
DIVIDE AND CONQUER LOW-RANK PRECONDITIONING
TECHNIQUES ∗

RUIPENG LI † AND YOUSEF SAAD†

Abstract. This paper presents a preconditioning method based on a recursive multilevel low-
rank approximation approach. The basic idea is to recursively divide the problem into two and
apply a low-rank approximation to a matrix obtained from the Sherman-Morrison formula. The
low-rank approximation may be computed by the partial Singular Value Decomposition (SVD) or
it can be approximated by the Lanczos bidiagonalization method. This preconditioning method is
designed for handling different levels of parallelism on multi-processor systems of multi(many)-core
processors. Numerical experiments indicate that, when combined with Krylov subspace accelerators,
this method can be efficient and robust for solving symmetric indefinite sparse linear systems.

Key words. Sherman-Morrison formula, low-rank approximation, singular value decomposition,
recursive multilevel preconditioner, parallel preconditioner, incomplete LU factorization, Krylov sub-
space method, domain decomposition

1. Introduction. Krylov subspace methods preconditioned with a form of In-
complete LU (ILU) factorization can be quite effective in solving general linear systems
but there are situations where the ILU preconditioners will fail. For instance when
the matrix is highly indefinite, an incomplete LU preconditioner is unlikely to work,
either because the construction of the factors will not complete or because the re-
sulting factors are unstable. Another situation is related to the architecture under
which the system is being solved. Building and using an ILU factorization is a highly
scalar process. Blocking is often not even exploited the way it is for direct solvers.
As a result ILU preconditioners are ruled out for computers equipped with massively
parallel co-processors like GP-GPUs.

These situations have motivated the development of a class of “approximate in-
verse preconditioners” in the 1990s as alternatives to ILUs. However, the success of
these methods was mixed in part because of the ‘local’ nature of these precondition-
ers. Generally, the cost of developing the preconditioners and the number of iterations
required for convergence can be high.

This paper describes another class of preconditioners which is also rooted in ap-
proximate inverses. However, these preconditioners do not rely on sparsity but on
low-rank approximations. In a nutshell the idea is based on the observation that if a
domain is partitioned in two subdomains one can get the inverse of the matrix based
on the whole domain by the block-diagonal of the inverses on each subdomain plus
a low-rank correction. In fact the rank needed to obtain the exact inverse is equal
to the number of interface points. However, an excellent approximation suitable for
preconditioning can often be obtained from a much smaller rank. The idea then is
to exploit this in a recursive fashion assuming the domain is recursively divided in
two until the domains reached are small. The resulting technique will be called the
Recursive Multilevel Low-Rank (RMLR) preconditioner.

It is useful to compare the potential advantages and disadvantages of an approach
of this type relative to those of traditional ILU-type preconditioners, or to ARMS-
type approaches [19]. On the negative side, this new approach may lead to some

∗This work was supported by DOE under grant DOE/DE-FG-08ER25841 and by the Minnesota
Supercomputing Institute

†Address: Computer Science & Engineering, University of Minnesota, Twin Cities. {rli,saad}
@cs.umn.edu

1

obvious difficulties in the implementation. Exploiting recursivity as much as possible
simplifies the implementation. On the other hand, this method appears to be simpler
than that based on the HSS framework where LU factorizations are developed instead
of approximate inverses, exploiting again low-rank matrices, see, e.g., [26, 25, 10].

The potential advantages of RMLR techniques outnumber its disadvantages. First,
the preconditioner is very suitable for SIMD-type calculations. In fact one of the main
motivations for developing a strategy of this type is the difficulty that is encountered
when one attempts to obtain good performance from sparse matrix computations on
GP-GPUs [3, 2, 16, 1, 24, 21, 15, 14]. Apart from the last level, which will require a
standard solve of some sort, all other levels involve vector operations when a solve is
performed. This is ideal for GPU processors. In addition, the domain decomposition
(DD) framework lends itself easily to a macro-level parallel approach. Thus, one can
easily imagine implementing this approach on a multiprocessor system based on a
multi(many)-core architecture exploiting two levels of parallelism.

A second appeal of the RMLR approach is that it seems that this method is
oblivious to indefiniteness. What matters is how well we approximate the inverses
of the matrices at the lowest levels, and how good is the low rank approximation
used. This could lead to an analysis regarding the quality of the preconditioner,
independently of the spectrum of the original matrix.

A third appeal, shared by all approximate inverse-type preconditioners, is that
the preconditioner is ‘updatable’ in the sense that if one is not satisfied with its
performance on a particular problem, the preconditioner accuracy can be improved
without foregoing work previously done to build the preconditioner.

2. A Recursive Multilevel Low-rank Preconditioner. This section consid-
ers a class of divide-and-conquer methods for computing a preconditioner for a matrix
A ∈ Rn×n, based on recursive low-rank approximations. For simplicity we begin with
a model problem in which A is a symmetric matrix derived from a 5-point stencil
discretization of a 2-D problem on an nx×ny grid. In this case the coefficient matrix
will be as follows:

A =



A1 D2

D2 A2 D3

.
Dα Aα Dα+1

Dα+1 Aα+1
. . .

.
Dny Any


, (2.1)

where {Aj} and {Dj} are sets of ny tridiagonal and ny − 1 diagonal matrices of
dimension nx, so that n = nxny. In equation (2.1) the matrix A has been split as

A =
(

A11 A12

A21 A22

)
≡
(

A11

A22

)
+
(

A12

A21

)
, (2.2)

with A11 ∈ Rm×m and A22 ∈ R(n−m)×(n−m), where we assume that 0 < m < n, and
m is a multiple of nx, i.e., m = αnx with α ∈ {1, 2, . . . , ny − 1}. Then, an interesting

2

observation is that the submatrix A12 = AT
21 ∈ Rm×(n−m) has rank nx because

A12 = AT
21 =


Dα+1

 = −E1E
T
2 , (2.3)

with

E1 :=


DE1

 ∈ Rm×nx and E2 :=

DE2

 ∈ R(n−m)×nx , (2.4)

where DE1 and DE2 are diagonal matrices of dimension nx such that DE1DE2 =
−Dα+1. For example, in the common case when Dα+1 = −I, we can take DE1 =
DE2 = Inx . Therefore, (2.2) can be rewritten as

A =
(

A11 + E1E
T
1

A22 + E2E
T
2

)
−
(

E1E
T
1 E1E

T
2

E2E
T
1 E2E

T
2

)
. (2.5)

Thus, we have

A = B − EET , B :=
(

B1

B2

)
∈ Rn×n, E :=

(
E1

E2

)
∈ Rn×nx , (2.6)

with

B1 := A11 + E1E
T
1 ∈ Rm×m, B2 := A22 + E2E

T
2 ∈ R(n−m)×(n−m).

Note that the diagonal matrix E1E
T
1 perturbs the last nx diagonal entries of A11,

while the diagonal matrix E2E
T
2 perturbs the first nx diagonal entries of A22.

Consider the relation (2.2) again for a symmetric matrix and note that we have
rewritten this in the form of a correction shown in (2.6). From (2.6) and the Sherman-
Morrison formula we can derive the equation:

A−1 = B−1 + B−1E(I − ET B−1E︸ ︷︷ ︸
X

)−1ET B−1 ≡ B−1 + B−1EX−1ET B−1, (2.7)

with B,E,B1, B2 defined above. A formalism similar to the one described above was
exploited in [22] for the problem of determining the diagonal of the inverse of a matrix.

2.1. Recursive solves. A first thought for exploiting (2.7) in a recursive
framework, one that will turn out to be impractical, is to approximate X by some
nonsingular matrix X̃. Then, the preconditioning operation applied to a vector v is
given by:

B−1[v + EX̃−1ET B−1v]. (2.8)

Each application of a preconditioner based on an approach of this type will require
two solves with B, one solve with X̃ (a small matrix) and products with E and
ET . In a recursive scheme the number of solves (with the B’s) will increase like
2nlev with the number of levels, nlev, and so the cost will explode for a moderately
large nlev. Thus, this scheme will not work and we will need to be careful about
ways to exploit equality (2.7). Practical implementations of the recursive scheme just

3

sketched will be based on various approximations to B−1E and the related matrix
X. One possibility is to compute a sparse approximation to B−1E using ideas from
approximate inverses and sparse-sparse techniques, see, e.g., [6]. Sparse approximate
inverse methods have been used in a context that is somewhat related in [5]. We
expect this approach not to work very well for highly indefinite matrices, as this is a
well-known weakness of approximate inverse methods in general. Instead, we consider
an alternative, described next, which relies on low-rank approximations.

2.2. Use of low-rank approximations. Low-rank approximations have be-
come very popular recently for computing preconditioners. For example, the ILU
factorization methods based on H-matrices rely on low-rank approximations [4]. A
similar method has been introduced for solving the Helmholtz problem [10]. The main
idea is based on the observation that intermediate Schur complement matrices in the
LDLT factorization of a specific order have numerically low-rank off-diagonal blocks,
which makes them highly compressible and naturally represented in the hierarchi-
cal matrix (or H-matrix) framework. Similar ideas were exploited in the context of
so-called hierarchically semi-separable (HSS) matrices [27, 26]. There are similarities
between our work and the work based on hierarchical matrices but the main difference
is that we do not resort to an LU factorization.

Our starting point is the relation (2.7). Assume that we have a low-rank approx-
imation to the block B−1E in the form

B−1E ≈ UkV T
k , (2.9)

where Uk ∈ Rn×k, Vk ∈ Rnx×k, and k is small (for example k = 3). Then, (2.7)
yields several possible approximations.

First, one can just substitute an approximation X̃ for X, as in (2.8). So by
replacing UkV T

k for B−1E in X = I − (ET B−1)E, we let

Gk = I − VkUT
k E, (2.10)

which is an approximation to X. The matrix Gk is of size nx×nx and it is inexpensive
to solve systems with it once it is factored at the outset. As was seen above, a
preconditioner based on a recursive application of (2.8), with X̃ replaced by Gk, will
see its cost explodes with the number of levels, and so this option is avoided.

A computationally viable alternative is to replace B−1E by its approximation
based on (2.9). This leads to:

M−1 = B−1 + UkV T
k G−1

k VkUT
k , (2.11)

which means that we can build approximate inverses based on low-rank approxima-
tions of the form

M−1 = B−1 + UkHkUT
k , with Hk = V T

k G−1
k Vk. (2.12)

It turns out that the matrix Hk can be computed in a simpler way than by the
expression above. Specifically, it will be shown in Section 3 that

Hk = (I − UT
k EVk)−1, (2.13)

which will also be shown to be a symmetric matrix. The alternative expression (2.12)
avoids the use of Vk explicitly. In other words, only the vectors in Uk and the matrix

4

Hk are required to carry out the solve associated with (2.12) in addition to the solve
with B. Hence, applying the preconditioner to an arbitrary vector b requires comput-
ing B−1b to which the correction UkHkUT

k b is added. For now, we assume that the
system with B can be solved in some unspecified manner.

It may appear somewhat wasteful for the accuracy of the scheme to approximate
both B−1E and its transpose when deriving (2.11) from (2.7). Instead, a middle
ground approach which approximates B−1E on one side only of the expression, will
lead to the following:

M−1 = B−1 + B−1EG−1
k VkUT

k = B−1[I + EG−1
k VkUT

k]. (2.14)

One drawback of the above scheme is that symmetry is lost. However, we will show
in Section 3 that the preconditioning matrices defined by (2.11) and (2.14) are equal.
Therefore, in what follows, we will only consider the two-sided low-rank approxima-
tions defined by (2.12).

2.3. Recursive multilevel low-rank approximation. This section describes
a framework for constructing recursive multilevel low-rank approximations. We start
by defining matrices at the first level as A0 ≡ A, E0 ≡ E and B0 ≡ B, where A, E
and B are matrices defined in (2.6). The index i will be used for the i-th level. Recall
that Bi is a 2× 2 block diagonal matrix. If the two diagonal blocks are labeled as i1
and i2 respectively, then we can write,

Ai = Bi − EiE
T
i , Bi ≡

(
Bi1

Bi2

)
. (2.15)

If another level is built from Ai, then by letting Ai1 = Bi1 and Ai2 = Bi2 , we can
recursively repeat the same process on Ai1 and Ai2 . Otherwise, if Ai is at the last
level, it is factored by the incomplete Cholesky factorization (IC) as Ai ≈ R̄T

i R̄i if it
is symmetric positive definite (SPD), or by the Incomplete LU factorization (ILU) as
Ai ≈ L̄iŪi. If we view i1 and i2 as the children of i, this process can be represented
by the binary tree displayed in Figure 2.1. It should be clarified that this binary tree
is not necessarily a complete binary tree as shown.

7

8

4

2
3

7 8

4

9 10

6

13 1411 12

5

1 2

03

1

Fig. 2.1. Recursive domain bisection and the binary tree structure in the RMLR method.

Assume that i is a non-leaf node in the tree and that (Ui)k (Vi)
T
k is a rank-k

approximation to B−1
i Ei and (Hi)k is the matrix defined in (2.12). For simplicity,

we omit the subscript k from (Ui)k, (Vi)k and (Hi)k in the remainder of this paper
without loss of clarity. If we denote by Mi the preconditioning matrix of Ai and

5

assume that the low-rank approximation of the form (2.12) is used, then we have,

A−1
i ≈ B−1

i + UiHiU
T
i

=
(

A−1
i1

A−1
i2

)
+ UiHiU

T
i

≈
(

M−1
i1

M−1
i2

)
+ UiHiU

T
i

≡M−1
i . (2.16)

On the other hand, if i is a leaf node, then Mi is given by M−1
i = R̄−1

i R̄−T
i or

M−1
i = Ū−1

i L̄−1
i . This gives a recursive definition of Mi,

M−1
i =


(

M−1
i1

M−1
i2

)
+ UiHiU

T
i , if i is not a leaf node

R̄−1
i R̄−T

i or Ū−1
i L̄−1

i , otherwise

(2.17)

Accordingly, the preconditioning operation x = M−1
i b can be performed as a recursive

multilevel solve with low-rank approximation, x = RMLRSolve(i,b), which is shown

below. In Line 6 and 7 of this function, vectors b[i1] and b[i2] are defined by, b =
(

b[i1]

b[i2]

)
,

which corresponds to the partition of i’s rows into i1 and i2.

Function RMLRSolve(i, b)
Data: Low-rank approximations Uj , Hj for each non-leaf descendant j of i;

Factors Ūj , L̄j or R̄j for each leaf descendant j of i
Output: x = M−1

i b, with Mi given by (2.17)

1 if i is a leaf-node then
2 Solve Aix = b by x = Ū−1

i L̄−1
i b or x = R̄−1

i R̄−T
i b

3 else
4 i1 ← i’s left child
5 i2 ← i’s right child
6 y1 = RMLRSolve(i1, b[i1])

7 y2 = RMLRSolve(i2, b[i2])

8 y = (y1, y2)T

9 x = y + UiHiU
T
i b

Finally, we analyze the storage requirement of the RMLR method. For every non-
leaf node i, matrices Ui and Hi are saved, so the memory cost of saving the low-rank
approximations is O(nlev ·k ·n+(2nlev−1) · k

2

2) , which increases with the number of
levels nlev and the rank k. For all leaf-nodes, ILU or IC factors are stored at a cost
that depends on fill-ratios of the factorizations. In general, this cost increases as sizes
of the last-level matrices increase and as dropping tolerances become smaller. The
matrices stored in the RMLR approach are illustrated schematically in Figure 2.2.

2.4. Computation of low-rank approximations. In the above RMLR method,
for every non-leaf node i, a rank-k approximation UiV

T
i to B−1

i Ei is required. This
6

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���

���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
��k

n

k

k

U
L

U4

U5

U6

H4

H5

H6

Level 0 Level 1 Level 2

R
or

Last level

H3

U1

H1

U2

H2

U3

H0

U0

Fig. 2.2. The matrices stored in the RMLR method.

section describes three approaches for computing this low-rank approximation. In
the first two approaches, we explicitly compute a matrix Zi and then compute its
SVD, i.e., Zi = ŪΣV̄ T . Thus, a rank-k approximation UiV

T
i can be given by taking

Ui = Ū:,1:kΣ1:k,1:k and Vi = V̄:,1:k.

In the first approach, we use Zi = B−1
i Ei. Recall that Bi =

(
Ai1

Ai2

)
and

define Ei =

(
E

[i1]
i

E
[i2]
i

)
which corresponds to the row partition of i into i1 and i2. Then

it follows that,

Zi = B−1
i Ei =

(
Ai1

Ai2

)−1

Ei =

(
A−1

i1
E

[i1]
i

A−1
i2

E
[i2]
i

)
≡
(

Y1

Y2

)
, (2.18)

in which Y1 and Y2 are computed by exploiting the recursivity in the multilevel struc-
ture. By changing Line 9 in Function RMLRSolve, we obtain Function MLSolve shown
below, which performs a recursive multilevel solve of Ai. If we assume the factoriza-
tions at the last level are exact, then this function indeed solves x = A−1

i b exactly.
Therefore, Y1 and Y2 can be computed as follows. Each column j of Y1 is given
by Y1(:, j) = MLSolve(i1, e

[i1]
j), in which e

[i1]
j is the jth column of E

[i1]
i . Simi-

larly, each column j of Y2 is given by Y2(:, j) = MLSolve(i2, e
[i2]
j), where e

[i2]
j is

the jth column of E
[i2]
i . Note that here we assume that before we start comput-

ing Zi, matrices Zj for all j ∈ s(j) have been computed, where s(j) is defined by
s(j) = {x | x is a descendant of i and x is not a leaf node}. This approach demands
that we compute the low-rank approximations in a postorder traversal of the binary
tree (for details, see, e.g., [7]).

However, this approach is not computationally feasible since computing Zi re-
quires Zj for all j ∈ s(j) and its cost will explode with the number of levels. It will

7

Function MLSolve(i, b)

Data: Ej , Zj for each non-leaf descendant j of i; Factors Ūj , L̄j or R̄j for
each leaf descendant j of i

Output: x = A−1
i b

1 if i is a leaf-node then
2 Solve Aix = b by x = Ū−1

i L̄−1
i b or x = R̄−1

i R̄−T
i b

3 else
4 i1 ← i’s left child
5 i2 ← i’s right child
6 y1 = MLSolve(i1, b[i1])

7 y2 = MLSolve(i2, b[i2])

8 y = (y1, y2)T

9 x = y + Zi(I − ET
i Zi)−1ZT

i

only serve as a reference for the following two approaches for a few small problems in
the numerical experiments.

In the second approach, we compute the low-rank approximations for Zi =
B̃−1

i Ei, where B̃i is an approximation to Bi, which is defined by

B̃i =
(

Mi1

Mi2

)
. (2.19)

Then we can write,

Zi = B̃−1
i Ei =

(
Mi1

Mi2

)−1

Ei =

(
M−1

i1
E

[i1]
i

M−1
i2

E
[i2]
i

)
≡
(

Ỹ1

Ỹ2

)
. (2.20)

Thus, we can compute each column j of Ỹ1 and Ỹ2 by Ỹ1(:, j) = RMLRSolve(i1, e
[i1]
j)

and Ỹ2(:, j) = RMLRSolve(i2, e
[i2]
j), in which e

[i1]
j and e

[i2]
j are the jth column of E

[i1]
i

and E
[i2]
i respectively. Note that this approach requires again a postorder traversal

processing since when computing Zi, the low-rank approximations at all i’s non-leaf
descendants must have already been computed. However, in contrast to the first
approach, Zi is not needed by i’s ancestors, so Zi can be discarded after it is used to
obtain its low-rank approximation.

Since we have Zi ∈ Rni×nx , in the above method, we need to perform nx recursive
solves in order to compute Zi. This will be inefficient when k � nx. In the third
method, we use the Lanczos bidiagonalization method without forming a matrix Zi

to compute the low-rank approximation.
First we briefly review the Lanczos bidiagonalization method. Given a matrix

A ∈ Rm×n and an arbitrary unit vector v1, the Lanczos bidiagonalization method
[11] (see also [17, 9]) builds two sequences of orthonormal vectors u1, u2, . . . , un and
v1, v2, . . . , vn, from which we can extract approximations to the left and right singular
vectors respectively. In addition, it reduces A to a bidiagonal matrix B, i.e., B is
nonzero only on the main diagonal and the first superdiagonal. Let U = [u1, . . . , un]
and V = [v1, . . . , vn]. Then we have UT AV = B, where B is bidiagonal and UT U =
Im, V T V = In. This method is essentially equivalent to applying the symmetric

8

Lanczos algorithm to AT A with the starting vector q1 = v1, or to AAT with q1 = u1,
or to a symmetric matrix

C =
(

0 A
AT 0

)

with a special starting vector, q1 =
[

0
v1

]
.

Because of the above equivalences and the relationship between the symmetric
eigenvalue problem of AT A, AAT or C and the SVD of A, the larger singular val-
ues of B are typically good approximations to the larger singular values of A. If
B = UBΣBV T

B defines the SVD of B, then σB , the singular values of B, approximate
some of the singular values of A while UUB and V VB approximate the corresponding
left and right singular vectors. As is well-known, in the presence of rounding error,
orthogonality in the Lanczos procedure is quickly lost and a form of reorthogonaliza-
tion is needed in practice. For simplicity, we use complete reorthogonalization, which
is inexpensive when a small number of steps are performed. More efficient reorthog-
onalization schemes have been proposed, for details, see, e.g., [12, 18, 20], but these
will not be considered in this paper.

The Lanczos bidiagonalization method requires the matrix A only in the form of
matrix-vector products and matrix-transpose-vector products, i.e., y = Ax and y =
AT x, which is quite appealing in this situation where the matrix is implicitly available
and recursively defined. In this approach, we perform the Lanczos bidiagonalization
method on Zi, in which Zi = B̃−1

i Ei. Therefore, the matrix-vector product and the
matrix-transpose-vector product are given by,

y = Zix =
(
B̃−1

i Ei

)
x = B̃−1

i w with w = Eix; (2.21)

and

y = ZT
i x =

(
B̃−1

i Ei

)T

x = ET
i w with wT = xT B̃−1

i . (2.22)

We can compute B̃−1
i w in (2.21) by

B̃−1
i w =

(
M−1

i1
w1

M−1
i2

w2

)
≡
(

e
f

)
, (2.23)

in which e and f are given by e := RMLRSolve(i1, w1) and f := RMLRSolve(i2, w2).
Likewise, we can compute xT B̃−1

i in (2.22) by

xT B̃−1
i =

(
xT

1 M−1
i1

xT
2 M−1

i2

)
≡
(
g h

)
, (2.24)

where g and h can be computed by a similar function as RMLRSolve, which performs
a recursive solve on the left. We omit the details of this function.

Note that this third approach based on the Lanczos bidiagonalization method also
requires a postorder traversal implementation. Indeed, when performing the recursive
solve with B̃i, all low-rank approximations at its descendants must have already been
computed.

9

l

l

l

l

l

l

l

l

Ω 1

Ω
2

l

l

l

l

l

l

l

l

l

l

Fig. 2.3. Illustration of a domain partitioned into two domains (DD with an edge separator).
The edge separator and the interface nodes are shown.

2.5. Generalization: domain decomposition with edge separators. To
generalize the above scheme we need to take a domain decomposition viewpoint. We
first consider the situation illustrated in Figure 2.3, in which a domain Ω is partitioned
into two domains Ω1 and Ω2. If we call interior nodes all those nodes inside a domain
excluding interface nodes then the variables are naturally partitioned into 4 parts:
Interior nodes in Ω1; Interface points in Ω1; Interior nodes in Ω2; Interface points in
Ω2. We refer to these nodes as x1, y1, x2, y2, respectively, and denote by ni and mi

the number of interior variables and interface variables in domain Ωi, for i = 1, 2.
Therefore, the global matrix representation of the matrix associated with the mesh
represented in the figure is as follows,

PAPT =


B̂1 F̂1

F̂T
1 C1 −X

−XT

B̂2 F̂2

F̂T
2 C2

 , (2.25)

in which A ∈ Rn×n and P is the corresponding permutation matrix. The above rep-
resentation also assumes that the interface nodes in each domain are listed last. The
matrix B̂i is of size ni × ni and the matrix Ci is of size mi ×mi, for i = 1, 2. They
represent the interior variables and the interface variables of the two domains respec-
tively. Note that the matrix X represents the coupling between interface variables in
one domain with those of the other domain, which is essentially the edge separator
composed of the edges between y1 and y2 and it is of size m1 ×m2.

Consider the following n×m1 matrix defined with respect to the above partition-
ing of the variables:

E =


0
I
0

XT

 . (2.26)

Then, we have

PAPT =
(

B1

B2

)
−EET with Bi =

(
B̂i F̂1

F̂T
i Ci + Di

)
and

{
D1 = I
D2 = XT X

.

(2.27)
10

Since D1 6= D2, there is an imbalance between the expressions of B1 and B2. However,
this is not an issue because X is typically a strongly diagonal dominant (non-square)
matrix and as a result one can mitigate the imbalance by weighing the two nonzero
terms in (2.26). The matrix E is then redefined as

Eα =


0
αI
0

XT

α

 . (2.28)

The matrices Di then become to D1 = α2I and D2 = 1
α2 XT X. Therefore, α should

be taken as the square root of the largest singular value of X in order to make the
spectral radius of D1 equal that of D2.

Finally, the ultimate balancing option consists of using a factorization of X. Re-
calling that X is of size m1 ×m2, assume that we have X = LU , where L ∈ Rm1×l

and U ∈ Rl×m2 , in which l = min(m1,m2). Then we can take

ELU =


0
L
0

UT

 , (2.29)

which leads D1 = LLT and D2 = UT U . Note that now E is of size n × l. A
method based on the corresponding modification of the decomposition (2.27) can now
be defined following the same steps and definitions as those of Section 2 for RMLR.
We will refer to this as the edge-separator-based RMLR (RMLR-E) approach.

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

Ω 1

Ω
2

Fig. 2.4. Illustration of a domain partitioned into two domains (DD with a vertex separator).
The vertex separator and the interface nodes are shown.

2.6. Generalization: domain decomposition with vertex separators.
Another way to generalize the RMLR scheme is to exploit a domain decomposition
approach based on a vertex separator. We consider the situation illustrated in Fig-
ure 2.4 in which a domain Ω is partitioned into three parts: domains Ω1, Ω2 and the
vertex separator S, which is the interface shared by Ω1 and Ω2. We now distinguish
between 5 different pieces of the variable space: interior nodes in Ω1 that are not
coupled to S; interface nodes in Ω1 that are coupled to S; interior nodes in Ω2 that
are not coupled to S; interface nodes in Ω2 that are coupled to S; and the nodes in
the vertex separator. We refer to these nodes as x1, y1, x2, y2, z and denote their
sizes by n1, m1, n2, m2, p respectively. If we assume that the separator nodes are

11

labeled after the nodes in Ω1 and Ω2, then the global matrix representation of the
matrix associated with the mesh represented in the figure is as follows,

PAPT =


B1

0
−F1

B2
0
−F2

0 − FT
1 0 − FT

2 C

 , (2.30)

in which A ∈ Rn×n and P is the corresponding permutation matrix. For the matrix in
(2.30), Bi is of size (ni +mi)×(ni +mi), which represents the nodes of domain i. The
two zero blocks in the last column of size ni×p indicate that interior nodes xi are not
coupled to z. The matrix −Fi is of size mi×p, which represents the coupling between
yi and z, for i = 1, 2. The block C is of size p×p and represents the vertex separator.
Note that F1 and F2 are no longer identity matrices and not necessarily square,
although they should be close to being square. Consider the following n× (m1 + m2)
matrix defined with respect to the above partitioning of the variables:

E =


0 0
I 0
0 0
0 I

FT
1 FT

2

 . (2.31)

Then, it is easy to verify that

PAPT =

B̂1

B̂2

Ĉ

−EET with B̂i = Bi + Îi; Ĉ = C + FT
1 F1 + FT

2 F2,

where Îi is a matrix consisting of zeros except in the bottom right corner which is an
identity matrix of size mi × mi, i.e., Îi =

(
0 0
0 Imi

)
. A method based on the above

decomposition can now be defined following the same steps and definitions as those of
Section 2 for RMLR. We refer to it as the vertex-separator-based RMLR (RMLR-V)
approach.

3. Analysis. We were surprised to find in our experiments that the precondi-
tioners given by (2.11) and (2.14) are identical. In addition, we also noted that the
matrix Hk (as well as Gk in some cases) is symmetric which is not immediately ob-
vious. This section explores some of these issues. The main assumption we make
in order to prove these results has to do with the form of the rank-k approximation
UkV T

k . We will assume that UkV T
k in (2.9) is the best 2-norm rank k approximation

to B−1E. A second assumption is that we have V T
k Vk = I. We begin with a simple

lemma which provides an explicit formula for the inverse of the matrix Gk of (2.10).
Lemma 3.1. Let Gk be defined by (2.10) and assume that the matrix I −UT

k EVk

is nonsingular. Then

G−1
k = I + VkĤkUT

k E with Ĥk = (I − UT
k EVk)−1. (3.1)

Furthermore, the following relation holds:

V T
k G−1

k Vk = Ĥk, (3.2)
12

i.e., the matrices Hk in (2.12) and the matrix Ĥk given in (3.1) are the same.
Proof. The expression for the inverse of Gk is provided by the Sherman-Morrison

formula:

(I − Vk(UT
k E))−1 = I + VkĤkUT

k E with Ĥk = (I − UT
k EVk)−1,

which is a valid expression under the assumption that I − UT
k EVk is nonsingular.

Relation (3.2) follows from the observation that Ĥ−1
k + UT

k EVk = I, which yields

V T
k G−1

k Vk = V T
k (I + VkĤkUT

k E)Vk = I + ĤkUT
k EVk = Ĥk[Ĥ−1

k + UT
k EVk] = Ĥk.

Since the matrices Ĥk and Hk are identical we will use the symbol Hk to denote
them both in what follows.

Recall that Uk ∈ Rn×k, Vk ∈ Rnx×k. Under the assumptions we have

B−1E = UkV T
k + Z with ZVk = 0 (3.3)

where Z ∈ Rn×nx . This is because if B−1E = UΣV T then the best rank-k ap-
proximation is given by

∑
i≤k σiuiv

T
i and so Z =

∑
i>k σiuiv

T
i . A number of simple

properties follow from this observation.
Proposition 3.2. Assume that the approximation UkV T

k in (2.9) is the best
2-norm rank k approximation to B−1E as obtained from the SVD and that we have
V T

k Vk = I and that B is symmetric positive definite. Then we have UT
k EVk = UT

k BUk

and the matrix UT
k EVk is therefore symmetric positive definite.

Proof. We write,

UT
k EVk = UT

k B(B−1E)Vk = UT
k B(UkV T

k + Z)Vk = UT
k BUk

Since B is SPD and Uk is of full rank then it follows that UT
k EVk is SPD.

Proposition 3.3. Assume that the approximation UkV T
k in (2.9) is the best

2-norm rank k approximation to B−1E as obtained from the SVD and that the matrix
I − UT

k EVk is nonsingular. Then the two preconditioning matrices defined by (2.11)
and (2.14), respectively, are equal.

Proof. Comparing (2.11) and (2.14) we note that all we have to prove is that
B−1EG−1

k VkUT
k = UkV T

k G−1
k VkUT

k . The proof requires the expression for the inverse
of Gk which is provided by Equation (3.1) of Lemma3.1, which is valid under the
assumption that I − UT

k EVk is nonsingular. From this it follows that:

B−1EG−1
k VkUT

k = (UkV T
k + Z)G−1

k VkUT
k

= (UkV T
k + Z)

[
I + VkHkUT

k E
]
VkUT

k

= (UkV T
k + Z)Vk

[
I + HkUT

k EVk

]
UT

k (3.4)

= (UkV T
k)Vk

[
I + HkUT

k EVk

]
UT

k (3.5)

= (UkV T
k)
[
I + VkHkUT

k E
]
VkUT

k (3.6)

= UkV T
k G−1

k VkUT
k ,

where we have used the relation (3.3) in going from (3.4) to (3.5).
Proposition 3.2 along with the expressions (2.12) of the preconditioner and (3.1)

for Hk lead to yet another way of expressing the preconditioner.
13

Proposition 3.4. Under the same assumptions as those of Proposition 3.3, the
preconditioner M given by equation (2.12) satisfies the relation:

M = B −BUkUT
k B (3.7)

Proof. We need to invert the matrix M given in the above expression in order to
compare it with (2.12). Using Sherman-Morrison formula leads to the expression,

(B − (BUk)(BUk)T)−1 = B−1 + Uk(I − UT
k BUk)−1UT

k

Using the relation UkBUT
k = UT

k EVk from Proposition 3.2 and the expression of Hk

obtained from Lemma 3.1 leads to the same expression as (2.12) for the inverse of M .

The expression of the preconditioner given by the above proposition provides some
insight as to the nature of the preconditioner. Consider the extreme situation when
we use the full decomposition B−1E = UkV T

k , so k = nx and Z = 0 in (3.3). Then,
E = BUkV T

k and hence we will have BUk = EVk. Since Vk is now a square (unitary)
matrix, therefore,

M = B − EVkV T
k ET = B − EET ,

which is the original matrix per (2.6). Not surprisingly, we do indeed obtain an
exact preconditioner when an exact decomposition B−1E = UkV T

k is used. When
an inexact decomposition B−1E ≈ UkV T

k is used, (k < nx, Z 6= 0) then we have
B−1E = UkV T

k + Z and we obtain (E − BZ) = BUkV T
k . We can now ask what

approximation is the preconditioner making on the original matrix in this situation.
Remarkably, the preconditioner used simply corresponds to a modification of (2.6) in
which E is perturbed by −BZ.

Proposition 3.5. Under the same assumptions as those of Proposition 3.3, the
preconditioner M given by equation (2.12) satisfies the relation:

M = B − (E −BZ)(E −BZ)T , (3.8)

where Z is given in (3.3).
Proof. The proof follows immediately from the above arguments, Proposition 3.4,

and the equality

(E −BZ)(E −BZ)T = BUkV T
k VkUT

k B = BUkUT
k B.

The final question we would like to answer now is: Under which condition is the
preconditioner symmetric positive definite? The following result gives a necessary
and sufficient condition. In the following we will say that the preconditioner (2.12) is
well-defined when Hk exists, i.e., when I − UT

k EVk is nonsingular.
Theorem 3.6. Let the assumptions of Proposition 3.2 be satisfied. Then the

preconditioner given by (2.12) is well defined and symmetric positive definite if and
only if ρ(UT

k EVk) < 1.
Proof. Recall from Proposition (3.2) that the matrix UT

k EVk is a symmetric
positive definite matrix. If ρ(UT

k EVk) < 1 then clearly the eigenvalues of I −UT
k EVk

are all positive. Therefore, the matrix I − UT
k EVk is symmetric positive definite and

14

it is nonsingular so the preconditioner M is well defined. Its inverse, Hk is SPD. As
a result the matrix M in (2.12) is also SPD.

To prove the converse, we consider expression (3.7) of the preconditioner and
make the assumption that it is positive definite. Under this assumption, UT

k MUk is
SPD since Uk is of full rank. Now observe that if we set S ≡ UT

k BUk then

UT
k MUk = UT

k BUk − UT
k BUkUT

k BUk = S − S2.

The eigenvalues of S − S2 are positive. Since S is symmetric positive definite any
eigenvalue λ of S is positive. Therefore λ is positive and such that λ − λ2 is also
positive. This implies that 0 < λ < 1 and the proof is complete since UT

k EVk =
UT

k BUk = S (Proposition 3.2).
Finally, the above theorem can be extended to the recursive multilevel precondi-

tioner which is defined by (2.17). The following result gives a sufficient condition of
Mi to be symmetric positive definite. We define s(i) to be the set consisting of i and
all its non-leaf descendants, i.e.,

s(i) = {x | x = i or x is a descendant of i and x is not a leaf node} ,

and t(i) to be the set consisting of all the leaf descendants of i, i.e.,

t(i) = {x | x is a descendant of i and x is a leaf node} .

Corollary 3.7. Assume that the approximation UiV
T
i is the best 2-norm rank

k approximation to B̃−1
i Ei as obtained from the SVD where B̃i is defined in (2.19)

and that we have V T
i Vi = I and the matrices Aj for all j ∈ t(i) are symmetric positive

definite. Then the preconditioner Mi given by (2.17) is well defined and symmetric
positive definite if ρ(UT

j EjVj) < 1 for all j ∈ s(i) .
Proof. The proof consists of a simple inductive argument which exploits the

previous result which is valid for two levels.

4. Numerical Experiments. A preliminary implementation of the above pre-
conditioning method has been written and tested in MatLab R© [23]. This section first
provides numerical results when solving linear systems from two-dimensional elliptic
partial differential equations (PDEs) using the RMLR method along with Krylov
subspace methods. In these problems, a recursive geometric bisection is used for the
domain decomposition in the RMLR approach. A 2D regular grid is simply cut in half
along either x or y dimension, depending on which dimension of the grid is shorter. We
then extend the RMLR method to solve a problem from a three-dimensional PDE, in
which a similar 3D recursive geometric bisection is used. Finally, the RMLR method
is tested for solving a sequence of general symmetric linear systems. For these prob-
lems, a graph partitioning algorithm PartGraphRecursive from Metis [13] is used
to bisect the graph as needed in the RMLR method.

The RMLR strategy is compared against the incomplete Cholesky factorization
with threshold dropping (ICT) or the incomplete LU factorization with threshold
dropping and partial pivoting (ILUTP) by using the functions cholinc or luinc
from MatLab. The accelerators used in the following runs include the conjugate
gradient (CG) method, the minimal residual (MINRES) method and the restarted
generalized minimal residual (GMRES) method with a restart dimension of 40. The
iteration is stopped whenever the residual norm has been reduced by 8 orders or the
maximum number of iterations allowed, which is 400, is exceeded.

15

In all the following experimental results, we only list and compare the number of
iterations and the fill-ratio, i.e., the ratio of the number of nonzeros required to store
a preconditioner to the number of nonzeros in the original matrix. The CPU time for
building the RMLR preconditioner and applying it in the iterations is not presented
since the current implementation cannot fairly represent the time cost of the RMLR
strategy, especially for the aimed multi-core CPU or many-core GPU platforms. This
comparison is left for future work in which efficient implementations of the RMLR
techniques in C or CUDA for NVIDIA GPUs will be tested.

4.1. 2D elliptic PDE. We will examine a two-dimensional elliptic partial dif-
ferential equation

−a
∂2u

∂x2
− b

∂2u

∂y2
= −

(
bx2 + ay2

)
exy in Ω, (4.1)

subject to the Dirichlet boundary condition u = exy on ∂Ω, where Ω = (0, 1)× (0, 1).
So the exact solution of (4.1) is u = exy. We solve an anisotropic problem with a = 20
and b = 1 and we take the 5-point centered difference approximation on an nx × ny

grid. The coefficient matrix in the linear system from (4.1) is symmetric positive
definite. Recall from Corollary 3.7 in Section 3, that if we have ρ(UT

i EVi) < 1 for
all i, then for an SPD matrix A, the RMLR preconditioner defined in (2.17) is also
SPD. Therefore, we can use the RMLR-E preconditioning method along with the CG
method for solving the above problem. The Lanczos bidiagonalization method is used
to compute the low-rank approximations.

In this example, we take a grid of size nx = ny = 130, so the coefficient matrix
is of order 16, 384× 16, 384. Numerical experiments were carried out to compare the
performance of the RMLR-E method with that of the ICT method along with the CG
method. Figure 4.1 shows the convergence profile for ICT-CG and RMLR-E-CG. The
y-axis shows the residual norm (in log scale) and the x-axis shows the iteration count.
The number at the end of each curve shows the fill-ratio. For the RMLR-E method,
the number of levels is 2 and the rank k is set to 2, 3 or 5. The dropping tolerance for
ICT is 10−3 or 2 × 10−3. The results indicate that the RMLR-E preconditioner can
be used along with the CG method to solve this problem successfully. Furthermore, it
performs better than the ICT preconditioner in that it achieves a faster convergence
at a lower memory cost, as indicated by the lower fill-ratio.

Table 4.1 presents results of the RMLR-E preconditioning method along with the
CG method for solving the same problem with different ranks k and numbers of levels
nlev. The table shows the number of iterations (the first number) and the fill-ratio
(the second number). From results in the table, first we can see that the RMLR-E
method with a smaller nlev or a larger k exhibits a faster convergence rate. Second,
we find that fill-ratios grow as k increases and they also grow as nlev increases because
more levels of low-rank approximation matrices are saved.

4.2. 2D Helmholtz-type equation. Experiments were conducted for solving
the following 2D Helmholtz-type equation,

−∂2u

∂x2
− ∂2u

∂y2
− ρu = −6− ρ

(
2x2 + y2

)
in Ω, (4.2)

subject to the Dirichlet boundary condition u = 2x2 + y2 on ∂Ω, where Ω = (0, 1)×
(0, 1). The exact solution of (4.2) is u = 2x2 + y2. We take the 5-point centered
difference approximation on an nx × ny grid. The test matrix originates from the

16

0 5 10 15 20 25 30 35 40
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

CG iterations

L
o

g
 o

f
re

s
id

u
a
l
n

o
rm

RMLR k=2

RMLR k=3

RMLR k=5

ICT(2e−3)

ICT(1e−3)

2.22

3.16
2.11

1.91
2.52

Fig. 4.1. Comparison between the ICT method and the RMLR method for solving a 2D elliptic
equation in (4.1) along with the CG method.

Table 4.1
Experimental results for solving a 2D elliptic equation in (4.1): CG iteration counts with the

RMLR-E method and fill ratios.

k nlev=4 nlev=3 nlev=2
2 69 2.51 59 2.23 16 1.91
3 61 3.12 53 2.64 15 2.11
4 55 3.72 49 3.04 13 2.32
5 50 4.33 45 3.44 12 2.52
6 46 4.94 41 3.85 12 2.72

discretization of a negative Laplacean, shifted by ρh2I, in which the same mesh size
h = 1

nx−1 is used in both x and y directions. The shift can make the problem
substantially indefinite. Hence we use the RMLR method along with GMRES(40) to
solve the problem and then compare its performance with that of the nonsymmetric
ILUTP preconditioner.

In the first example, we take nx = ny = 66 and ρ = 845, so the dimension of
the coefficient matrix is 4096 × 4096 and the corresponding shift is 0.2I. First, we
present numerical results of the RMLR-E method by using the three different ap-
proaches discussed in Section 2.4 to compute the low-rank approximations. The three
approaches are referred to as the exact-svd approach, the approx-svd approach
and the approx-lan(m) approach respectively. The exact-svd approach computes
matrix B−1

i E exactly while the approx-svd approach computes its approximation
B̃−1

i E. Then both methods compute the partial SVD using svds from MatLab and
select the singular vectors associated with the largest k singular values. On the other
hand, the approx-lan(m) approach, without computing matrix B̃−1

i Ei, applies the
Lanczos bidiagonalization method implicitly to B̃−1

i Ei, where m is the number of
Lanczos steps. This approach can be much more efficient since it usually can provide

17

results that are as accurate as the approx-svd approach with a small number of Lanc-
zos steps. As was seen above, the exact-svd approach is not computationally feasible
for large problems and it is used here only as a reference for the other two methods.
Figure 4.2 compares the performance of the RMLR-E methods using these three ap-
proaches for solving the linear system along with GMRES(40). The y-axis shows the
residual norm (in log scale) and the x-axis shows the iteration count. The fill-ratio
is 5.38. As shown in Figure 4.2, the approx-svd approach exhibits a performance
that is similar to that of the exact-svd approach. Furthermore, when approximating
3 largest singular values, approx-lan(5) can provide a result that is closed to that
of the approx-svd approach, but approx-lan(10) is accurate enough to provide the
same convergence. Therefore, in what follows, we use the Lanczos bidiagonalization
method to compute the low-rank approximations.

0 50 100 150 200 250
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

GMRES(40) iterations

L
o
g
 o

f
re

s
id

u
a
l
n

o
rm

approx−lan(5)
approx−lan(10)
approx−svd
exact−svd

5.38

Fig. 4.2. Computing the low-rank approximations in RMLR-E (k = 3) by the SVD vs. the
Lanczos bidiagonalization method.

Next, we compare the performance of the RMLR-E method with that of the
ILUTP method along with GMRES(40) for solving the above problem. Figure 4.3
shows the convergence profile of ILUTP-GMRES and RMLR-E-GMRES. For the
RMLR-E preconditioner, the size of the last-level matrices is 64 so that the number
of levels is 7 and the rank k is set to 2, 3 or 5. The dropping tolerance for ILUTP
is 10−2. From Figure 4.3, we can see that ILUTP-GMRES does not converge with a
fill-ratio as high as 8.47, while the RMLR-E method starts converging for a rank k
as small as 2 and the corresponding fill-ratio is 4.36. The storage required increases
with the rank k and it remains reasonable for k = 3. In addition, the low-rank
approximation matrices to be stored are dense and there are possibilities that can be
explored to compress them.

Table 4.2 presents results of the RMLR-E preconditioning method for different
ranks k and numbers of levels nlev. The table shows the number of iterations (the first
number) and the fill-ratio (the second number). Several observations can be made

18

0 50 100 150 200 250 300 350 400
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

GMRES(40) iterations

L
o

g
 o

f
re

s
id

u
a
l
n

o
rm

RMLR k=2

RMLR k=3

RMLR k=5

ILUTP(0.01)

8.48

5.387.43 4.36

Fig. 4.3. Comparison between the ILUTP method and the RMLR-E method for solving a 2D
Helmholtz-type equation in (4.2) along with GMRES(40).

from this table:
1. The fill-ratios grow as k increases.
2. When k is small, say k = 2, 3, the fill-ratio increases as nlev decreases, or in

other words, as the size of the last-level matrix increases.
3. In contrast, when k is large, say k = 5, 6, the fill-ratio, decreases as nlev

decreases.
4. The RMLR method with a smaller nlev or a larger k performs better in terms

of the convergence rate.
Table 4.3 presents the memory requirement for the RMLR-E method with k = 2

and k = 6. ‘Lrk’ indicates the memory cost for the low-rank approximations. The
number of nonzeros in low-rank approximation matrices and its percentage of the total
number of nonzeros in the preconditioner are shown. In addition, ‘Fact’ indicates the
number of nonzeros in the factors from the last-level factorizations. Results of the
table can explain the observations 2 and 3 above. In the cases when k is small, the
overall fill-ratio is dominated by the number of nonzeros in last-level factorizations,
which will be higher, in general, when last-level matrices become larger. Therefore,
the overall fill-ratio increases as nlev decreases. On the other hand, when k is large,
the overall fill-ratio is dominated by the memory cost of the low-rank approximations
which increases with nlev.

In fact, we found that when nlev = 7, all matrices Ai at the last level are SPD,
so the factorizations are performed by IC, while ILU is used for nlev ≤ 6 instead.
Note that the coefficient matrix from this problem is indefinite but from (2.15), we
can see that Ai1 and Ai2 are perturbed and as a result become less indefinite than Ai.
Therefore, when an RMLR preconditioner has enough levels, matrices at the last level
may be positive definite even though the original problem is indefinite. This makes
the incomplete factorizations at the last level more robust. Moreover, we showed in
Section 3 that if all matrices at the last level are SPD and ρ(UT

i EiVi) < 1 is satisfied
19

Table 4.2
Experimental results for solving a 2D Helmholtz-type equation in (4.2): GMRES(40) iteration

counts with the RMLR-E method and fill ratios.

k nlev=7 nlev=6 nlev=5 nlev=4 nlev=3
2 318 3.56 372 4.36 261 4.77 183 4.80 47 5.53
3 192 4.78 144 5.38 144 5.59 102 5.41 38 5.94
4 181 6.03 132 6.41 74 6.41 45 6.02 35 6.35
5 75 7.20 63 7.43 39 7.22 33 6.63 31 6.76
6 45 8.52 41 8.46 35 8.04 29 7.24 28 7.16

Table 4.3
Memory requirement for the RMLR-E method with k = 2 and k = 6.

k nlev=7 nlev=6 nlev=5 nlev=4 nlev=3
Lrk Fact Lrk Fact Lrk Fact Lrk Fact Lrk Fact

2 49k 23k 41k 47k 33k 64k 24k 72k 16k 96k
(69%) (47%) (34%) (25%) (15%)

6 149k 23k 124k 47k 99k 64k 74k 72k 49k 96k
(87%) (72%) (61%) (51%) (34%)

for every non-leaf node i, then the RMLR preconditioner is SPD. This implies that, in
this case, we can use the RMLR method along with iterative methods for symmetric
indefinite systems, for instance, the MINRES method or the SYMMLQ method. An
example of using the RMLR-E method along with the MINRES method for solving
a indefinite linear system from a Helmholtz-type problem will be shown later in this
section. Another advantage of factoring matrices at the last level by IC is that we
can save about half the memory needed for storing the factors.

0 50 100 150 200 250 300 350 400
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

GMRES(40) iterations

L
o
g
 o

f
re

s
id

u
a
l
n
o
rm

RMLR−V k=3

RMLR−V k=5

RMLR−E k=3

RMLR−E k=5

ILUTP (0.01)

8.48

4.88

6.85

5.387.43

Fig. 4.4. Comparison between the RMLR-E method and RMLR-V method for solving a 2D
Helmholtz-type equation in (4.2).

20

Table 4.4
Experimental results for solving a 2D Helmholtz-type equation in (4.2): ρmax, MINRES itera-

tion counts with the RMLR method and fill ratios.

k nlev=7 nlev=8 nlev=9
2 0.9414 103 3.56 0.8771 103 3.72 0.7900 102 4.30
3 1.0118 F 0.9164 96 5.17 0.9186 98 5.71
4 1.0594 F 0.9437 83 6.63 0.9437 80 7.41
5 1.2350 F 2.3190 F 2.3190 F
6 1.3571 F 1.0396 F 1.0396 F

Finally in this example, we compare the RMLR-E method and the RMLR-V
method. We find that for all tested cases, the RMLR-E method performs much better
than the RMLR-V method. Figure 4.4 gives a comparison between the performance
of these two methods with nlev = 6 and k = 3, 5 for solving the above problem along
with GMRES(40). As shown, for both cases, the RMLR-V method failed to converge.
From (2.26) and (2.31), we can see that the rank of the matrix B−1E in the RMLR-V
method is at least twice as that in the RMLR-E method. As a result, the low-rank
approximation in the RMLR-V method is less accurate than that in the RMLR-E
method. Therefore, in what follows, we will only test the RMLR-E method and refer
to the RMLR-E method as the RMLR method for convenience.

In the second example, we take nx = ny = 66 and ρ = 211.25, so the dimension of
the coefficient matrix is 4096×4096 and the corresponding shift is 0.05I. Accordingly,
the linear system is less indefinite and the RMLR preconditioner built for this problem
is SPD. Therefore, we can use it along with the MINRES method for solving this
symmetric indefinite linear system. In Table 4.4, we show the performance of the
RMLR method with different k and nlev. For nlev = 7, 8, 9, all matrices at the last
level are SPD and they are factored by IC. Table 4.4 lists ρmax (the first number),
where ρmax = max

i

{
ρ(UT

i EiVi)
}
, the number of iterations (the second number) and

the fill-ratio (the third number). The symbol F indicates that MINRES failed due
to the preconditioner not being SPD (MatLab convergence flag = 5). We showed
in Section 3 that in a case when all matrices at the last level are SPD, the RMLR
preconditioner is SPD if ρ(UT

i EiVi) < 1 for every non-leaf node i. This agrees with our
numerical results since in all failed cases, we find that ρmax > 1. However, the RMLR
method works for all cases when using along with the restarted GMRES method.
In addition, results from the table also indicate that k and nlev have an effect on
positive definiteness of the preconditioner. The preconditioner tends to be indefinite
as k increases. However, nlev has the opposite effect, i.e., increasing it makes the
preconditioner more likely to be positive definite.

4.3. 3D Helmholtz-type equation. In this section, we present several numer-
ical results for solving a three-dimensional elliptic partial differential equation,

−∂2u

∂x2
− ∂2u

∂y2
− ∂2u

∂z2
− ρu = −6− ρ

(
x2 + y2 + z2

)
in Ω, (4.3)

subject to the Dirichlet boundary condition u = x2 + y2 + z2 on ∂Ω, where Ω =
(0, 1) × (0, 1) × (0, 1). So the exact solution of (4.3) is u = x2 + y2 + z2. We take
the 7-point centered difference approximation on an nx × ny × nz grid. In a case
when nx = ny = nz, the matrix originating from the discretization is a negative
Laplacean matrix shifted by ρh2I, where h = 1

nx−1 . We use the RMLR method along
21

Table 4.5
Experimental results for solving a 3D Helmholtz-type equation in (4.3): GMRES(40) iteration

counts with the RMLR method and the ILUTP method, and fill ratios.

RMLR
k nlev=6 nlev=5 nlev=4
2 377 5.49 177 6.66 114 8.46
4 293 6.97 138 7.84 88 9.35
6 187 8.46 101 9.03 73 10.23
8 116 9.95 78 10.22 51 11.12

ILUTP
tol=5.8e-3 tol=6e-3
F 14.64 F 11.60

with GMRES(40) to solve this indefinite problem and then compare the results with
those of the ILUTP preconditioner. In 3D problems, interface nodes contain a larger
percentage of the total nodes than 2D problems. Therefore, higher ranks might be
needed in the approximations. In the following example, we take nx = ny = nz = 26
and ρ = 312.5 so that correspondingly, the dimension of the coefficient matrix is
13, 824×13, 824 and the shift is 0.5I. Table 4.5 presents numerical results of the RMLR
method for different ranks k and numbers of levels nlev and the ILUTP method. The
dropping tolerance for ILUTP is 5.8 × 10−3 or 6 × 10−3. In the table, we show the
number of iterations (the first number) and the fill-ratio (the second number). The
results in the table indicate that fill-ratios grow as k increases. On the other hand,
fill-ratios grow as nlev decreases since in this 3-D problem, for all k, the overall fill-
ratio is dominated by the number of nonzeros in last-level factorizations. Therefore,
the fill-ratio increases as sizes of the last-level matrices increase. In addition, similar
to results shown in previous experiments, the RMLR method with a smaller nlev or
a larger k performs better in terms of the convergence rate. At last, by comparing
results of the RMLR method with those of the ILUTP method in the table, we can
see that the RMLR method exhibits superior performance for this problem. For all
tests, the RMLR method can achieve convergence, whereas the ILUTP method failed
even though it has higher fill-ratios.

4.4. General matrices. We selected 17 matrices from the University of Florida
sparse matrix collection [8] and a matrix from a structural shell problem for the
following tests. Among these 7 are real symmetric positive definite matrices and 11
are real symmetric indefinite matrices. Table 4.6 lists the name, order (N), number
of nonzeros (NNZ), the positive definiteness, and a short description for each matrix.
If the actual right-hand-side is not provided, the linear system is obtained by creating
the artificial right-hand-side b = Ae, where e is the vector of all ones.

For solving the SPD systems, the RMLR method is used along with the CG
method and compared with the ICT method, whereas for solving the indefinite sys-
tems, it is used along with GMRES(40) and compared with the ILUTP method. Table
4.7 presents performance results for these methods. In this table, we show the num-
ber of levels nlev, the rank k for the RMLR method, fill-ratios and the numbers of
iterations. F indicates non-convergence in the maximum allowed number of steps. We
can see that the RMLR method performs better than the ICT method or the ILUTP
method for all cases. It requires lower fill-ratios but can achieve convergence in fewer
iterations. In many cases, ICT or ILUTP failed to converge.

We note here that the ranks k used for many problems are much larger than the
ones for the above structured problems. This is because in general graphs, the ratio

22

Table 4.6
Name, order (N), number of nonzeros (NNZ) and positive definiteness of the test matrices.

MATRIX N NNZ SPD DESCRIPTION

FIDAP/ex10 2,410 54,840 yes CFD problem
FIDAP/ex10hs 2,548 57,308 yes CFD problem
HB/bcsstk24 3,562 159,910 yes Structural engineering
HB/bcsstk28 4,410 219,024 yes Solid element model
Cylshell/s3rmt3m1 5,489 217,669 yes FEM, cylindrical shells
Cylshell/s3rmt3m3 5,357 207,123 yes FEM, cylindrical shells
Boeing/bcsstk38 8,032 355,460 yes Stiffness matrix
HB/bcsstm27 1,224 56,126 no Buckling analysis
HB/bcspwr06 1,454 5,300 no Power network problem
HB/bcspwr07 1,612 5,824 no Power network problem
HB/bcspwr08 1,624 6,050 no Power network problem
HB/blckhole 2,132 14,872 no Structural Engineering
HB/jagmesh3 1,089 7,361 no FEM, model problem
Boeing/nasa1824 1,824 39,208 no Structural problem
AG-Monien/3elt1 dual 9,000 26,556 no 2D finite element problem
AG-Monien/airfoil1 dual 8,034 23,626 no 2D finite element problem
AG-Monien/ukerbe1 dual 1,866 7,076 no 2D finite element problem
SHELL/COQUE8E3 8,073 196,295 no Structural problem (shell)

Table 4.7
Experimental results for solving general symmetric linear systems: the number of levels (nlev),

rank k, fill ratios and CG/GMRES(40) iteration counts with the RMLR method and the ICT/ILUTP
method.

MATRIX RMLR ICT/ILUTP
nlev k fill-ratio #its fill-ratio #its

FIDAP/ex10 3 4 0.7 220 1.4 F
FIDAP/ex10hs 3 4 0.7 151 1.2 F
HB/bcsstk24 3 50 2.6 149 4.2 348
HB/bcsstk28 3 60 2.5 127 2.5 204
Cylshell/s3rmt3m1 3 50 2.6 213 2.8 F
Cylshell/s3rmt3m3 4 50 2.9 127 3.2 249
Boeing/bcsstk38 3 40 2.6 112 2.6 F

HB/bcsstm27 4 50 1.8 26 2.3 73
HB/bcspwr06 4 5 3.1 6 5.2 F
HB/bcspwr07 5 5 3.2 6 4.8 F
HB/bcspwr08 4 5 2.1 17 5.8 F
HB/blckhole 5 50 12.8 32 21.8 F
HB/jagmesh3 4 5 5.9 30 9.7 111
Boeing/nasa1824 4 60 3.6 116 4.9 150
AG-Monien/3elt dual 6 5 9.3 12 13.9 F
AG-Monien/airfoil1 dual 6 5 9.5 5 12.7 F
AG-Monien/ukerbe1 dual 4 5 9.1 25 10.5 F
SHELL/COQUE8E3 3 70 5.0 83 5.06 F

23

of the number of interface nodes to the number of the total nodes is usually much
higher than that in regular grids. Therefore, we need a higher-rank approximation to
reach a good enough accuracy.

5. Conclusions. Multilevel preconditioners based on recursive low-rank approx-
imations can be quite effective alternatives to ILU preconditioners for highly indef-
inite linear systems. We focused on two procedures, referred to as ‘two-sided low
rank approximation’ and ‘one-sided low rank approximation’ respectively. These two
procedures were shown to be mathematically identical. The low-rank approximation
is computed from singular vectors or Lanczos vectors. The RMLR preconditioner was
shown to be SPD under certain condition even if the original matrix is indefinite and
it was used along with the CG method or the MINRES method to solve linear systems
successfully. Experimental results show that the proposed preconditioner is efficient
and quite robust for indefinite 2D or 3D Helmholtz-type problems, in situations where
the standard ILUTP preconditioner usually fails. This scheme has been generalized
using a domain decomposition approach leading to two distinct schemes for general
sparse matrices. Numerical results show that the RMLR scheme is effective for general
symmetric indefinite linear systems. Though this paper compared only convergence
rates and memory requirements from a serial MatLab implementation, the precon-
ditioner presented in this paper is especially suitable for highly parallel platforms.
Work remains to be done to test the class of preconditioners presented here in these
environments.

REFERENCES

[1] Marco Ament, Gunter Knittel, Daniel Weiskopf, and Wolfgang Strasser, A parallel
preconditioned conjugate gradient solver for the poisson problem on a multi-GPU platform,
in PDP ’10: Proceedings of the 2010 18th Euromicro Conference on Parallel, Distributed
and Network-based Processing, Washington, DC, USA, 2010, IEEE Computer Society,
pp. 583–592.

[2] Nathan Bell and Michael Garland, Implementing sparse matrix-vector multiplication on
throughput-oriented processors, in SC ’09: Proceedings of the Conference on High Perfor-
mance Computing Networking, Storage and Analysis, New York, NY, USA, 2009, ACM,
pp. 1–11.

[3] Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schröoder, Sparse matrix solvers on
the GPU: conjugate gradients and multigrid, ACM Trans. Graph., 22 (2003), pp. 917–924.

[4] Sabine Le Borne and Lars Grasedyck, H-matrix preconditioners in convection-dominated
problems, SIAM. J. Matrix Anal. Appl., 27 (2006), pp. 1172–1183.

[5] E. Chow and Y. Saad, Approximate inverse techniques for block-partitioned matrices, SIAM
Journal on Scientific Computing, 18 (1997), pp. 1657–1675.

[6] , Approximate inverse preconditioners via sparse-sparse iterations, SIAM Journal on
Scientific Computing, 19 (1998), pp. 995–1023.

[7] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson, In-
troduction to Algorithms, McGraw-Hill Higher Education, 2nd ed., 2001.

[8] Timothy A. Davis, University of florida sparse matrix collection, na digest, 1994.
[9] James Demmel, Jack Dongarra, Axel Ruhe, and Henk van der Vorst, Templates for

the solution of algebraic eigenvalue problems: a practical guide, Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2000.

[10] Björn Engquist and Lexing Ying, Sweeping preconditioner for the helmholtz equation: Hi-
erarchical matrix representation, Communications on Pure and Applied Mathematics, 64
(2011), pp. 697–735.

[11] Gene H. Golub and Charles F. Van Loan, Matrix computations (3rd ed.), Johns Hopkins
University Press, Baltimore, MD, USA, 1996.

[12] Joseph Frank Grcar, Analyses of the lanczos algorithm and of the approximation problem
in richardson’s method, PhD thesis, Champaign, IL, USA, 1981. AAI8203472.

[13] George Karypis and Vipin Kumar, Metis - a software package for partitioning unstructured

24

graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices, ver-
sion 4.0, tech. report, University of Minnesota, Department of Computer Science / Army
HPC Research Center, 1998.

[14] Ruipeng Li, Hector Klie, Hari Sudan, and Yousef Saad, Towards realistic reservoir sim-
ulations on manycore platforms, SPE Journal, (2010), pp. 1–23.

[15] R. Li and Y. Saad, GPU-accelerated preconditioned iterative linear solvers, Tech. Report umsi-
2010-112, Minnesota Supercomputer Institute, University of Minnesota, Minneapolis, MN,
2010.

[16] NVIDIA, CUSPARSE Library User Guide, 2012.
[17] Beresford N. Parlett, The Symmetric Eigenvalue Problem, Society for Industrial and Ap-

plied Mathematics, Philadephia, PA, 1998.
[18] B. N. Parlett and D. S. Scott, The lanczos algorithm with selective orthogonalization,

Mathematics of Computation, 33 (1979), pp. pp. 217–238.
[19] Y. Saad and B. Suchomel, ARMS: An algebraic recursive multilevel solver for general sparse

linear systems, Numerical Linear Algebra with Applications, 9 (2002).
[20] Horst D. Simon, The lanczos algorithm with partial reorthogonalization, Mathematics of Com-

putation, 42 (1984), pp. pp. 115–142.
[21] H. Sudan, H. Klie, R. Li, and Y. Saad, High performance manycore solvers for reservoir

simulation, in 12th European Conference on the Mathematics of Oil Recovery, 2010.
[22] J. Tang and Y. Saad, Domain-decomposition-type methods for computing the diagonal of a

matrix inverse, Tech. Report umsi-2010-114, Minnesota Supercomputer Institute, Univer-
sity of Minnesota, Minneapolis, MN, 2010. To appear in SISC.

[23] MatLab, version 7.10.0 (R2010a), The MathWorks Inc., Natick, Massachusetts, 2010.
[24] Mingliang Wang, Hector Klie, Manish Parashar, and Hari Sudan, Solving sparse linear

systems on nvidia tesla GPUs, in ICCS ’09: Proceedings of the 9th International Confer-
ence on Computational Science, Berlin, Heidelberg, 2009, Springer-Verlag, pp. 864–873.

[25] Shen Wang, Maarten V. de Hoop, and Jianlin Xia, On 3d modeling of seismic wave propa-
gation via a structured parallel multifrontal direct helmholtz solver, Geophysical Prospect-
ing, 59 (2011), pp. 857–873.

[26] Jianlin Xia, Shivkumar Chandrasekaran, Ming Gu, and Xiaoye S. Li, Fast algorithms
for hierarchically semiseparable matrices, Numerical Linear Algebra with Applications, 17
(2010), pp. 953–976.

[27] Jianlin Xia and Ming Gu, Robust approximate Cholesky factorization of rank-structured
symmetric positive definite matrices, SIAM J. MATRIX ANAL. APPL., 31 (2010),
p. 28992920.

25

