  approximate  g(Ds),  which  is  equal  to  f(D).  Thus,  the extreme 

eigenvalues of D are required to perform the above change of variables. The more accurate 

the estimates of these extreme eigenvalues, the faster is the convergence. Convergence can be 

very poor if any eigenvalue of  D lies outside these estimates. (The convergence rate is the 

inverse of the degree of the polynomial required for a given level of accuracy.)

Beginning with Fixman, procedures have been developed for estimating the extreme 
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eigenvalues of  D and also for updating these estimates as a BD simulation progresses. The 

updates  may  be  performed  dynamically,  according  to  measures  of  the  accuracy  of  the 

Chebyshev approximation. A recent comparison of these techniques found that the run time 

may  differ  significantly  with  different  approaches.13 As  shown  below,  Krylov  subspace 

approximations employed in this paper do not require eigenvalue estimates. 

The Chebyshev polynomial expansion up to degree L is

( ) ( )∑
=

+=
L

k
kkL Tc

c
p

1
s

0
s 2

DD , (7)

where ck denotes the expansion coefficients and Tk denotes the k-th Chebyshev polynomial. 

The  expansion  coefficients  are  computed  by  interpolating  the  function  g at  L+1  points, 

generally selected to be the Chebyshev nodes. Due to the discrete orthogonality property of 

Chebyshev polynomials, the coefficients are easily computed.

B. Truncated Expansion Approximation

In  the  truncated  expansion  approximation  (TEA)  proposed  by  Geyer  and  Winter,11 the 

correlated vector y is assumed to be of a specific form (an ansatz), namely y = STEAz, where

( ) ( )( ) 211
TEA dd DDBDCS ⋅= − , (8)

where Dd is the matrix that is the diagonal part of D, the matrix B has diagonal entries 1 and 

off-diagonal  entries  β,  the “dot” operator represents an element-wise product,  and  C is  a 
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diagonal matrix. TEA chooses the entries in C and the value of β so that

DSS ≈T
TEATEA , (9)

which is the requirement that  y approximately has covariance  D. The value of  β  is chosen 

based  on  the  assumption  that  the  off-diagonal  couplings  in  D are  small  relative  to  the 

diagonal of D; specifically, they are chosen by replacing the off-diagonal entries in D by their 

average value. The entries in  C are chosen such that the diagonal of  STEASTEA
T matches the 

diagonal  of  D.  The overall  procedure is  O(N2).  The computational  cost of the method is 

somewhat more than that of three matrix-vector products with D: computing the entries in C, 

computing β, and multiplying by D.

Details of this method are available elsewhere.11 What we have presented here is an 

algebraic description of the method. The method has been shown to be very efficient and 

effective, in particular, for bead-spring chain models.

C. Krylov Subspace Approximation

We  now  present  Krylov  subspace  approximations  for  computing  the  correlated 

vector y. Consider first the exact computation of y via the principal square root of D, which is 

given by

zUUΛzD y T2121 == , (10)

where Λ is the 3N × 3N diagonal matrix whose elements are the eigenvalues of D, and U is 

the 3N × 3N matrix whose columns are eigenvectors of D. Computing the correlated vector 
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directly this way requires an eigenvalue decomposition of  D, which is  O(N3) computations 

and not any better than using the Cholesky factorization approach.

In the Krylov subspace approach, instead of the exact method, an approximation y~

to D1/2z is constructed from the Krylov subspace

( ) { }zDDzzzD 1,,,span, −= m
mK  , (11)

where m ≤ 3N. The approximation y~ can be observed to be a linear combination of vectors 

of the form Diz, with 0 ≤ i ≤ m−1, and thus, such an approximation has the form pm−1(D)z, 

where pm−1 is a polynomial of degree m−1 or less. Krylov subspace approximations are thus a 

form of polynomial approximation. Like the Chebyshev approximation, the coefficients of 

this polynomial are chosen by interpolating the square root function, although implicitly and 

at  different  points  than  those  used by the  Chebyshev method.17 Thus,  we expect  Krylov 

subspace  approximations  and Chebyshev polynomial  approximations  of  similar  degree  to 

have  similar  quality,  although  Krylov  subspace  approximations  may  be  somewhat  more 

efficient because  pm−1(λ) is designed to be small when  λ is an eigenvalue of  D, rather than 

uniformly small over the entire interval from the smallest to largest eigenvalues of D, as in 

the Chebyshev case.

An important advantage of the Krylov subspace approximation approach over the 

Chebyshev approach is that estimates of the spectrum of D are not necessary.

Since  D is  symmetric,  the  Lanczos  process  can  be  used  for  constructing  an 
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orthonormal basis for the Krylov subspace. The approximation y~  is then constructed in this 

basis.  Let a 3N ×  m matrix  Vm = [v1,  v2,  …,  vm] be an orthonormal basis for the Krylov 

subspace. The optimal approximation, one that minimizes the 2-norm of the error from this 

subspace, is

zDVVy 21* T
mm= , (12)

which is the orthogonal projection of the exact solution onto the Krylov subspace. Let us now 

choose the basis  Vm such that the first vector of this basis is  v1 = z/||z||2. Here ||z||2 is the 2-

norm of vector z, which is the square root of the sum of squares of the entries of the vector. 

Thus, z = ||z||2Vme1 with e1 being the first column of the m × m identity matrix. Then we can 

write the optimal approximation as

1
21

2
* eVDVVzy m

T
mm= . (13)

Now, we define the symmetric tridiagonal matrix  m
T
mm DVVH = ,  which is automatically 

calculated in the Lanczos process as shown below. After the matrix Hm is obtained, one can 

easily compute its eigenvalue decomposition when m << 3N:

T
mmmm PΣPH = . (14)

Here Σm is the m × m diagonal matrix whose diagonal elements are eigenvalues of Hm and Pm 

is the m × m matrix whose columns are eigenvectors of Hm. The eigenvalues of Hm are known 

to  approximate  the  extremal  eigenvalues  of  D,  and  VmPm are  the  corresponding 
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approximations to the eigenvectors. Therefore, we approximate m
T
m VDV 21  as

 

( )
( ) ( )

.21

21

21

2121

m

T
mmm

m
T

mmmmm
T
m

m
TT

mm
T
m

H

PΣP

VPVΣPVV

VUUΛVVDV

=

=

≈

=

(15)

Here, we used IVV =m
T
m . Thus, an approximation for Eq. (13) can be written as

1
21

2
~ eHVzy mm≈ . (16)

The approximation is thus based on computing the matrix square root on a much smaller 

subspace,  where it  is inexpensive to compute exactly, and then mapping the result  to the 

original space. Note that like the Chebyshev polynomial approximation, an approximation to 

D1/2 is never computed explicitly.

1. Lanczos Process

The  matrix  D is  symmetric  and  thus  an  orthonormal  basis  Vm for  the  Krylov 

subspace  can  be  computed  using  the  Lanczos  process.  The  matrix  Hm is  computed 

automatically  in  this  method.  This  is  the  same process  used  in  the  Lanczos  method  for 

solving symmetric eigen-problems, where the spectrum of Hm approximates the spectrum of 

D. The overall algorithm for computing the approximate correlated vector y~  with Gaussian 

distribution N(0, D) is shown in Algorithm 1. In the algorithm, m is the number of Lanczos 

steps.
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Algorithm 1: Krylov subspace algorithm for computing ( )Dy ,0~~ N .
1 Generate random z ~ N(0,I)
2 v1 = z/||z||2
3 for j = 1 to m do
4 w = Dvj

5 if j > 1 then
6 w = w – hj-1, j vj-1

7 End
8 hj, j = wT vj

9 if j < m then
10 w = w – hj, j vj

11 hj+1, j = hj, j+1 = ||w||2
12 vj+1 = w/hj+1, j

13 End
14 End
15 return 1

21

2
~ eHVzy mm=

The  most  expensive  operation  in  this  algorithm  is  the  O(N2)  dense  matrix-vector 

multiplication by D, which is performed m times. For large N, the overall running time of this 

algorithm is  O(N2) due to this matrix-vector multiplication. The result of Algorithm 1 is a 

polynomial approximation of degree  m−1. In comparison to the Chebyshev technique,  an 

approximation of degree  m−1 requires  m−1 matrix-vector  multiplies,  i.e.,  one fewer than 

required  by  the  Krylov  subspace  approximation.  The  extra  matrix-vector  multiplication 

required by the Krylov subspace approximation is due to the need to form Hm which is equal 

to m
T
m DVV .

The number of steps  m in the Lanczos process may be chosen beforehand, or the 

Lanczos  process  may  be  iterated  until  a  certain  convergence  criterion  is  satisfied.  A 

convergence criterion may be applied after the computation of  hj,j using an approximation 

14



ky~  computed at each Lanczos step, and using the basis vectors computed thus far. This 

approximation is used in the convergence criterion to be described later.

2. Block-Lanczos Process for Multiple Vectors

In BD simulations, the covariance matrix generally changes slowly, making it possible to use 

the same covariance matrix for several time steps. When the Cholesky factorization approach 

is  used,  this  avoids the need to  compute the factorization at  every time step.  For further 

computational efficiency, the correlated vectors for several time steps should be computed 

simultaneously, as one block of vectors, rather than one vector at a time. The multiplication of 

the Cholesky factor by a block of standard normal vectors should be carried out such that all 

the multiplications are performed while traversing the elements of the Cholesky factor only 

once. This reduces data movement which has relatively high cost compared to arithmetic 

computations on modern processors.20 If the Chebyshev polynomial approach is used, it is 

likewise advantageous to compute multiple vectors simultaneously because of the efficiency 

of computing matrix-vector products with a block of vectors.

For the Lanczos approach, a block variant can also be used when multiple sample 

vectors  can  be computed for  the  same covariance  matrix.  Like the  above,  computational 

efficiency is gained by operating on a block of vectors simultaneously. However, there is an 

additional  important  advantage:  the  solution  for  each  vector  can  be  sought  in  a  larger 
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subspace  (larger  than  in  the  single-vector  case)  for  very  little  additional  cost.  Thus  the 

solutions converge much more quickly and require fewer matrix-vector multiplications in 

total.

Consider the block-Lanczos process for a block of  s independent standard normal 

vectors,  z1, …, zs. After  m steps, the block-Lanczos process computes an orthonormal basis 

Vms for the combined subspaces

( ) ( )smm KK zDzD ,, 1 ++ . (17)

Each step of the algorithm produces s basis vectors, one vector for each of the subspaces in 

the “sum” above.  The block-Lanczos process  also computes  the  ms ×  ms banded matrix 

ms
T
msms DVVH = .

Let Z = [z1, …, zs] denote a block of s standard normal vectors. Let Vj denote the j-th 

block of  s vectors computed and available at the beginning of step  j of the block-Lanczos 

process. An approximation to a block of correlated vectors with covariance  D in the space 

spanned by Vms is given by

ZDVVY 21* T
msms= . (18)

Let Z = QR be the reduced QR factorization of Z and choose V1 = Q. Then
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[ ] 





=

01
21* R

VVDVVY m
T
msms  , (19)

where the quantity in square brackets is Vms and where R is s × s. As in the single-vector case, 

we now make the approximation







=

0
~ 21 R

HVY msms
. (20)

This procedure is embodied in the algorithm below. We use Hi,j to denote the (i, j) block (of 

size  s × s) of matrix  Hms. Like Algorithm 1, the cost of the algorithm is dominated by the 

matrix-vector multiplication by D.

Algorithm 2: Block-Krylov subspace algorithm for computing a block of s correlated 

vectors, Y~ , each vector with distribution ( )D,0N .
1 Generate a block of s vectors Z, each vector with distribution N(0,I)
2 Compute reduced QR factorization V1R = Z
3 for j = 1 to m do
4 W = DVj

5 if j > 1 then
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6 W = W –Vj-1Hj-1, j

7 end
8 Hj, j = Vj

T W
9 if j < m then

10 W = W –Vj Hj, j

11 Compute reduced QR factorization Vj+1Hj+1,j = W
12 Hj, j+1 = Hj+1, j

13 end
14 end
15

return 





=

0
~ 21 R

HVY msms

III. MODELS AND SIMULATION METHODS

A. Random polymer chain model

Random polymer bead-spring models have been widely used not only for theoretical studies 

of  hydrodynamic  interactions  but  also  for  evaluating  simulation  accuracy.  The  polymer 

consists of N beads of radius a, each connected to their first neighbors by harmonic springs 

with potential

( ) 2
ss 2

2

1
axkV −= . (21)

Here,  ks is  the spring constant  and  x is  the distance between the beads.  To prevent bead 

overlap, a repulsive harmonic potential between beads i and j with | i – j | ≥ 2 is applied:

18



( )






≥

<−
=

,2for 0

,2for 2
2

1 2
r

r

ax

axaxk
V (22)

where kr is the force constant. In this study, ks = kr = 125 kBT/a2 was used. Polymers with N = 

10, 20, 40, 60, 80, 100, 200 were examined in BD simulations. For timing tests and to study 

convergence  of  the  Krylov  subspace  methods,  we  used  much  longer  polymers.  Five 

independent initial configurations were generated for each chain length, where beads were 

randomly placed without significant overlaps under the constraint of distances between beads 

i and i+1 of 2a. These configurations were then subjected to short-time energy minimization. 

This model does not have any attractive interactions between beads and thus corresponds to a 

polymer in a good solvent.23 

B. Collapsed chain model

For many applications of BD, especially for biological simulations, attractive interactions are 

applied to particles or beads to analyze the dynamics of self-organization of molecules and 

molecular  associations.24-26 Therefore,  testing  a  model  with  attractive interactions  is  quite 

important. Here, we examine a simple chain model that collapses to a compact conformation. 

This model corresponds to a polymer in a poor solvent.23

Adjacent  beads  are  connected  by  the  harmonic  springs  described  by  Eq.  (21). 
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Between beads i and j with |i – j| ≥ 2, a Lennard-Jones 12-6 potential is applied:

















−





=

6

LJ

12

LJ
LJLJ 2

xx
V

σσε , (23)

where εLJ is the energy depth and σLJ is the distance at the energy minimum. In this study, εLJ 

= 1 kBT and σLJ = 2a were used. Polymers of length N = 10, 20, 40, 60, 80, 100, 200 were 

considered in BD simulations. Completely extended configurations were used as initial states 

and five independent BD simulations were performed with different random number seeds. 

To further study the convergence of the Krylov subspace methods, we used long polymers 

with N = 1,000. For these long polymers, initial configurations were generated by the same 

procedure as in the random polymer model, and then BD simulations with HI were performed 

to obtain equilibrated states.

C. Monodisperse suspension model

Another model we used for evaluating simulation accuracy is a monodisperse suspension of 

N particles of radius a. To help prevent bead overlap, a repulsive harmonic potential between 

particles as described by Eq. (22) was used. Five different volume fractions Φ of 0.1, 0.2, 0.3, 

0.4,  and  0.5  were  considered  in  periodic  boxes.  A value  of  N of  200  was  used  in  BD 

simulations. For convergence tests,  N of 1,000 was also examined. Five independent initial 

configurations  were  generated  for  each  condition,  where  particles  were  randomly  placed 
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without  significant  overlaps  in  simulation  boxes  and  subjected  to  short-time  energy 

minimization. As described in the next section, we use the RPY tensor to account for HI in 

the BD simulations. The RPY tensor represents only the far-field part of HI and the tensor is  

not appropriate by itself for simulations at high volume fractions. For simulations at high 

volume fractions,  a more sophisticated formulation that also incorporates  near-field HI is 

necessary. In these formulations, the RPY tensor corresponding to high volume fraction is 

utilized to represent the far-field part of HI (technically, it is the inverse of this RPY tensor 

that is the far-field component of the covariance matrix).

D. Brownian dynamics simulation and analysis

The integration algorithm for BD described in Eq. (1) was used. In this work, we employ the 

RPY tensor for estimating D:

( )


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(24)

where i and j are the indices of particles, rij is ri – rj, rij is the length of rij, ijijij rrr =ˆ , and I is 

the unit tensor. For periodic boundary conditions, since HI have a long-range nature similar to 
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electrostatic interactions, an Ewald summation of the RPY tensor to obtain D of the system is 

necessary not only for accuracy but also for giving a positive definite matrix D. We used the 

Ewald sum technique originally derived by Beenakker29 and modified by Zhou and Chen30 to 

allow for particle overlap.

For the sake of simplicity, all quantities are expressed in dimensionless units. Length 

is in units of the bead radii, a, and time is units of a2/D0, where D0 = kBT/6πηa is the diffusion 

coefficient of a single bead in dilute solution. Simulations were performed for 5.0 × 10 6 steps 

with a time step  Δt of 0.002 for the random polymer chain and monodisperse suspension 

models.  For the following analysis  of  the random polymer and monodisperse suspension 

models, the first 5.0 × 105 steps were discarded. For the collapsed chain model, at least 4.0 × 

106 steps were run after the chains collapsed into their compact structures with Δt of 0.001 in 

the presence of HI and Δt of 0.0005 in the absence of HI.

Translational diffusion coefficients of the centers of masses, Dcm, were estimated by

( ) ( )( )2
cmcmcm6 ttD rr −+= ττ , (25)

where the brackets indicate an average over configurations separated by a time difference τ 

and rcm is the center of mass of the polymer. Translational diffusion coefficients of particles, 

D, were calculated by the same equation where rcm is replaced by the position, ri, of particle i, 

and the brackets indicate an average over configurations separated by a time difference τ and 

over all particles. 
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IV. RESULTS AND DISCUSSION

A. Convergence

1. Convergence rate and error estimates

The Krylov subspace method iteratively improves the accuracy of the approximate correlated 

vector. An estimate of the error of this correlated vector is desired. We define the relative 

norm of the exact error of the k-th approximation as

2

21
2

21

exact

~
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zDy −
=

k

kE , (26)

where  z is the same standard normal vector used to compute  y~ . This of course cannot be 

computed in practice. We propose an approximation based on two consecutive iterates 
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This estimate is natural when convergence is monotonic, which is generally the case. The 

estimate is particularly good if convergence is rapid. In Figure 1A, convergence of the Krylov 

method measured by  Ek
exact and  Ek for a  random polymer with  N = 1,000 is  shown as a 

representative example. (In this and later figures, the iteration count on the x-axis is equal to 

the polynomial degree less one of the Krylov subspace or Chebyshev approximation.) We 

observe that Ek closely follows Ek
exact. This result indicates that Ek may be used for monitoring 

convergence in real simulations. We thus propose using Ek as the convergence criterion of the 
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Krylov subspace methods.  When the estimate falls  below a user-supplied threshold,  then 

convergence is assumed and the iterations are stopped.

Jendrejack et al.8 proposed the following quantity for monitoring the convergence of 

the Chebyshev method,

Dzz

Dzzyy
T

TT

fE
−

=
~~

. (28)

If zDy 21~ =  exactly, then Ef = 0. When Ef is large, then y~  is inaccurate. The quantity Ef can 

thus be used to adaptively control the Chebyshev polynomial approximation as a simulation 

progresses. For example, when Ef is large, this may indicate that the eigenvalue estimates are 

no  longer  accurate  and/or  that  the  polynomial  degree  is  not  large  enough.  The  extreme 

eigenvalues  are  then  recomputed  and/or  the  polynomial  degree  is  then  adjusted  and  the 

current time step is repeated. A threshold of 10−3 has been suggested to indicate sufficient 

accuracy, although no strong justification has been given. 

The quantity  Ef, however, turns out to be inappropriate for monitoring the Krylov 

subspace approximation, as this approximation always produces a result such that Ef = 0. This 

is because the iterates produced by Krylov subspace methods are already scaled such that Ef = 

0. To see this, we form
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In general, a small value of  Ef does not always imply that  y~  is accurate; any  y~  can be 

“improved” by a scaling so that Ef = 0. 

It is also possible for the Chebyshev approximation to use the error estimate Eq. 

(27). In this case,  ky~  and  1
~

−ky  correspond to the degree  k and degree  k−1 polynomial 

approximations, respectively. Convergence of the Chebyshev method as measured by Ek
exact, 

Ek, and Ef for the random polymer with N = 1,000 is shown in Figure 1B. We observe again 

that Ek closely tracks Ek
exact, suggesting that Ek may be useful for estimating the accuracy of 

the Chebyshev approximation. The quantity Ef, on the other hand, does not appear monotonic 

although the exact error decreases monotonically.

Comparing Figures 1A and 1B, we observe that the convergence rate of the Krylov 

subspace  approximation  is  somewhat  faster  than  that  of  the  Chebyshev  polynomial 

approximation.

2. Effect of block size on convergence

In Figure 2A, the effect of block size on the convergence of the block-Krylov method is  

shown for the random polymer model with N = 1,000. The convergence rate increases with 
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block size as expected. The Ek
exact and Ek estimates (for the first vector of the block of vectors) 

during the block-Krylov iteration are shown in Figure 2B. We observe that  Ek tracks  Ek
exact, 

indicating that Ek would be again useful for checking convergence in practice. 

Another effect of the block size is the improved computational performance when 

matrix-vector products are performed with a block of vectors simultaneously, compared to 

performing  multiple  matrix-vector  products  with  single  vectors.  We  will  study  this 

computational efficiency of the block-Krylov method in Section IV-C.

3. Simulation model properties affecting convergence

Differences in convergence between the random and collapsed polymer models, and between 

N = 200 and 1,000 are compared in Figure 3A. Convergence is slower for larger N and for 

collapsed polymers. In Figure 3B, the dependence of convergence rate on volume fraction for 

the monodisperse suspension model with N = 200 and 1,000 are shown. Slower convergence 

for the higher volume fractions and the larger systems is observed. If convergence rates in the 

Krylov subspace methods are strongly dependent on N, the algorithmic scaling is larger than 

O(N2). However, the convergence is insensitive to N in the Krylov methods when Ek < ~0.01, 

as seen later  in  Figure 7.  Therefore,  we might  expect  near  O(N2)  scaling for the Krylov 

methods if low accuracy of Brownian noise vectors are sufficient for BD simulations. We will 

discuss  the  accuracy  of  Brownian  noise  vectors  and  the  scaling  of  the  Krylov  subspace 
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methods in the following sections.

B. BD simulations

In this  section,  we perform BD simulations with the three different models using Krylov 

subspace methods and check if dynamic properties of the model systems obtained from the 

simulations  reproduce  the  results  using  the  standard  Cholesky  factorization  method. 

Statistical errors in the translational diffusion coefficients  Dcm and  D are less than 5% on 

average.  We  also  evaluated  the  radius  of  gyration,  Rg,  as  a  static  polymer  property. 

Conclusions obtained from analysis of Rg are essentially the same as those for Dcm. Therefore, 

we show results only on Dcm for the polymer models in this text. 

1. Update interval of diffusion tensor

In BD simulations, the diffusion matrix changes slowly, making it possible to use the same 

matrix for several time steps, significantly reducing computational cost. This also allows us 

to  use  block  versions  of  Krylov  subspace  methods.  In  this  section,  we  determine  an 

appropriate update interval, λRPY, for the RPY diffusion matrix in BD simulations. We use the 

Cholesky factorization for computing correlated vectors in order to not confound these results 

with further approximations.

Figure 4A shows a log-log plot of Dcm as a function of length N for random polymers 

obtained  from  BD  simulation  using  various  values  of  λRPY.  Theoretical  scaling  for  this 
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property is ν−∝ NDcm . In a good solvent and in the presence of HI, as N → ∞, the scaling 

exponent has a theoretical value of ν ≈ 0.588 from a perturbation analysis.31 Our simulation of 

the random polymer model using  λRPY  = 1 gives  ν = 0.57 for  Dcm in the presence of HI, in 

good agreement with the prediction. BD simulations with λRPY = 25 – 200 also provide Dcm of 

random polymers close to those obtained from the simulation with  λRPY = 1 for all  chain 

lengths examined in this study. For all conditions with λRPY = 25 – 200, the relative error is 

less than 2% for Dcm. Even if λRPY = 800 was used, the error was less than 4%. These results 

indicate that the random polymer model is quite insensitive to the update interval of the RPY 

tensor.

Effects of  λRPY on Dcm for the collapsed chain model are also shown in Figure 4A. 

This model corresponds to polymers in poor solvent, where the scaling exponent of ν = 0.33 

is predicted.23 BD simulations with  λRPY  = 1 provide  ν = 0.35 for  Dcm, which is also good 

agreement  with  theory.  Like  the  above,  the  relative  errors  in  Dcm are  small  for  all  λRPY 

conditions. The collapsed polymer model is thus also quite insensitive to the update interval 

of the RPY tensor.

The  diffusion  coefficients  of  particles,  D,  obtained  from  BD  simulations  in  a 

monodisperse suspension at various volume fractions with various λRPY are shown in Figure 

4B. Errors in D obtained with various λRPY relative to values of D with λRPY = 1 are listed in 

Table I. In contrast to the single chain polymer models, D values are significantly affected by 
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λRPY in the monodisperse suspension model. With λRPY = 200, the errors are more than 10% at 

volume fractions of 0.4 and 0.5, which exceeds the statistical error in our analysis. The errors 

in  the  results  with  λRPY =  100  are  less  than  10% for  all  volume  fractions.  However,  at 

moderate to high volume fractions (Φ = 0.3 – 0.5), the errors are slightly higher than those at 

low volume fractions but are still greater than 5%. With λRPY = 25 and 50, the errors are less 

than  5%  for  all  volume  fractions.  Compared  with  the  polymer  models,  particles  in  the 

monodisperse suspension model can move easily due to the lack of harmonic constraints. In 

addition, attractive interactions between beads in the collapsed polymer model restrict the 

motions of beads. Therefore, the diffusion tensor of the monodisperse suspension model may 

change more rapidly than in the single chain polymer models.

2. Required accuracy of Brownian noise vectors

In this section, we study the accuracy of the correlated Brownian noise vectors required for 

accurate  simulation  results.  The  use  of  an  appropriate  level  of  accuracy  is  critical  for 

obtaining maximum efficiency of approximate methods such as the Krylov subspace and 

Chebyshev methods. We used the Krylov subspace method to generate correlated Brownian 

noise vectors with accuracy controlled by values of Ek of 0.1, 0.01, and 0.001. The choice of 

λRPY = 50 was adopted which was shown in the previous section to give results comparable to 

those of λRPY = 1 for all models. We also performed BD simulations using the TEA method 
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for comparison.

The  accuracy  of Dcm for  the  random  polymer  chain  model  obtained  from  BD 

simulations using the Krylov subspace method with various  Ek as well as using the TEA 

method are listed in Table II. All values of Ek examined here for the Krylov subspace method 

matched the Cholesky results with relative errors in  Dcm of less than 4%. The TEA method 

results are within the average error of 8%, consistent with the results reported by Geyer and 

Winter.11 Values of Rg obtained from BD simulations with the Krylov subspace method and 

TEA were also close to the Cholesky results (data not shown).

Since the collapsed polymers  are  packed into compact  structures,  small  noise in 

Brownian noise vectors may cause significant clashes between beads. Therefore, the model 

would be sensitive to the accuracy of correlated Brownian noise vectors. Errors in Dcm of the 

collapsed polymer chains obtained from the BD simulations using the Krylov method with 

various values of Ek as well as using the TEA method are listed in Table III. The results of the 

Krylov method with Ek of 0.001 – 0.1 have a relative error less than 5%. For TEA, errors in 

Dcm are about −16%, for all chain lengths. Geyer also reported the low estimation of Dcm by 

the TEA method for spherical objects consisting of many small particles.14 

We  also  evaluated  the  relaxation  time  τcorr for  the  autocorrelation  function 

ree t( ) ⋅ree 0( )  of the end-to-end vector ree  for the polymer models, which may be sensitive 

to the accuracy of Brownian noise vectors. Although the values of relaxation times obtained 
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from the  BD simulations  have  large  noise  due  to  limited  simulation  length,  the  Krylov 

subspace method even with Ek = 0.1 gave close values to the Cholesky results and qualitative 

differences between them were not observed (data not shown). We also studied polymers 

modeled  using  a  finite  extensible  nonlinear  elastic  (FENE)  potential  with  a  soft-core 

repulsive potential  function.  We performed the same analysis  as above with this  polymer 

model and obtained the same conclusions (data not shown).

Diffusion coefficients of particles in the monodisperse suspension system at various 

volume fractions obtained from the BD simulation using the Krylov subspace method with 

various  Ek as well as using the TEA method are listed in Table IV. For the monodisperse 

suspension model, diffusivities of particles obtained from the Krylov subspace method with 

three different Ek are within a 5% error for all volume fractions. On the other hand, results at  

high volume fractions obtained by the TEA method significantly deviate from the Cholesky 

results  (27~50%).  This  defect  in  TEA is  not  surprising  since  an  assumption  in  the  TEA 

method is that the hydrodynamic coupling is weak; at low volume fractions, this assumption 

is  correct,  but  at  high  volume fractions,  the  average  distances  between particles  become 

small, resulting in strong hydrodynamic coupling.

In this section, we estimated the required accuracy of Brownian noise vectors in the 

Krylov subspace method. Results for the three different models show that a value of Ek of 0.1 

would be practically adequate and a value of Ek of 0.01 would be sufficient to reproduce the 
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Cholesky results within statistical error. In this study, a  λRPY of 50 was used for all models, 

where the relative errors in diffusivities of all three models are less than 5%. However, as 

shown in Figure 4 and Table I, much larger values of λRPY could be used for polymers at dilute 

solution in good and poor solvents, resulting in great saving in computational time without a 

significant loss of simulation accuracy.

3. Comparison of covariance matrix generated from Brownian noise vectors

In this section, we seek to understand why low levels of accuracy can be used in Krylov 

subspace and Chebyshev polynomial approximations yet computed model properties from a 

BD simulation are essentially unaffected. 

Given a set of correlated vectors XY
~  generated by a method X, its average XY

~  

should be ~0 and a covariance matrix CX constructed from XY
~ should be close to D,

( ) DCYY ≈= XXX ~
,

~
cov . (30)

The difference between CX and D can be quantified by the relative error

F

F

X

XE
D

DC −
=1 . (31)

Here, ||·||F is the Frobenius norm, which is defined to be the square root of the sum of the 

squares of the entries of a matrix. In this analysis, an identical set of uncorrelated Gaussian 

noise  vectors  is  used  for  all  methods  as  input.  The  relative  error  when  the  Cholesky 
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factorization is  used,  E1
Cholesky,  is  the lowest value of  E1 that can be expected for a given 

number of correlated vectors. The values of E1 for the Cholesky, Krylov subspace with Ek = 

0.1, and TEA methods as a function of the number of correlated vectors up to 10,000 are 

shown in Figure 5. In addition, we observed that E1
Krylov with Ek = 0.01 and 0.001 always track 

E1
Cholesky for all models with N = 200 and 1,000 and they are indistinguishable from each other 

for  any number  of  input  noise  vectors  (data  not  shown).  Values  of  E1
Krylov with  Ek = 0.1 

slightly deviate from E1
Cholesky for the collapsed polymer model, although the differences are 

smaller than 0.01. The average XY
~

 for all cases is close to zero (data not shown). We also 

did the same analysis for the random polymer N = 10 with up to 107 input noise vectors for Ek 

= 0.4, 0.1, and 0.01 to see converged E1 values, showing that E1 converged to 0.08, 0.02, and 

0.003,  respectively,  which  are  much smaller  than  their  Ek values  in  input  vectors.  These 

results  seem to  suggest  that  using  Ek = 0.01  in  the  Krylov  subspace  methods  would  be 

sufficient to generate correlated Brownian noise vectors whose accuracy is indistinguishable 

from that of the Cholesky method. Even for  Ek = 0.1 in the Krylov subspace methods, the 

error  in  the  generated  covariance  matrix  would  have  about  1%,  which  would  be  also 

sufficient  for  BD simulations.  For  Chebyshev,  results  similar  to  the  Krylov methods  are 

observed (data not shown).

The values of E1 for TEA are always larger than those of the Cholesky method for 

the polymer and monodisperse suspension models. These results indicate that each correlated 
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vector  calculated  by  TEA  has  small  errors  and  these  errors  accumulate,  resulting  in 

significant deviation from the exact covariance matrix. Geyer and Winter,11 and Schmidt et 

al.13 reported that the TEA method could reproduce Cholesky results for random polymers in 

a good solvent and a theta solvent. The polymers in these conditions are not closely packed. 

Therefore, since the models may be insensitive to noise in the correlated Brownian vectors, 

the TEA method might reproduce the Cholesky results for these models. 

C. Computational time

Finally, we evaluate the computational efficiency of the Krylov subspace methods. For the 

following timing tests, the random polymer model with N = 1,000 – 10,000 was used. Values 

of  Ek of 0.1 and 0.01 were used for the stopping criterion. Cholesky, Chebyshev, and TEA 

methods are also examined for comparison. These tests were performed on a quad-core AMD 

Opteron processor and the algorithms were parallelized by hand. The GOTO BLAS library32 

was used for matrix factorization and matrix-matrix and matrix-vector multiplications in the 

algorithms. It is important to note that the time for estimating eigenvalues is not included in 

the  Chebyshev results  and  the  eigenvalues  calculated  by  diagonalization  are  used  in  the 

method.

For  the  block-Krylov  subspace  method,  we  expect  good  performance  of  the 

algorithm due to enhanced convergence rate and computational efficiency. The effect of block 
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size in the block-Krylov subspace method on computational time is shown in Figure 6. At N 

= 10,000, the time for generating 100 Brownian noise vectors simultaneously, i.e. a block size 

of 100, with Ek = 0.1 and 0.01 is much lower than that for separately generating 100 vectors 

by factors of 6.4 and 7.8, respectively. 

The  number  of  iterations  required  for  convergence  below  pre-defined  accuracy 

thresholds  Ek of  0.1 and 0.01 in the block-Krylov and Chebyshev methods are shown in 

Figures 7A and 7B. Even at N = 10,000, both methods converge (with Ek = 0.01) within 14 

iterations. Comparing different block sizes in the Krylov subspace method, using larger block 

sizes accelerates the convergence rate in the case of Ek = 0.01. When Ek = 0.1 is used, this 

effect of block size on convergence rate is not observed since only a very small number of 

iterations is necessary for convergence. Comparing the Krylov and Chebyshev methods, the 

number of iterations required for the former method is less than that for the latter. In addition, 

the  block-Krylov  subspace  method  appears  more  insensitive  to  N than  the  Chebyshev 

method.

In Figures 7C and 7D, the computational time required for generating 50 correlated 

Brownian noise vectors by various methods is shown. The block-Krylov method scales very 

nearly as  O(N2) over the range of  N tested, with both values of  Ek tested. The Chebyshev 

method also scales very nearly as O(N2), again when Ek of 0.1 and 0.01 are used. Such scaling 

implies that the time is dominated by the cost of matrix-vector multiplications by  D (as it 
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should be for large N), and that the number of iterations is essentially insensitive to N. This 

latter fact holds for the values of N and Ek we tested; we do expect the number of iterations to 

grow more noticeably with N when the stopping tolerance is more stringent.

The performance of the block-Krylov method is 1.2 and 1.5 times better than the 

Chebyshev  method  (also  computed  using  matrix  multiplications  with  a  block  of  vectors 

simultaneously) at large  N, with  Ek of 0.1 and 0.01, respectively. The main reason for this 

improvement is the reduced number of iterations required by the block-Krylov method. For 

the Chebyshev method, additional  computational  cost is  required to estimate the extreme 

eigenvalues.  Jendrejack  et  al.  proposed  a  method  where  the  eigenvalues  are  updated 

dynamically using the Arnoldi method in  O(N2) operations,33 according to measures of the 

accuracy of the Chebyshev approximation.8 This cost may be amortized over several time 

steps. Kroger et al. used twice the maximum and half the minimum eigenvalues coming from 

a preaveraged HI tensor as upper and lower bounds, respectively, in the Chebyshev method 

for entire simulations.34 We took eigenvalues averaged over five configurations instead of the 

values of the preaveraged HI tensor in Kroger’s idea. For this case, additional 19% and 25% 

computational costs were required on average over N = 1,000 – 10,000 for Ek = 0.1 and 0.01, 

respectively, due to slow convergence caused by use of the wider spectrum range (data not 

shown).

Compared to the Cholesky method, which scales as O(N3), the block-Krylov method 
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with Ek of 0.1 and 0.01 outperforms it by factors of 13 and 7, respectively, at large N. When it 

is  applicable,  the  TEA method  shows  the  best  performance  among  the  four  methods 

examined here, which scales as O(N2) with a small constant, as observed in other reports. 

V. CONCLUSIONS

This paper has studied a class of methods based on Krylov subspaces for computing 

correlated Brownian noise vectors in BD simulations with HI. The existing methods that have 

been used for this purpose in the past are Cholesky factorizations, Chebyshev polynomial 

approximations,  and  the  TEA  method.  For  small  numbers  of  particles,  the  Cholesky 

factorization method is most efficient. For large numbers of particles, the main alternative in 

the past has been Chebyshev approximations. The Krylov subspace methods studied here also 

have  their  niche  in  large-scale  problems.  Indeed,  Krylov  subspace  methods  are  also 

polynomial  approximations  and  have  similar  computational  cost  as  Chebyshev 

approximations  for  polynomials  of  the same degree.  Krylov subspace methods,  however, 

have the potential to converge faster than Chebyshev approximations, and thus require lower-

degree approximations, especially for large problems or when high accuracy is required. This 

was observed experimentally (see Figures 1, 6, 7A, and 7B). From the view point of memory 

usage, the Krylov subspace methods as well as the Chebyshev method require half of the 

memory size of the Cholesky method, which is essentially just for the diffusion matrix. This 
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also helps for large scale BD simulations. 

There  are,  however,  two  much  more  important  advantages  of  Krylov  subspace 

methods compared to  Chebyshev approximations.  First,  Krylov subspace methods do not 

require estimates of the extreme eigenvalues of D, making them very easy to use. In contrast, 

Chebyshev approximations  must  intermittently  update  these  estimates  potentially  at  high 

cost8 or  suffer  degraded  convergence  rates  when  conservative  eigenvalue  bounds  are 

estimated  a  priori and  then  used  throughout  the  simulation.  Overall,  simulations  with 

Chebyshev  approximations  may  lead  to  a  longer  time-to-solution  than  simulations  with 

Krylov subspace approximations.

The  second  major  advantage  of  Krylov  subspace  methods  over  Chebyshev 

approximations arises in the usual case when D changes sufficiently slowly and it is possible 

to compute Brownian noise vectors for several time steps using the same D. In all methods, it 

is much more computationally efficient to compute all  vectors simultaneously (i.e.,  using 

products  of  a  matrix  with  a  block  of  vectors)  than  to  compute  the  vectors  individually. 

However, Krylov subspace methods with a block of vectors can be reformulated so that each 

solution can exploit the Krylov subspace associated with other vectors. The result is faster 

convergence compared to the single-vector case without a significant increase in cost. This 

was  observed  experimentally  (see  Sections  IV-A and  IV-C).  We  thus  expect  that  block 

versions of Krylov subspace methods will become very useful for large or ill-conditioned D 
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(e.g., large volume fractions), where a large Krylov subspace dimension is required. In this 

paper, we have studied the error in macroscopic quantities as a function of the update interval 

of D, and thus the block size. The results are that surprisingly large update intervals (e.g., tens 

to hundreds of time steps) can be tolerated with little impact on the computed macroscopic 

quantities.  Such  large  update  intervals  can  make  block-Krylov  subspace  methods  very 

effective.

In this paper, we have also studied how the accuracy of the Brownian noise vector 

affects the accuracy of computed macroscopic quantities. We found that only low levels of 

accuracy are required to match the diffusion rate Dcm and radius of gyration Rg as computed 

by simulations using the full accuracy Cholesky factorization. These levels of accuracy are 

lower than what  has been proposed in  the past.8 Such low levels  of accuracy reduce the 

effective cost of the approximate methods and make them more competitive with Cholesky 

factorization on smaller problems. One reason why such low levels of accuracy in the Krylov 

subspace methods are acceptable is that quality of the noise vectors generated by this method 

and the Cholesky factorization might be indistinguishable even at these levels of accuracy 

from the point of view of the effective covariance matrix (see Section IV-B-3 and Figure 5). 

We  believe  that  the  same  low  levels  of  accuracy  in  Brownian  noise  vectors  would  be 

sufficient also for much larger problems.

Our study of simulation accuracy also included the TEA method. This method is 
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very inexpensive, with a cost comparable to a polynomial approximation of degree 3. TEA is 

a  fixed  approximation,  without  adjustable  accuracy.  For  model  systems  where  the 

hydrodynamic interaction is weak (low volume fraction particle suspensions and polymers in 

a  good  solvent),  TEA is  able  to  accurately  compute  macroscopic  quantities.  For  other 

systems, as shown in our results,  and potentially for large systems, results from TEA are 

much less accurate than results from Chebyshev and Krylov methods.

Concerning the computational efficiency for large systems, the computational time 

for Krylov subspace methods scales very nearly as O(N2) for values of N up to 10,000 (which 

was the limit we tested) using sufficient levels of accuracy for simulation purposes. This is in 

contrast to reported computational time scaling of O(N2.5)11 and higher13 for entire simulations 

using the Chebyshev method when eigenvalue estimates are computed adaptively based on 

monitoring  Ef. We note that a value for  Ef of 10−3 corresponds to  Ek of 10−5  ~ 10−4 for the 

example shown in Figure 1. We believe this level of accuracy is not necessary for producing 

accurate simulation results.

For large systems, the computational time scaling can be further reduced to O(N log 

N) or  O(N) by replacing the matrix-vector multiplications by fast approximations such as 

particle-mesh Ewald35,  generalized Ewald36,  and potentially fast multipole methods. These 

methods also avoid the  O(N2) cost of forming and storing  D, which may in some cases be 

unavailable in explicit form. The Krylov subspace and Chebyshev approaches are especially 
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important and useful when combined with the above fast methods.

In conclusion, HI play important roles in the dynamics of a given system, whose 

effects are well-studied in the fields of colloids and random polymers. On the other hand, the 

understanding of their role in biological reactions is limited. The main reason for this is the 

high complexity of biological systems. As is often the case, computational approaches that 

can simulate  large systems for  long time scales  are  very desirable.  The Krylov subspace 

method is a simpler alternative to Chebyshev polynomial approximations that can help carry 

out very large-scale simulations with HI.
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Tables and Figures

TABLE I

TABLE I.  Errors  (%) in  D obtained with various  diffusion  matrix  update  intervals,  λRPY, 

relative to results with λRPY = 1 for the monodisperse model at various volume fractions  Φ 

with N = 200.

Φ λRPY = 25 λRPY = 50 λRPY = 100 λRPY = 200 λRPY = 400 λRPY = 800
0.1 −1.6 −3.8 −3.6 −4.2 −4.6 −10.0 
0.2 −1.7 −1.5 −1.7 −7.2 −10.6 −14.1
0.3 −0.2 −1.6 −7.5 −7.3 −14.9 −23.6 
0.4 −0.6 −0.7 −6.6 −12.3 −17.7 −25.7 
0.5 −2.8 −3.1 −8.8 −16.7 −22.3 −31.9

<|Error|> 1.4 2.1 5.6 9.7 14.0 21.1
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TABLE II

TABLE II. Errors (%) in  Dcm obtained from the simulations using the Krylov method with 

various levels of Brownian noise accuracies and the TEA method relative to results using the 

Cholesky method with λRPY = 1 for various chain lengths for the random polymer model.

Krylov with λRPY = 50 TEA with 

λRPY = 50
N Ek = 0.001 Ek = 0.01 Ek = 0.1

10 1.3 1.3 1.0 −5.4
20 −0.8 −0.8 −1.2 −8.8
40 −2.7 −3.4 −3.8 −9.8
60 −0.4 −0.2 −1.3 −7.5
80 −1.1 −1.2 −2.2 −8.5
100 1.3 1.0 −0.5 −5.7
200 −2.0 −1.1 −3.9 −8.8

<|Error|> 1.4 1.3 2.0 7.8
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TABLE III

TABLE III. Errors (%) in Dcm at equilibrated states obtained from the simulations using the 

Krylov method with  various  Brownian noise accuracies  and the  TEA method relative  to 

results using the Cholesky method with λRPY = 1 for various chain lengths for the collapsed 

polymer model.

Krylov with λRPY = 50 TEA with 

λRPY = 50
N Ek = 0.001 Ek = 0.01 Ek = 0.1

10 −2.1 −2.4 −3.0 −11.7 
20 −2.8 −3.1 −4.9 −16.1 
40 −1.5 −1.8 −4.2 −16.2 
60 −1.0 −1.9 −1.9 −16.0 
80 −0.2 −1.3 −1.5 −16.6 
100 −2.1 −1.5 −3.2 −16.8 
200 0.2 2.5 −2.0 −15.6 

<|Error|> 1.4 2.1 2.9 15.6 
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TABLE IV

TABLE IV. Errors (%) in  D obtained from the simulations using the Krylov method with 

various Brownian noise accuracies and the TEA method relative to results using the Cholesky 

method with λRPY = 1 for monodisperse model at various volume fractions Φ with number of 

particles N = 200. 

Krylov with λRPY = 50 TEA with 

λRPY = 50
Φ Ek = 0.001 Ek = 0.01 Ek = 0.1

0.1 −1.1 −3.0 −2.3 −4.4 
0.2 0.8 −2.3 −2.2 −5.4 
0.3 0.0 −1.9 −3.0 −14.2 
0.4 1.5 −3.1 −1.6 −27.3 
0.5 −4.7 −4.4 −3.4 −51.8 

<|Error|

>

1.6 3.0 2.5 20.6 
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FIG. 1

FIG. 1. Convergence of (A) the Krylov subspace method and (B) the Chebyshev method 

measured by various error estimates,  Ek
exact,  Ek, and  Ef. Diffusion matrices were constructed 

from five configurations of random polymer chains with length  N = 1,000 and the results 

represent the average over the five configurations. Standard deviations for all data points are 

so small that they are not displayed. Ek with k = 1 was set to 1.

46



FIG. 2

FIG. 2. (A) Effect of block size on convergence rate in the block Krylov subspace method. 

The errors are computed for the first vector of the block of vectors. Results are averages of 

the five random polymer chains with N = 1,000. (B) Comparison Ek
exact and Ek in the block 

Krylov subspace method.  Results  for  polymers  with  N =  1,000 and block size = 50 are 

shown.  All  results  are  the  average  over  the  five  independent  configurations.  Standard 
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deviations for all data points are so small that they are not displayed. Ek with k = 1 was set to 

1.
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FIG. 3

FIG. 3. Effect of model, number of particles, and volume fraction on convergence of the 

Krylov subspace method. (A) Convergence of the random and collapsed polymer models 

with N = 200 and 1,000. (B) Convergence of the monodisperse suspension model at various 

volume  fractions  Φ =  0.1,  0.2,  0.3,  0.4  and  0.5  with  N =  200  and  N =  1,000.  For 

monodisperse suspensions, convergence is slower for larger volume fractions and for larger 

numbers of particles.
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FIG. 4

FIG. 4. Effect of  λRPY  on dynamic properties for the random and collapsed polymers, and 

monodisperse  suspension  model.  (A)  Dcm for  the  random  and  collapsed  polymers  with 

various polymer lengths N obtained from BD simulation with various λRPY. Lines are fit to the 

data for λRPY = 1 with ν−∝ NDcm and their exponents are shown. For both polymer models, 

results with different λRPY are so close that their plots overlap and are almost indistinguishable 
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in the figure. (B) D for the monodisperse suspension model with number of particles of 200 

at various volume fractions  Φ obtained from BD simulations with various  λRPY. The results 

with  λRPY  = 1 are connected by a broken line to guide the eye. The Cholesky factorization 

method was used in the BD simulations.
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FIG. 5

FIG. 5. Values of  E1 for the covariance matrices constructed from sets of Brownian noise 

vectors generated by the Cholesky, Krylov subspace with Ek = 0.1, and TEA methods. Results 

of the random polymer chain model (A, D), the collapsed polymer model (B, E), and the 

monodisperse suspension model at volume fraction of 0.3 (C, F) are shown. Left subfigures 

(A,  B,  C)  are  for  N =  200  and  right  subfigures  (D,  E,  F)  are  for  N =  1,000.  For  the 

monodisperse suspension model,  results  of the Cholesky (red lines) and Krylov subspace 

with Ek = 0.1 (green lines) are so close that their lines overlap and are indistinguishable in the 
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figure. All results are the average over five independent configurations. Standard deviations 

for all data points are so small that they are not displayed.
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FIG. 6

FIG. 6. Computational time required for generating 100 correlated Brownian noise vectors by 

the block-Krylov subspace method with different block sizes. Timings for (A) Ek = 0.1 and 

(B) Ek = 0.01 are shown. The random polymer model with length  N = 1,000 – 10,000 was 

used for this timing test. For block size = 1, the DSYMV BLAS routine was employed for 

matrix-vector  multiplications.  For  other  block  sizes,  the  DSYMM  BLAS  routine  was 

54



employed for matrix-matrix multiplications. The latter routine is not optimized for matrix-

vector multiplications.
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FIG. 7

FIG. 7. Scaling of number of iterations and computational time of the block-Krylov subspace 

method with the number of particles. The random polymer model with length  N = 1,000 – 

10,000 was used for this timing test. Number of iterations required with thresholds (A) Ek = 

0.1 and (B) Ek = 0.01 for the block-Krylov subspace and Cholesky methods. Computational 

time  required  for  generating  50  correlated  Brownian  noise  vectors  by  the  block-Krylov 

subspace and Cholesky methods with (C) Ek = 0.1 and (D) Ek = 0.01. A block size of 50 was 

used for the block-Krylov subspace method. Results for the Cholesky and TEA methods are 

also shown for comparison (also computed in block fashion). Dashed lines are fitted linear 
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slopes for a range of N = 4,000 to 10,000. The values of slopes for these methods are shown 

in inside the figures.
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