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ABSTRACT
Classical algorithms used for dimension reduction can be
time-consuming when the data set is large. In this paper we
consider a method based on hypergraph coarsening to find
a smaller set of data representing a given data set, prior to
performing the projection into the low-dimensional space.
The cost of the dimensionality reduction process is reduced
because of this hypergraph-based pre-processing step. In a
hypergraph model, each data item is represented as a ver-
tex and related data items are connected by a hyperedge,
which is simply a subset of vertices. To coarsen the data,
we use a method that merges pairs of vertices. In the multi-
level framework, the coarsening is recursively repeated until
a coarsened data set of a certain size is reached. Then we
project the coarsened data into a lower dimensional space,
using a known linear dimensionality reduction method. The
same linear mapping from the coarsened data is then ap-
plied to the original data set for projecting data into low-
dimensional space. As an application of this idea, we con-
sider text mining. Experimental results indicate that the
multilevel hypergraph technique proposed in this paper of-
fer a very appealing cost to quality ratio.

Categories and Subject Descriptors
F.2.1 [Numerical Algorithms and Problems]: Compu-
tations on matrices; G.2.2 [Graph Theory]: Hypergraphs;
H.3.3 [Information Search and Retrieval]: Retrieval
models, Relevance feedback

General Terms
algorithms, performance
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Multilevel hypergraph coarsening, dimensionality reduction,
latent semantic indexing
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1. INTRODUCTION
Dimensionality reduction techniques appear in many fields,
including data mining, machine learning, and computer vi-
sion. The goal of dimensionality reduction is to map the high
dimensional samples into a lower dimensional space so that
certain properties are preserved. When the number of data
samples is large, existing methods, such as those based on
Principal Component Analysis (PCA) can be prohibitively
expensive.

A simple idea for reducing the cost of dimension reduction
techniques is simply to select a smaller data set that is a
good representative of the whole sample. Assume for a mo-
ment this can be done. This means we would, for example,
replace the original data set X = [x1, · · · , xn] ∈ R

m×n by

a subset X̂ ∈ R
m×k of X, which without loss of gener-

ality we can assume to consist of the k first items of X,
so X̂ = [x1, · · · , xk]. Then, based on X̂, we would find a
projector from m-dimensional space to d-dimensional space,
with d≪ m. The same projector can now be used to project
any item in R

m to d-dimensional space.

The only remaining question is how to find a good repre-
sentative subset of X. An appealing method when some
adjacency graph of the data is available is to perform a suc-
cession of coarsening steps [9, 10, 17]. When the graph is
not available then a K-nearest-neighbor graph can be built
but this process is expensive.

However, there are instances such as in text mining when
the original data itself is sparse. For such cases, there is
a hypergraph that is canonically associated with the data.
A coarsening step can be performed using this hypergraph.
Hypergraphs are generalizations of graphs that allow edges,
now called hyperedges, to connect more than two vertices.

The hypergraph model combined with a multilevel approach,
using coarsening among other tools, has had a remarkable
success for partitioning meshes and, generally, sparse data
in scientific computing, see, e.g., [2, 3, 5, 8, 11, 16]. This
technique has applications in many fields, including parallel
sparse-matrix techniques (e.g., [2, 5, 16]), and VLSI design
(e.g., [8, 11]). Motivated by this success, we explore dimen-
sionality reduction techniques for data analysis, that exploit
the multilevel hypergraph framework.

Formally, a hypergraph H = (V, E) is defined as a set of
vertices V and a set of hyperedges E, where each hyperedge



is a subset of the vertex set V . The size of a hyperedge is the
cardinality of this subset. (A hyperedge is also called a net.)
A weighted hypergraph has non-negative numeric weights
associated with each vertex, each hyperedge, or both. A
hypergraph can be represented by a boolean matrix where
each column represents a vertex, and each row represents a
hyperedge which connects all vertices with a one in the row.
When a data matrix is sparse, as is the case for a term-
document matrix, the nonzero pattern defines a hypergraph
in a canonical way. In this case hyperedges correspond to
the rows and vertices correspond to the columns of the data
matrix. In the particular example of term-document ma-
trix, a hyperedge represents a relationship between some
documents. Thus, a hyperedge which represents row i, is
simply the subset of all documents containing term i in the
data set under consideration.

We need a coarsening process which will preserve these re-
lationships as best possible. The important underlying as-
sumption here is that the information is very redundant and
this redundancy should be exploited. In the simplest case,
if two documents have the exact subset of terms, then one
is enough to represent both. If a document x has a set of
terms which includes the union of the terms of two docu-
ments then x will be enough to represent all 3 documents.
As can be guessed from these examples, there is some form
of dimension reduction taking place in the document space
– one that is basic and considers only structure.

We will recursively compute a coarsened version of the orig-
inal hypergraph, i.e., one with fewer vertices, of the data set
using a method called maximal-weight matching, to merges
pairs of vertices. (See, e.g., [5].) Then, we can apply any
projective method of dimensionality reduction to the coars-
ened data at the lowest level. The resulting projector can
be used to project all the original data or any new test data
such as a new query to be processed.

One might argue that a scheme of this type does not nec-
essarily achieve the most important goal of dimensionality
reduction which is to remove noise and redundancies from
the data. Recall that LSI determines a basis which repre-
sents the main features (‘latent semantic’) of a set of text
documents and resolves common issues related to word us-
age, such as synonymy and polysemy. As was discussed
above, hypergraph coarsening should achieve this goal partly
– though it works on documents rather than terms which are
processed by the more powerful technique of LSI on the re-
sulting subset of documents. The experiments confirm this.
In some cases the multilevel scheme even gives slightly better
results than LSI.

The rest of this paper is organized as follows. Section 2
gives some background on the hypergraph model. Section 3
presents the multilevel dimensionality reduction methods
based on hypergraph coarsening. Applications to text min-
ing (information retrieval) are illustrated in Sections 4. A
conclusion is given in Section 5.

2. THE HYPERGRAPH MODEL
A hypergraph H = (V, E), consists of a set of vertices V and
a set of hyperedges (nets) E. Each hyperedge is a non-empty
subset of V ; the size (cardinality) of this subset is called the

degree of this hyperedge. Likewise, the degree of a vertex is
the number of hyperedges which include it. Two vertices are
called neighbors if there is a hyperedge connecting them, i.e.,
if they belong to at least one common hyperedge. Hyper-
graphs extend the classical notion of graphs. In a standard
graph an edge connects two vertices, i.e., it is a set of two
vertices, whereas a hyperedge may connect an arbitrary sub-
set of vertices.
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Figure 1: A sample hypergraph.

A hypergraph H = (V, E) can be canonically represented by
a boolean matrix A, where the vertices in V and hyperedges
(nets) in E are represented by the columns and rows of A,
respectively. Each hyperedge, a row of A, connects the ver-
tices whose corresponding entries in that row are non-zero.
An example is illustrated in Figure 1, where V = {1, . . . , 9}
and E = {a, . . . , e} with a = {1, 2, 3, 4}, b = {3, 5, 6, 7},
c = {4, 7, 8, 9}, d = {6, 7, 8}, and e = {2, 9}. The boolean
matrix representation of this hypergraph is

1 2 3 4 5 6 7 8 9
1 1 1 1 a

1 1 1 1 b
A = 1 1 1 1 c

1 1 1 d
1 1 e

For data sets represented by sparse matrices, such as for
example, cases of term-document data sets, the adjacency
matrix is precisely the matrix representation of the a hyper-
graph representing the relation “term i is contained in docu-
ment j”. Thus, hyperedge i (represented by row i), consists
of all documents (columns/vertices) containing term i. For
applications where the data matrix is dense, such as a ma-
trix of vectorized face images, techniques such as wavelets
decomposition can be applied to sparsify the data before us-
ing multilevel coarsening. This approach is currently under
investigation.

2.1 Hypergraph coarsening
Consider a data set of n entries in R

m represented by a
matrix X ∈ R

m×n, and a hypergraph H = (V, E) with



vertex set V corresponding to the columns of X. The hy-
pergraph can be represented by a boolean matrix A, where
the columns of A represent the vertices in V , and the rows
of A represent the hyperedges in E.

Coarsening a hypergraph H = (V, E) means finding a ‘coarse’

approximation Ĥ = (V̂ , Ê) to H with |V̂ | < |V |, which is
a reduced representation of the original hypergraph H , in
that it retains as much of the structure of the original hy-
pergraph as possible. By recursively coarsening we obtain
a succession of smaller hypergraphs which approximate the
original graph. Several methods exist for coarsening hyper-
graphs, see [2, 11] for a discussion. The method used in this
paper is based on merging pairs of vertices.

In order to select which pairs of vertices to merge in a hyper-
graph, we consider the maximum-weight matching problem
(e.g., [2, 5]). Pairing two vertices is termed matching. The
edge weight between two vertices is the number of hyper-
edges connecting them. For example, in Figure 1, the weight
of the pair (6,7) is 2 because vertices 6 and 7 both belong
to the hyperedges b and d and no other common hyperedge.
On the other hand the pair (5, 9) has a weight of zero. In the
hyperedge-vertex matrix representation (a boolean matrix),
the weight of the pair i, j (vertices) is the inner product of
the two columns i and j as can be readily verified with the
examples just given.

This inner-product weight is adopted as a similarity met-
ric in two software packages for hypergraph partitioning,
hMETIS [8] and Mondriaan [16]. The maximum-weight
matching problem consists of finding a matching that max-
imizes the sum of edge weights of the vertex pairs. In prac-
tice, it is not necessary to find the optimal set of match-
ing pairs, see e.g., [5], as sub-optimal greedy approaches
yield satisfactory results. A greedy Algorithm for maximum-
weight matching will be used in the experiments. The ver-
tices can be visited in a random order, or in the order in
which the data items are listed. For each unmatched vertex
v, all the unmatched neighbor vertices u are considered, and
the inner product between v and each u is computed.

The vertex with the highest non-zero inner product is matched
with u and the procedure is repeated until all vertices have
been matched. The computed matching is a coarse represen-
tation of the hypergraph, with the coarse hyperedges inher-
ited from the fine graph. More precisely, the coarse vertex
set consists of matched fine vertex pairs. A fine vertex pair
is in a coarse hyperedge if any of the two vertices is in the
corresponding fine hyperedge. It is convenient to present
the hypergraph coarsening procedure in matrix form. The
pseudo-code is given in Algorithm 1.

Three remarks on Algorithm 1 must be made. First, if X is
a boolean matrix, then the loop (*) results in ip[k] being the
inner product of column j and column k of X. Second, it is
possible that vertex j does not have any unmatched neighbor
and the algorithm will branch to (**). However, this is rare
in practice, since a hyperedge can connect multiple vertices
and vertex j almost always ends up finding an unmatched
neighbor, unless X is too sparse. Third, the columns of X̂
are the sums of matched pairs. This property is particularly
good for applications with sparse data matrices which are

Algorithm 1 Hypergraph coarsening by maximum-edge
matching.

{Coarsen a hypergraph represented by the sparse pattern
of matrix X with n columns. }

{The n vertices are indexed by 1, . . . , n.}
S ← {1, . . . , n} ⊲ Set of unmatched vertices
p← 0 ⊲ Number of vertex pairs
repeat

p← p + 1
Randomly pick j ∈ S; S ← S − {j}
Set ip[k]← 0 for k = 1, . . . , n. ⊲ Inner products
for all i with aij 6= 0 do

for all k with aik 6= 0 do

ip[k]← ip[k] + 1 ⊲ (*)
end for

end for

i← argmax{ip[k] : k ∈ S}
if ip[i] = 0 then ⊲ Vertex j is isolated from

unmatched vertices.
X̂(:, p)← X(:, j) ⊲ (**)

else ⊲ Vertex i matches vertex j as its nearest
unmatched neighbor.
X̂(:, p)← X(:, i) + X(:, j)
S ← S − {i}

end if

until S = ∅
{The sparsity pattern of X̂ corresponds to the coarsened

graph of X.}

directly associated with hypergraphs. In such cases we may
simply input to Algorithm 1 the sparse data matrix itself.

By recursively coarsening the graph we obtain a sequence
of sparse matrix X1, X2, . . . , Xr, where Xk corresponds to
the coarse graph Hk of level k for k = 1, . . . , r, and Xr

represents the lowest level graph Hr.

3. MULTILEVEL DIMENSIONALITY RE-
DUCTION

The objective of dimensionality reduction is to map the data
in the high dimensional space into a low dimensional one
such that certain properties are preserved. More precisely,
given a matrix X ∈ R

m×n whose columns correspond to the
vertices V and whose rows correspond to the hyperedges E
in a hypergraph H = (V, E), produce Y ∈ R

d×n (d < m)
such that Y preserves certain features of X.

In the multilevel framework of hypergraph coarsening we ap-
ply a linear dimensionality reduction method to the coars-
ened data matrix Xr ∈ R

m×nr at the lowest level (rth level)
and obtain Yr ∈ R

d×nr (d < m), where nr is the number of
data items at coarse level r (nr < n). The linear mapping,
denoted by P , is then applied to the original data X ∈ R

m×n

to obtain a reduced representation Y = PX ∈ R
d×n (d < m)

of the original data set. The procedure is illustrated in Fig-
ure 2. The same linear mapping can also be applied to any
‘out-of-sample’ test data. For example, in LSI, the same
projector is applied to a query (‘pseudo-document’) and to
the document set before a comparison is made.

The procedure just described provides a hypergraph which,
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Figure 2: A sketch of the multilevel reduction

it is hoped, is a good representation of the original graph.
However, it does not tell us much about the resulting re-
duced set Xr related to the original data matrix X. In a
coarsened hypergraph Hk, each vertex represents a subset
of vertices from the original hypergraph H1. A data item
(a column in Xk) corresponding to a vertex in a coarsened
hypergraph is the sum of all original data items in X (mul-
tiple columns in X) corresponding to this subset of vertices
with which it is associated.

4. APPLICATION TO TEXT MINING
Latent Semantic Indexing (LSI) [4] is a well-established frame-
work for conceptual information retrieval [1, 6]. In this
section we compare the retrieval performance of LSI and
multilevel-LSI. The latter is based on the algorithm just de-
scribed in this paper.

In the vector space model, a collection of n documents in-
dexed by m terms is represented by a sparse term-document
matrix X ∈ R

m×n. The rows and columns of X are called
term vectors and document vectors, respectively. The (i, j)
entry of X, denoted by xij , is the number of occurrences
of term i in document j, called term frequency. This ma-
trix is canonically associated with a hypergraph H = (V, E),
where the vertices V correspond to the term vectors and the
hyperedges E correspond to the document vectors.

A term-document matrix X ∈ R
m×n is usually scaled be-

fore its usage. In the experiments we adopted TF-IDF (term
frequency-inverse document frequency) scaling [15]. The in-
verse document frequency is defined by

zi = log(n/|{j : xij > 0}|), (1)

where |{j : xij > 0}| is the number of documents with term
i occurring in them. A TF-IDF entry is the multiplica-
tion of TF entry and IDF entry, x̃ij = xijzi. The TF-IDF
scaled matrix X̄ is obtained by normalizing the columns to
be unit vectors. In other words, the (i, j) entry of X̄ is

x̄ij = x̃ij/
q

Pm

k=1
x̃2

kj for i = 1, . . . , m and j = 1, . . . , n.

Given a query q ∈ R
m (an array of term frequencies), query

matching is the process to find the relevant documents. A
query is also called a pseudo-document vector. Before the

matching process, a query is also TF-IDF scaled. The scaled
vector is denoted by q̄ ∈ R

m. Note that however, the inverse
document frequencies (IDF) here, defined in (1), are from
the term-document matrix X.

The vector space model measures the similarity of two vec-
tors by the cosine distance (i.e., the cosine of the acute angle
between them). The full vector space model potentially con-
tains noise and redundancies, that affect the retrieval perfor-
mance. Instead, LSI approximates a given term-document
matrix by its truncated SVD, denoted by X̄ = [x̄1, x̄2, . . . , x̄n]
≈ UdΣdV T

d , where d ∈ R is a certain desired rank. With re-
duced noise, a lower dimensional approximation of X helps
discover the underlying latent semantic structure of the data.
The columns of V T

d = [x̂1, x̂2, . . . , x̂n] ∈ R
d×n are used as re-

duced representations of document vectors x̄1, x̄2, . . . , x̄n ∈
R

m. Likewise, the rows of Ud ∈ R
m×d are the reduced term

vectors. Given a query q̄ ∈ R
m, it is transformed to a re-

duced representation q̂ = Σ−1

d UT
d q̄ ∈ R

d in d-dimensional
space. Document xi is considered relevant to the query q
if the cosine distance between their reduced representations
〈q̂, x̂i〉/‖q̂‖‖x̂i‖ is larger than some pre-defined threshold.

When a relevance vector (a boolean string of size n) is pro-
vided, the precision and recall are defined by

Precision:
DR

DT

, Recall:
DR

NR

, (2)

where DR, DT , and NR are the number of relevant docu-
ments retrieved by the process, the total number of docu-
ments in the collection, and the total number of relevant
documents in the collection, respectively.

When the term-document matrix X is large, the computa-
tion of the SVD factorization can be expensive. A smaller
set of document vectors can be obtained by the multilevel
techniques described in Section 3. We denote it by Xr ∈
R

m×nr , which represents the original X ∈ R
m×n (nr <

n). The TF-IDF scaling is then applied to Xr, resulting
in X̄r. Like the standard LSI, we compute the truncated
SVD of X̄r ≈ UdΣdV T

d , where d is the rank. We apply the
same mapping to X and obtain a reduced representation
Σ−1

d UT
d X̄ = [x̂1, x̂2, . . . , x̂n] ∈ R

d×n. Note that we have ap-
plied TF-IDF scaling to the term-document matrix X, but
here the inverse document frequencies (IDF), defined in (1),
use the coarsened matrix Xr. Each query q ∈ R

m is also
scaled in the same way to be q̄, and then transformed to
q̂ = Σ−1

d UT
d q̄ ∈ R

d. The similarity of q and xi are measured
by the cosine distance between q̂ and x̂i for i = 1, . . . , n. We
call the resulting scheme multilevel-LSI.

The precision and recall defined in (2) depend on the tol-
erance of the similarity scores in the cosine distance mea-
sure. The performance evaluation may differ when the tol-
erance is different. Therefore, we use the average precision
[7] to assess the retrieval performance. Sorting the similar-
ity scores of query q to documents x1, . . . , xn, we consider
for i = 1, . . . , n the first i documents with the highest scores
and obtain the precision and recall

Pi = Ri/i, Ri = Ri/Rn,

where Ri is the number of relevant documents among the
first i documents. The average precision is defined by the



mean of the interpolated precision

P̄ =
1

n

n−1
X

i=0

P̂

„

i

n− 1

«

, P̂ (x) = max{Pi : x ≤ Ri}.

Three public data sets were used in our experiments: Med-

line, Cran and NPL1. The characteristics of these sets, such
as numbers of documents, terms, and queries are listed in
Table 1.

Table 1: Characteristics of the test sets.
Data set Medline Cran NPL

# documents 1033 1398 11429
# terms 7014 3763 7491

sparsity (%) 0.74% 1.41% 0.27%
# queries 30 225 93

avg. # rel./query 23.2 8.2 22.4

The experiments were performed in sequential mode on a
PC equipped with two Intel(R) Core(TM)2 @ 2.40GHz pro-
cessors, using our Matlab implementation. In all tests we
coarsened the data down to four levels. Compared with
LSI, multilevel-LSI requires additional work to process the
hypergraph coarsening. However, it saves time when com-
puting the truncated SVD of the coarsened (smaller) term-
document matrix. The CPU time used for coarsening Med-

line, Cran, NPL data sets is shown in the second columns
of Tables 2, 3, and 4, respectively. The savings on SVD
computation are much more significant.

Note that the average precision depends on the dimension
used. We call the dimension that maximizes the average
precision being optimal.

The experimental result using the Medline data set is now
discussed. Figure 3 is the resulting plot of average precisions
using various dimensions for SVD (ranks of truncated SVD).
The number of documents, the optimal dimensions, and the
average precision at all levels are displayed in Table 2. Using
the optimal dimensions we obtain the precision-recall plot in
Figure 4. Figure 5 shows the savings in CPU time gained
by multilevel-LSI for computing truncated SVD.

Table 2: Statistics of Medline data set.

Level
coarsen. # optimal optimal avg.

time doc. # dim. precision
#1 N/A 1033 30 71.6%
#2 0.32 517 28 72.7%
#3 0.13 259 30 71.5%
#4 0.07 130 27 67.5%

Figure 6 is a plot showing the average precisions using var-
ious dimensions for SVD (ranks of truncated SVD) for the
Cran data set. Table 3 lists the number of documents, op-
timal dimensions, and average precision at all levels. Using
the optimal dimensions we obtain the precision-recall plot in
Figure 7. The savings in CPU time gained by multilevel-LSI
for computing the truncated SVD are shown in Figure 8.

1ftp://ftp.cs.cornell.edu/pub/smart
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Figure 3: Average precision using the Medline set.

Table 3: Statistics of Cran data set.

Level
coarsen. # optimal optimal avg.

time doc. # dim. precision
#1 N/A 1398 95 39.8%
#2 0.95 699 101 40.6%
#3 0.34 350 92 40.6%
#4 0.18 175 76 37.5%

For the NPL data set, rather than V T
d ∈ R

d×n, we used
columns of ΣdV T

d ∈ R
d×n as the reduced document vec-

tors. Recall that the truncated SVD of the term-document
matrix is denoted by UdΣdVd ∈ R

m×n, where d is the rank.
Therefore, the reduced representation of a query q ∈ R

m is
q̂ = UT

d q ∈ R
d. This adaption significantly improves the

results of LSI and multilevel-LSI using the NPL data set.

Figure 9 is the resulting plot of average precisions using
various dimensions for SVD (ranks of truncated SVD) for
the set NPL. In addition to the savings of the computation
time, the multilevel-LSI usually outperformed LSI for 800
or less dimensions. The number of documents, optimal di-
mensions and average precision at all levels are displayed
in Table 4. Using the optimal dimensions we obtain the
precision-recall plot in Figure 10. The savings in CPU time
gained by multilevel-LSI for computing the truncated SVD
are shown in Figure 11.

Table 4: Statistics of NPL data set.

Level
coarsen. # optimal optimal avg.

time doc. # dim. precision
#1 N/A 11429 736 23.5%
#2 3.68 5717 592 23.8%
#3 2.19 2861 516 23.9%
#4 1.50 1434 533 23.3%

The results are summarized as follows. Using the Cran data
set, multilevel-LSI achieved similar performance of LSI, but
reduced the SVD computation. For the Medline data set,
multilevel-LSI slightly outperformed LSI, in addition to the
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Figure 4: Precision-recall plot using the Medline set.

CPU time savings on SVD. For the NPL data set, the recall-
precision plots of LSI and multilevel-LSI are comparable,
using the optimal dimensions. However, multilevel-LSI per-
formed better than LSI while fewer dimensions were used.
This issue is important for large data sets since the SVD
computation can be very expensive.

We also compared the hypergraph-based multilevel tech-
niques presented in this paper with the kNN-graph-based
multilevel schemes in [14]. Using the Medline and Cran

data sets and the same number of levels, the hypergraph-
based method slightly outperformed the kNN-graph-based
one. In addition, a hypergraph is canonically associated
with a sparse term-document matrix. While using the kNN-
graph-based method, additional computation is required to
construct a kNN graph. This issue is important for large
data sets since the kNN graph construction can be pro-
hibitively expensive. We conclude that the hypergraph-
based multilevel techniques are more adequate than the kNN-
graph-based multilevel schemes for text information retrieval.

Relevance feedback is a common technique in text informa-
tion retrieval. The assumption is that we know in advance
that some document vectors are related to a query. Then the
query is added by the sum of these related documents, fol-
lowed by a standard text mining procedure. More precisely,
a query q is replaced by q + bT X, where b is the boolean col-
umn vector indicating which documents are known a priori
related to query q.

We tested relevance feedback for the multilevel framework.
The experiments used the vector b defined above as the rel-
evance vector, assuming that the exact information is avail-
able. The resulting average precision plots on Medline, Cran
and NPL data sets are given in Figures 12, 13, and 14, re-
spectively. These show that with relevance feedback, the
multilevel-LSI still worked nicely, but not as good as that of
LSI.
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Figure 5: CPU time for truncated SVD using the

Medline data set.

Note that LSI and multilevel-LSI we used in our experiments
are SVD-based. However, the multilevel hypergraph frame-
work we have proposed does not rely on the SVD computa-
tion. Indeed, we can incorporate other matrix approxima-
tion methods, such as semi-discrete decomposition (SDD)
[12] and non-negative matrix factorization (NMF) [13], into
the multilevel framework, resulting in multilevel SDD-based
and NMF-based LSI for text information retrieval.

5. CONCLUSION
A multilevel framework was presented to perform dimension-
ality reduction in situations when the data sets are sparse.
In applications with sparse matrix data sets, the hypergraph
model can be directly applied since the pattern of non-zero
entries of the sparse matrix yields a hypergraph. To coarsen
the data, we use a method, called maximal-weight matching,
which merges pairs of vertices. Dimensionality reduction is
performed on the data at the lowest (coarsest) level with a
linear projection method. The resulting projector is then
applied to the original data. The method is illustrated with
applications in text mining generally showing a good quality
of the results at reduced cost.
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Figure 12: Precision-recall plot with relevance feed-

back using the Medline data set.
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Figure 13: Precision-recall plot with relevance feed-

back using the Medline data set.
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Figure 14: Precision-recall plot with relevance feed-

back using the NPL data set.


