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Abstract

This paper presents a general preconditioning method based on a multilevel partial solution
approach. The basic step in constructing the preconditioner is to separate the initial points
into two subsets. The first subset which can be termed “coarse” is obtained by using “block”
independent sets, or “aggregates”. Two aggregates have no coupling between them, but nodes
in the same aggregate may be coupled. The nodes not in the coarse set are part of what
might be called the “Fringe” set. The idea of the methods is to form the Schur complement
related to the fringe set. This leads to a natural block LU factorization which can be used as
a preconditioner for the system. This system is then solver recursively using as preconditioner
the factorization that could be obtained from the next level. Unlike other multilevel precondi-
tioners available, iterations between levels are allowed. One interesting aspect of the method
is that it provides a common framework for many other techniques. Numerical experiments
indicate that the method can be fairly robust.

Key words: Incomplete LU factorization, ILUT, multi-level ILU preconditioner, Krylov subspace meth-
ods, multi-elimination, Recursive solution, multigrid
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1 Introduction

Recent attention of researchers in iterative methods has focussed on preconditioning techniques
while research on accelerators is beginning to subside. Among preconditioning methods currently
investigated by various groups, a promising class of ILU-type techniques has emerged that possesses
many of the attributes of multilevel solvers. Multilevel techniques are often used for problems with
regular meshes and perform quite well in those cases. Their main attraction is their excellent
scalability with respect to mesh size. Their scope however is limited. A number of methods
developed in the last decade have aspired to combine the good intrinsic properties of multigrid
techniques and the generality of preconditioned Krylov subspace methods. Among these we cite
2,4, 7, 8,17, 19, 20].

Multigrid methods can be extremely efficient when they work. However, their implementation
requires multi-level grids and specialized tuning is often needed. The Algebraic MultiGrid (AMG)
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methods were introduced in the seventies — initially by Ruge and Stuben [16] — to remedy these
limitations. Their overall success depends on the underlying PDE problem, and has been somewhat
mixed. In contrast, preconditioned Krylov methods, using ILU preconditioners, are designed to be
‘general-purpose’ methods for solving arbitrary sparse linear systems of equations. They can work
in many situations where multigrid methods fail but their main drawback is that the convergence
rate usually deteriorates as the size of the linear system increases. In years past, where systems
of a few tens of thousands unknowns was considered large, preconditioners such as incomplete
LU factorizations applied to the original system was an adequate and fairly reliable approach.
Although multigrid could be vastly superior for certain problems, users have often sacrificed speed
for better robustness and generality. As the problems become larger the advantage of multi-level
approaches can be overwhelming. However, multi-level methods are somewhat specialized, i.e.,
their performance is guaranteed to be optimal only for a specific class of problems. An ideal
method would be one whose cost scales well with the size of the problem and which is as general
purpose as the ILU-Krylov combination.

Recently, a class of preconditioners that drew much attention is a collection of ILU factor-
izations which possess certain features of multigrid techniques. ILUM [17] is one such approach
and recent work by Botta and co-workers [6, 7], and [19, 20], indicates that this type of approach
can be fairly robust and scale well with problem size, unlike standard ILU preconditioners. This
method combines the generality of Krylov methods and the scalability of multigrid methods. The
idea was recently extended to a block version (BILUTM) with a domain decomposition strategy
[19, 20]. The BILUTM preconditioner is a block generalization of ILUM in which the blocks are
treated as sparse matrices. Tests in [19] indicate that BILUM is generally more efficient and more
robust than a standard ILUT-preconditioned GMRES [18] as well its scalar sibling, ILUM. For
certain hard problems, these attributes come with the added benefit of smaller memory usage.

BILUTM provides a general framework for multi-level parallel ILU preconditioning which can
accommodate both fine-grain and coarse-grain parallelism. In this paper we extend this approach
in several ways. Specifically, the main contributions of this paper relative to [19, 20] are as follows:
(1) a fully recursive implementation is introduced; (2) Multi-grid like inter-level iterations are
allowed; and (3) new independent set strategies for a better handling of indefinite problems are
proposed.

The rest of this paper is arranged as follows. Section 2 gives a general overview of Algebraic
Multilevel methods based on Block ILU factorizations. Section 3 discusses the construction and
implementation of the Algebraic Recursive Multilevel Solver. The coarsening process, and selection
of independent sets is covered in Section 4. Section 5 is a large section devoted to numerical
experiments with the ARMS preconditioner. Some conclusions are drawn in Section 7 along with

suggestions on how best to use this preconditioner.

2 Multilevel ILU preconditioners: an overview

This section gives an overview of the main ideas used to develop Algebraic Multilevel solution
methods. Many of these solvers start by separating the unknowns of the original system in two

sets, one of them being labeled “coarse”. It is important to mention at the outset that in “algebraic”



methods there is no real mesh and therefore the labeling of vertices into coarse and fine is somewhat
arbitrary. There has been some inconsistency in the literature in the way this is done and used.
In this paper “coarse” points refer to points that are in an independent set. In the simplest
scalar independent set case, this corresponds to a set of points that are not coupled. Once the
independent set is obtained the various methods differ in the way they deal with with the reduced

system obtained by eliminating the independent set (either exactly or approximately).

2.1 Independent sets and aggregates

The multi-level ILU preconditioners developed in [17, 7, 8, 20, 19] exploit the property that a set
of unknowns that are not coupled to each other can be eliminated simultaneously in Gaussian
elimination. Such sets are termed ‘independent sets’, see e.g., [15]. In [19], the ILUM factorization
described in [17] was generalized by resorting to “block independent sets”. A block independent
set is a set of groups (blocks) of unknowns such that there is no coupling between unknowns of any
two different groups (blocks) [19]. Unknowns within the same group (block) may be coupled. This
is illustrated in Figure 1. The terminology used in the Algebraic Multigrid community for certain
types of block independent sets is “aggregates” [21]'. In this paper this term will be used while
the term “block independent sets” will be reserved for the particular case when the aggregates
consist of elements that are all coupled with each other (e.g. nodes of a triangle in a triangular
finite element mesh). Some simple methods for finding standard and block-independent sets have

been considered in [17, 19] and elsewhere. In Section 4 additional strategies will be examined.
N
* No Coupling

Figure 1: Aggregates, groups or blocks.

2.2 Block LU preconditioners

In various existing forms of multilevel ILU factorizations [3, 17, 7, 6] the unknowns are reordered,
listing the nodes associated with the Independent Set first, followed by the other unknowns. After
this reordering, the original matrix A; at the [-th level takes the following form

r_ (B F
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This is then approximated by
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IThough “independent aggregates” would have been more appropriate.



where where I is the identity matrix, L; and U; are the LU (or ILU) factors of By,
G ~EBU™;, WL 'F;

and A;4; is an approximation to the Schur complement with respect to Cj,
A1~ Ay =C - EB'F,

Typically it is inexpensive to solve linear systems with U; and L; since these arise from an
ILU-type factorization. Therefore observe that all we need for defining a preconditioning for A4; is
to provide a way to solve the reduced system (i.e., a system associated with A;y1). It is here that
different methods proposed vary.

An obvious option is to use direct solution methods. The reduced system is likely to still be
large and a direct method will tend to be expensive both in terms of computation and memory
requirement. However, it is important to note that the method of Nested Dissections (ND) of
George [13] is a method in this class. The ND reordering exploits independent aggregates obtained
by recursively dividing the graph into two disconnected subgraphs using “separators”. A number
of techniques for stabilizing sparse Gauss Elimination are presented in [12].

In traditional Algebraic Multi-Grid (AMG, [16]), grid transfer operators are defined that
restrict and interpolate. In a Galerkin formulation, an interpolation matrix is determined alge-
braically - and then the restriction matrix is its transpose. In other formulations, as in [9] the grid
transfer matrices are not transposes of each other. Interpolation weights are typically defined after
some coloring scheme determines fine and coarse grid points. This procedure is repeated until a
final coarse grid is reached where the last system is solved using a relaxation scheme or a direct
method.

In ILUM [17], B is a diagonal matrix and the above factorization is repeated for A;1; after
an independent set ordering is found. A dropping strategy is used to limit fill-in. In BILUM [19],
BILUTM [20], and in this paper, B is a block diagonal matrix. One motivation behind this type
of factorization is that the diagonal elements or blocks may be used as pivots simultaneously, in
parallel. The method being introduced in this paper is a generalization of these methods. The
factorization techniques are similar, but the factors are utilized differently in the solve phase.

The AMLI [3, 4] preconditioners are based on a set of nested finite element grids. Here, B,
is associated with basis functions that exist on level [, but not on level [ + 1. The factorization is
repeated until the coarsest mesh is reached. In some versions [2], couplings are deleted in order to
maintain a sparse Schur complement. Another method based on a series of nested finite element
grids is NGILU [8]. In this method, the nodes are reordered so that B contains connections between
fine mesh nodes that are not in the coarse mesh. NGILU method does not work for unstructured
grids. In a subsequent method, MRILU [7], two of the authors develop a preconditioner similar to
ILUM where B is a diagonal matrix.

In MLILU[5], B is constructed by an algorithm that determines an optimal set of parents,
or coarse grid nodes based on generating a small amount of fill upon factorization. Alternatively,
in [22], B is made diagonal by modifying the right-hand-side.

The AMLI, MLILU and NGILU preconditioners are recursive in nature. Not only is the
factorization defined recursively, but the (I + 1)¢ level preconditioner is part of the preconditioner



for the It" level. In AMLI and NGILU, all of the matrices A; are symmetric positive definite. This
allows iterative solution at each level using a preconditioned conjugate gradient algorithm. Results
of some non-symmetric test cases are presented for MLILU. The methods work for a wide range of
matrices derived from elliptic operators on finite element or finite difference grids. However, their

applicability for general sparse matrices has not been documented and remains unclear

3 General Multilevel ILU preconditioners

An algebraic multilevel ILU preconditioner starts with the independent set reordering (1) and the
approximate block-factorization (2). There are two immediate questions that need to be addressed.
The first is how to obtain the block factorization. The second is how to solve the reduced systems
related to the matrix A; ;. We consider these two issues in turn.

3.1 Computing the block factorization

As was observed in [20] the Schur complement A;;1 can be computed from a restriction of the
Gaussian elimination process. The idea is that if one zeroes out the elements in the F; matrix by a
Gaussian elimination process, then the (2,2) block C; in the resulting matrix will yield the Schur
complement. This is easily seen.

The implementation we use follows very closely that of the ILUT algorithm [18]. The process
is illustrated in Figure 2 and described in Algorithm 3.1. The notations a; g, ; g and u; g represent
the it* rows of A, L and U, respectively. The process is based on the IKJ version of Gaussian
elimination [18]. In this version, entries of the i-th row of A that are in the lower part of A are
eliminated from left (j = 1) to right (up to j = — 1). In the restricted Gaussian elimination, the
elimination begins at j = 1 and ends at j = min(i — 1,m), where m is the size of the independent
set. So when i < m the process is the same as in the standard IKJ version of Gaussian elimination.

For i > m the elimination is terminated when j reaches m.

U
L
Elements
being ‘ | Rows modified
eliminated 1/ \ Elements not
Schur eliminated
Complement

Figure 2: Restricted Gaussian elimination.



ALGORITHM 3.1 Restricted ILUT(7,p) factorization.
1. Fori=2,n, Do:

2. w:i=a;g

3. For k = 1,min(i — 1, m) and when wy, # 0, Do:

4. Wk = Wi/ ak,k

5. Set wy, := 0 if wy, < 7 * nzavg(a; g)

6. If wy, # 0, then

7. W= W — Wy * Up,g

8. End If

9. End Do

10. Retain only the p largest entries of |w;| for j < min(i — 1,m) and j > min(i,m)
11. Set l;; :==wj for j =1,...,min(i — 1,m) whenever w; # 0
12. Set w; j := w; for j = min(i,m),...,n whenever w; # 0

13  End Do

Algorithm 3.1 yields an ILU factorization of the form
A=LU+R, (3)

where R is the residual matrix representing the difference between A and LU. Note that this
process is independent of the ordering used for the matrix. In other words it is not necessary
to have an independent set or aggregate set ordering. From a practical point of view all that is
required is that the resulting Schur complement block be fairly sparse (after dropping is used).
This enables a recursive approach in which the Schur complement is treated again as a sparse

matrix.

3.2 Recursive Factorization and Solution

As was mentioned above, once the factorization (1), (2) is computed, a preconditioning to the
original matrix can be obtained by providing a way of solving linear systems with the matrix A;41.
Several options are available:

(a) Perform an ILU (e.g. ILUT) factorization of A;;1 and use this as an approximation when
solving linear systems with A;y;.

(b) Solve with an iterative accelerator in combination with the above approximations.

(c) Factor the matrix A;i; recursively. For solving the system with A;;1, use (recursively) the
block factorization at the lower levels. For the last level refer to options (a) or (b) above.

Note that any other type of approximation to 4;,1, e.g., an approximate inverse, can be used
instead of ILUT in (b.) for solving linear systems with A;;;. From the programming point of view
Cases (a) and (b) can be considered as particular cases of (c). In fact it can even be said that an
ILUT preconditioner for the whole matrix A is a particular case — with the maximum number of
levels set equal to zero.



3.3 ARMS Factorization

As described above the main factorization step is as follows

B, F Ly 0 u W
T _ rorr\ 1 1 1
an=(5 6)~(6 1)<(0 ) @
This process is similar to the BILUTM factorization [20]. One major difference is on the im-
plementation side. ARMS is implemented in C and relies heavily on recursivity. Recursivity is
exploited and simplifies the construction of the factorization. The algorithm consists of a sequence

of independent set orderings followed by a reduction (PILUT) and a recursive block factorization
on the reduced system.

ALGORITHM 3.2 ARMS(A,e,) factorization
1. Iflev = lastlev then
Compute Ajey & LieyUley [6.g. ILUT factorization of Ajey |
Else:

Find an independent set permutation Py,

Call Partial ILUT to compute factorization (4)
Call ARMS(Ajept1)

2
3
4
. Apply permutation A, := PIZUAIGUBM
6
7.
8.  EndIf

Possible variants here are in steps 2 and 4. In step 2, different approximations can be used
to solve the last level system. In step 4, we can utilize a variety of ordering techniques for finding
independent sets.

In this paper we will restrict our attention to solving the last level system by GMRES
preconditioned with ILUT. As a special case, if the last system is small enough, a single sweep
of an LU solve using the ILUT factorization may be used. Accurate ILU factorizations may be
expensive to compute and the L and U factors may be quite large. This can be expensive in a
W-cycle where the forward and backward solve operations may need to be performed often. An
iterative solution process on the last level using a less accurate factorization may be more efficient.
Parameters for the solution of the last system are passed to the solver.

As mentioned above, parts of the code are implemented in C to better exploit recursivity
as well as dynamic memory allocation. The block LU restriction and prolongation operators are
constructed as a linked list of structs. Each struct contains the grid transfer matrices, a permutation
array and pointers to the next and previous levels. The dynamic memory feature in C also allows
very efficient use of space during the factorization process.

In section 4 a number of different methods for finding independent sets are discussed.

3.4 Recursive solutions

After permutation, the system at level [ can be put in the form

B, F
rrana= (5 ) e=ve == (2)0 0= (a)



or, using the approximate factorization (tildes are dropped):

(a 7)=(% 4 )=(5)-() ¢

Hence the following standard V-cycle solution.

~—

ALGORITHM 3.3 V-cycle. RMLS(A;,b;) — Recursive Multi-Level Solution
Solve Lly = fl

—~

Compute g; := g; — Gy
If lev = last_lev then
Solve A;12 = g; using GMRES, preconditioned with ILUT factors

2
3
4.
5. Else
6 Call RMLS(Ai+1,9;)

7. Endif

8. Back-Substitute to get y, i.e., solve Uyy; = [y — W,z
Note again that in line 6, the recursive incomplete block LU factorization is used for preconditioning
the solution of the lower level system (with the matrix A;11). The heart of the C code for the
preconditioning solution step is as follows

void arms(double *b, double *x, pmatptr *arm, csptr *schur, csptr *ilusch)
{

int j;
for (j=0; j<arm->n; j++)
wk[j]l = bl[jl;

forward(x, wk, arm);

if (arm->next == NULL)
gmres (&wk [arm->last], &x[arm->last], schur, ilusch);
else

arms (&wk [arm->last], &x[arm->last], arm—>next, schur, ilusch);
backward(x, wk, arm);

return;

The index of the last unknown grouped in the independent set is stored in last.

In the current implementation, the block LU operators are stored in structs called arm. The
last Schur complement system is stored in schur and the ILUT factors of this system are stored
in ilusch. Note that only the lower portions of the work and solution vectors are sent to the next
level.

The usual reasoning behind the success of this type of technique is that low frequency error is
eliminated on the coarse grid, and high frequency error is eliminated on the fine grid [14]. Usually, a
direct method or a small number of iterations of a relaxation method, such as Gauss-Seidel, is used
for the coarse grid. A number of options exist for the lower level solver. In BILUTM a single sweep
of a forward and backward solve with the ILUT factorization computed during the factorization

phase is utilized. It is possible in some instances to get a more accurate solution on the next



level system and consume less total computing time by using a less accurate ILUT factorization.
Computation of an approximate inverse for the last level systems is another option, although
finding an approximate inverse of the lower level system through Frobenius norm minimization

can be cost prohibitive.

3.5 Intermediate level iteration

As was discussed in the previous section, the solve in step 6 of Algorithm 3.3 involves only a
recursive call to the next level. In multigrid terminology this is called a V-cycle. No iteration of
any type is performed at the intermediate levels of a V-cycle. The restriction operators are applied
until the coarsest system is reached, the last system is solved, and then the prolongation operators
are applied up to the top level.

It is possible to include an iteration in step 6 of Algorithm 3.3 leading to the so-called W-
cycle, which involves a Krylov acceleration. This is depicted in Algorithm 3.4. In contrast to
geometric multi-grid methods where the prolongation operator is actually an interpolation matrix,
the successively coarser levels here result from partial ILU factorizations. Therefore, it can be
more beneficial to find accurate solutions to the coarse grid systems than it is in other multi-grid
methods.

ALGORITHM 3.4 W-cycle. RMLS(A;,b;) — Recursive Multi-Level Solution
1.  Solve Lyy = fi

Compute g; := g, — Gy
Iflev = last_lev then

Solve Aj412 = g] using GMRES, preconditioned with ILUT factors.
Else

Solve A;412 = g] using GMRES preconditioned

with RMLS(A;41)

Endif
Back-Substitute to get yi, i.e., solve Uyy; = [y — Wz

© 00 NSO RN

Consider first a single level preconditioner. Let Ay represent the full system and A; represent
the reduced system. If the block LU operators were exact, and the reduced system, A;z, = 36,
were solved exactly, convergence on the full system could be achieved in a single outer iteration.
In a multiple level preconditioner, A; will be referred to as the first reduced system. An exact
solution of the first reduced system may be found iteratively by applying Algorithm 3.4. An accu-
rate solution of the first reduced system is obtained iteratively using a Krylov subspace accelerator
preconditioned with the next level block factorization for A;. The second reduced system may be
solved the same way, and so on. Each iteration involves a matrix-vector multiply and a precondi-
tioning step. Since the preconditioner may be different at every iteration, a flexible variant of the
preconditioned GMRES algorithm[18] must be used.

The solution process for a 3 level ARMS preconditioner can be represented graphically as in
Figure 3. The height of each symbol indicates the log of the 2-norm of the residual at a particular
level. Horizontal lines divide the scales for the different levels. The full system, level 0, is at the



top of the graph, and the last reduced system, level 3, is at the bottom. Levels 1 and 2 are in
between. Note that each time the solve starts “descending” to a level with fewer unknowns it goes
all the way to level 3 and does not return to level 2 until the stopping criteria at level 3 has been
satisfied. Then it may need more than one iteration at level 2 in order to satisfy the stopping
criteria there. If so, it must descend to level 3 again for each iteration. Similarly, the solver does
not return up to level 1 or level 0 until either convergence at the next lower level, or the maximum

number of iterations at the lower level is reached.

O level O
& level 1
O level 2
* level 3

N N ~ . ~ ~

oAby Vel L T
Figure 3: A representation of W-cycle for intermediate level iterations. The preconditioner repre-
sented has 3 levels

The code for a W-cycle is similar to the code for a V-cycle. The difference appears after
the else statement. In a W-cycle the ARMS solver does not call itself, but rather calls GMRES,
which calls ARMS in the preconditioning step. The V-cycle can be viewed as a special case of the
W-cycle where the preconditioning step is applied once, without any iteration.

For large systems, completely accurate calculation of the block LU matrices is cost pro-
hibitive. Parameters may be adjusted in the partial ILUT(7,p) algorithm to obtain a satisfactory
trade-off between factorization time, memory requirements and accuracy. As fill levels are de-
creased, the factorization time, and time required for individual matrix-vector products go down,

while the number of outer iterations required goes up.

3.6 ARMS-2: Avoiding storage of Schur complements

Storing each of the successive Schur complements A; is expensive. These matrices are not required
in the V-cycle approach, except possibly the last reduced system. However, since Krylov accelera-
tion is used for the W-cycle approach, matrix-vector operations with the A; matrices are required.
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In this section we describe a variant which will avoid this by exploiting the multi-level factors to

perform matrix-vector product operations A;x vector. Algorithm 3.2 produces a factorization at

(L 0 U W
Al—(Gl I)X(O Al+1>+R (6)

where R is the matrix of elements that have been dropped. Ignoring R, and applying the inverse

each level of the form

of the lower triangular matrix on the left yields the following.

-1
L 0 o0\ (Ui Wi\ /[0
(6 7) = (2)= (0 a2) (2)

The action of A;;; on a vector w can be computed as

Apw (0 1) (éfl ?)1 x Ay X (3)) 7)

The above formula shows that a matrix-vector product with A;;; can be performed essentially
with one block-forward solve and a product with the matrix A; of the higher level. Therefore, this
process may be applied recursively to compute matrix vector products on any level.

Note that the above formula is equivalent to an action by an approximation to A, ;w, instead
of A;y; itself. Asit turns out this is generally a better representation of the local Schur complement
S; than A, ;. Consider first the simple situation when the LU factors L;, U; of B; are exact and
no dropping is used when computing G;, W;. Then R has the form

0 0
(0 m)
and in this case, we have

L, oO\"' (B F\ _(L/'B, L/'F
G I E C)~ 0 S
where S; is the Schur complement associated with Cj, and
S, =C; - EB;'F,.

Therefore, the result in the right-hand side of formula (7) is S;w, exactly. On the other hand,
equation (6) shows that
Aj41 =S+ R

so the result using (7) is actually more accurate in this case, since it uses the Schur complement
instead of its approximation 4;+1. When ARMS-2 is used, the operator A;;1 in Line 6 of Algorithm
3.3 (and Line 7 of 3.4) are replaced by an approximation S; to S;.

We have shown one situation when Formula (7) yields the result of the exact Schur comple-
ment at level . One might ask whether there are other situations when this happens. Using (6),
we obtain the following general relation:

(6 1) &= (G )& (&)
G I ! 0 A G I Ryi R
( U+ LflRll W, + L;1R12 )
Ry — GlLflRu Aryr + Roo — GlLflRm
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According to (6) we have A;41 + Rao = C; — GiW,, so the result of formula (7) is
(Al+1 + Ros — GlLl_lng)w =C) — Gl(Wl + Ll_1R12)

Now according to (6) again, we note that L;W; + Ria = F; so that W; + Ll_lng = Ll_lFl in the
above formula. Therefore, the result of formula (7) becomes,

(C—GIL7' R)w
which means that the formula is equivalent to replacing the Schur complement by
gl =C - GlL;IF}

This is to be contrasted with the regular ARMS which approximates this Schur complement by
A1 = Cr — GiW, + Ry What the above formula shows is that perturbations (i.e., dropping) has
no effect on the computation of the matrix-vector product by formula (7) as long as it is confined
to the blocks (1,2) and (2,2). In particular if no dropping is applied when building G; and L, i.e.,
the lower part of the block factorization, then the matrix-vector product will be the same as that
associated with the exact Schur complement.

In fact, there is a less expensive way to avoid spoiling the result of the product with S
and saving more storage at the same time. Recall that in theory (i.e., when no dropping is used),
G = EiU; . In (7), we could discard the matrix G; and perform its action on a vector by invoking

the matrices E; and U; from which it is theoretically constructed. We have

L 0 _IA [ * * (8)
EU™ T T\« O -EBUTLTE

The action of (7) is therefore equivalent to that of the Schur complement C; — E; Ul_lLl_lFl. This
is the exact Schur complement if L; and U; are the exact LU factors for By, regardless of whether
or not dropping is exercised in the rest of the matrix. The action of the matrix W; can be similarly
performed in the backward substitution process. A clear additional advantage of this method is
that the storage of the matrices G; and W, is obviated. The space for these matrices is only needed
temporarily when constructing the matrix A;; in the restricted ILUT procedure (Algorithm 3.1).
Once A;4; is constructed these two parts of the block factorization can be erased.

3.7 Quality of the Multilevel Factorization Preconditioning

We make the simplifying assumption that dropping is allowed only when forming the Schur com-
plement matrix A;1. An alternative assumption is that ARMS-2 is used with the exact factors
L; and Uj for B;. In other words, the factorization process does not drop elements in the factors

A;, and in G; and W;. This leads to a factorization of the form,

(L 0 U w 0 0
a=(é )0 al)* (0 )

where Rss is the matrix of elements that have been dropped. The matrices L; and U; are the exact
LU factors of the matrix B;. In practice this assumption does not cause any particular problem if

12



the structure of A; is carefully selected when obtaining the independent set (for example when A; is
diagonal). Furthermore, it is assumed that the solve with A;; is exact. Notice that A;11 = S;—Rao
where

S, =Ci— EB;'F, = C, — G\W,.

is the exact Schur complement associated with the matrix C;. Now consider the preconditioned
matrix obtained from the resulting factorization,

1 —1
i _ (L0 u w (I 0 (1 0
(e n) w0 al) =0 reman) =0 sin) @

The spectrum of the preconditioned matrix consists of the eigenvalue one repeated n; —n;y1 times
-1
141

In the case when ARMS-2 is used the solves in lines 6 and 7 of Algorithms 3.3 and 3.4

involve an approximation S; to the Schur complement S; rather than the matrix Ajt1. Therefore,

where ny, is the dimension of the matrix Ay and the eigenvalues of S;A

the matrix 4;; in (9) is to be replaced by this approximation. As was seen in the previous section,
under the current assumption of exact solves with S; and no dropping other than in the (2,2) part,
S; is actually exact. The relation (9) shows that a one -level ARMS-2 preconditioner becomes
exact under this assumption. This is not true with the regular ARMS factorization.

It is common when analyzing Block-ILU type preconditioners to make assumptions on the
approximation to the Schur complement under consideration [1]. Here we make a similar assump-
tion on the smallness of Ryo relative to S;. Specifically, it is assumed that for some vector norm,
we have

|Roozl| <y [|Siz]| , Yz (10)

with |y| < 1. Then the following proposition follows immediately.

Proposition 3.1 Assume that S; is nonsingular and that (10) holds for some 0 < v < 1 and some

vector norm ||.||. Then the eigenvalues of the preconditioned matriz A; are such that

1 A 1
— < |N(A)| < — 11
o S| < (1)

Proof. From (10) it is seen that the eigenvalues p; of the generalized problem Rgssx = uSix
are bounded in modulus by . Since S; is nonsingular an arbitrary eigenvalue \; of SlAljrll =
Si1(S; + Rz2)~! is nonzero and it can be shown that it is the inverse of 1 + y;, for some eigenvalue

w; of the generalized problem Rasxz = puSijz. We have
1=y <1l S +pl ST+ |pi| <147

which gives the result, after inversion, for all eigenvalues of the block SlAl:Lll in (9). The other
eigenvalues are equal to one and satisfy the inequality as well. [ |
We note that the condition (10) can be replaced by one involving the transposes of the matrices
Rso and S;:

Rzl < IS/ 2]l , Ve (12)

with |y| < 1, and the above result would also hold.
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It would now be useful to provide sufficient conditions under which assumption (10) or (12)
is satisfied. When constructing the approximate Schur complement A;,i, elements are dropped
when they are smaller then a tolerance relative to the norm of the original row. The assumption

we make is based on this (though not equivalent to it):
[R2eill < 7lISejll G=1,...,mn (13)

In other words the 1-norm of each row of Rss is bounded from above by a multiple of the cor-
responding row in S;. We preferred to utilize the row version (12) instead of (10) because our

implementations are row oriented. We now have the following proposition.
Proposition 3.2 Assume that (13) holds. Then

[R5l

< St 14
S sl =780 a4

where k1(S}) is the condition number for S associated with the 1-norm.

Proof. For an arbitrary vector x with components &; we have

IBSalh = 1) Rgieilh < D 1411 RSes0h
< 7Y 141187 ejlh
< Ty Ig] x mjaX”SlTej”l
IRzl < rllzll[1S] ] (15)
On the other hand Iz
1
1S 2l > m (16)
Dividing (15) by (16) and taking the max yields the desired result. [ |

The result of (11) can now be exploited with v = 7k1(S]). This result is pessimistic in that - is
only guaranteed to be less than 1 for values of 7 that are less than the inverse of the condition
number of Sj.

4 Independent Sets and Coarsening

Some strategies for finding independent sets have been discussed in [19]. Relatively inexpensive
techniques are presented for finding sets of small blocks which are independent of other blocks in
the set. A more sophisticated technique is presented in [5] which does not necessarily compute
independent sets, but instead tries to minimize fill-in during factorization.

ARMS employs a simple heuristic which constructs blocks by using a level set approach
combined with a heuristic for rejecting elements from the coarse set. A weight array is constructed
ahead based on certain criteria for determining when it is acceptable to assign a node to the C set.
In the algorithm this array is called w. Details of the procedure employed to construct the block
independent sets are shown in Algorithm 4.1.

ALGORITHM 4.1 Indset Ordering with weights

14



1. marker(l:n) =0

2. For k = nod :=1,n and if marker(nod)== 0 Do:

3 jeount =0

4 If (w(nod) < tol) then Add_to_F (nod)

5. Else

6 Add_to_C(nod) ; Level _Set = {nod}

7 While (jeount < bsize) Do

8 For each j in current Level_Set Do

9. If (w(nod) < tol) then Add_to_F (nod)
10. Else: Add_to_C (nod); jcount++; Endif
11. EndFor

12. EndWhile

13 For each j in Level_Set set Do

14. For each k in adj(j) Do

15. If marker(k) == 0 Add_to_F(k)

16. EndFor

17. EndFor

18. EndIf

19. EndFor

After the independent sets are formed, the matrix is reordered so that C unknowns corre-
sponding to the independent blocks are grouped together at the top followed by the F unknowns.
An example of the reordering process is given in Figure 4.

Here are a few additional notes for clarification. The level set Level_Set is updated by each
of the Add_to_C routines. Similarly for the marker array. Each time a node is assigned to the set C
or F the routines Add_to_C and Add_to_F update the marker (which in effect carries the ordering
information). Another point is that some additional code (not shown) is included to avoid deadlock
situations which correspond to cases where jcount cannot reach bsize because the algorithm is not
making progress. There are many possible variants to the above algorithm. For example, based on
similar ideas used for the reversed Cuthill McKee ordering, we can reverse the ordering for each
level.

An important entry in the above algorithm is the vector w consisting of the weights. The
w vector used in our current version is based on relative diagonal dominance. Some raw diagonal
dominance coeflicients are first computed as:

|aii]
> laij
Note that 0 < w(i) < 1 and that when a; # 0 the inverse of w(i) is w(i)™! =1 + Z#i |aij/al.
When the row is very strongly diagonally dominant, @(%) is close to one. At the other extreme

w(i) =

when the row is very poorly diagonally dominant, @ (%) is close to zero. However, we found that
the use of these absolute ratios was ineffective for some matrices. Some matrices may have all of
their rows far from being diagonally dominant and therefore the above algorithm may reject all
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Figure 4: Independent set orderings for 9-point matrices. Top left: original matrix for 10 x 10
grid. Top right: result using a min block size of 2. Bottom left: result using a min block size of
12. Bottom right: result using a min block size of 50 for a matrix resulting from a 25 x 20 mesh.
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rows to the fringe set. A more effective strategy is to utilize the criterion on a relative basis by
normalizing all the (%) ratios by the average or the maximum. For example,
w(i)

w(t) = —————=
@) max;—1,... n W(i)

5 Numerical Results

All experiments have been conducted on a PC with an Intel Pentium II processor with a clock
speed of 450 MHz and a 256k L2 cache (Deschutes Core). The main memory size is 256 MB. For
each of the experiments performed, a right hand side vector is generated by assuming a solution
vector of all ones. The initial guess is a vector of randomly generated real values between 0 and
1. The convergence history is presented in plots of the norm of the residual versus the elapsed
time. The times presented include the factorization and solution times, so the starting point in
the curves shows initial residual and factorization time. The outer accelerator is FGMRES, and
iteration continues until the norm of the residual has been reduced by a factor of 10%. The first
set, of experiments for each matrix compares ARMS to the popular ILUT preconditioner.

Memory requirements are also compared for different preconditioners. The numbers dis-
played represent the number of non-zero entries in the matrices holding the various factors in the
preconditioners. In some cases the level of fill is selected in order to compare the performance of
preconditioners that require roughly the same amount of memory.

The are many parameters that can be varied in the ARMS solver and these are described
below. The notation (r;), refers to the k** iteration at level i.

rN).
® €N, Kkmaz,N — stopping criteria for last level; iteration stops when H < en Of kmaz, N
NJo
steps are completed on last level.
. o . . N [ (ra); |l
® €, kmar,; — stopping criteria for intermediate levels; iteration stops when m < € or
i)o

kmaz,i iterations are completed on level 4,1 =1,..., N — 1.

o dim, dim;, dimy — Krylov subspace dimensions at outer level, intermediate levels, and last

level, respectively.
e N — number of levels.
e bsize — target size of blocks in formation of independent sets.
e 7, py — parameters in ILUT(7, p) factorization of last level.
e 7, p; — parameters in restricted ILUT(7, p) factorization of grid transfer matrices.

Results are presented for two different versions of the ARMS preconditioner. The first one,
which is referred to as ARMS-1, saves the Schur complement, reduced system matrices for use in
iterative solution procedures. The second one, ARMS-2, does not save the Schur complement ma-
trices, but performs reduced system matrix vector product operations using the technique described

in Section 3.6.
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5.1 Tests with the TOKAMAK Matrices

The first set of experiments solve systems with a relatively small matrix. The TOKAMAK matri-
ces are real unsymmetric and arise from nuclear fusion plasma simulations in a tokamak reactor 2.
These are part of the SPARSKIT collections and have been provided by P. Brown of Lawrence Liv-
ermore National Laboratory. The largest of these matrices, named UTM5940, has 5940 unknowns
and 83,842 nonzeros. The condition number is estimated at 1.9 x 10°.

The first experiment compares single level ARMS preconditioners to a standard ILUT(7, p)
preconditioner with two different levels of fill. The parameters in Table 1 are the same for each
simulation. The fill level for the grid transfer matrices is set to 50. The fill level for the ILUT
factorization of the last level is set to 50 for both of the ARMS preconditioners and one of the
ILUT(r,p) preconditioners. One of the ILUT(7, p) preconditioners has p = 25 for comparison.

General Last Level
bsize | 32 || kmae,N 10
T 0 €N 10-15
Po 50 || pn 50

Table 1: Parameters used in first set of solutions of the TOKAMAK matrices.

The number of nonzero elements in the various matrices stored for each method is shown in
Table 2. The memory requirements for the two ARMS preconditioners are roughly the same as
for ILUT(0,50). The memory requirement for ILUT(0,25) is about half. As is expected ARMS-1
requires more memory than ARMS-2 because the Schur complement matrix is stored.

Unknowns Memory
Method Tot. | Ind. Set | Red. Sys. || Ind. Sets | Schur | ILUT | TOTAL
ILUT(0,25) || 5940 0 5940 0 0 271 400 | 271 400
ILUT(0,50) || 5940 0 5940 0 0 537 253 | 537 253
ARMS-1 5940 3672 2268 265 878 | 112 115 | 204 156 | 582 149
ARMS-1 5940 | 3672 2268 265 878 0 204 156 | 470 034

Table 2: Memory used in first set of solutions of the TOKAMAK matrices.

The convergence history for the first set of experiments is displayed in Figure 5. The number
of outer GMRES iterations required to reach convergence is not necessarily the best criterion for
comparing the quality of a preconditioner. The plot on the left shows the 2-norm of the residual
versus the outer iteration count. The plot on the right shows the 2-norm of the residual as a function
of elapsed time. Though ARMS preconditioners yield convergence in fewer outer iterations, the
results are mixed when the total solution times are compared. ARMS-2 takes the longest time to
converge, and ILUT(0,50) takes the least. The elapsed time in Figure 5 includes the time spent
creating the preconditioner and the time spent in the solve phase of the algorithm. Note that
ILUT(0,25) takes the least time to factor, and ILUT(0,50) takes the longest. The two ARMS

2The TOKAMAK matrices available online from the matrix market of the National Institute of Standards
Technology at http://math.nist.gov/MatrixMarket.
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Figure 5: Convergence history of ILUT and 1 level of ARMS for solving TOKAMAK matrix
UTM.5940 with small levels of fill.

The next set of experiments investigate the effect of varying the number of levels in the ARMS
preconditioners. Iterative solves are performed at each level using FGMRES. As is expected, the
cost of a multilevel preconditioning step increases exponentially as the number of levels increases.
Therefore, it is important that extra work required for each outer iteration results in a more
substantial reduction of the residual at each iteration. In this example, the fill levels are relatively
low, as they are in the comparison to ILUT. Table 3 shows parameters common to all simulations
in this example. The small € values are never realized, and hence the k,,,, values dictate the
number of iterations performed at each level.

General Intermediate Levels Last Level
bsize 32 kmaz,i 5 kmaz,N 5
T 0 €; 10°1° N 1018
nlev | varies || p; 50 PN 50

Table 3: Parameters used in second set of solutions of the TOKAMAK matrices.

The block LU matrices become smaller as the number of unknowns in the reduced systems
decreases. Table 4 shows the sizes of the systems at each level, and how they are divided into
independent sets and the reduced system. It also shows the number of nonzeros in the the LU
factors of the independent sets, and two other sets of matrices that may or may not be stored
at that level, depending on the number of levels in the preconditioner, and the version of ARMS
being utilized. The value listed under ILUT is the number of nonzero entries in the incomplete
LU factorization of the last level, if that level were indeed the last level. The number of nonzero
entries in the Schur complement matrix at a particular level is listed under the heading Schur.
Recall that the Schur complement matrix is stored for ARMS-1, and not for ARMS-2.

The numbers of nonzero entries in the preconditioning matrices are contained in Table 5. The
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Unknowns Memory
Level || Tot. | Ind. Set | Red. Sys. || Ind. Sets | Schur | ILUT

1 5940 3672 2268 265 878 | 112 115 | 204 156
2 2269 1064 1204 139 785 | 60 004 | 107 782
3 1204 537 667 75135 33154 | 59 022

Table 4: Details of memory requirements in the second set of solutions of the TOKAMAK matrices.

values could be determined from Table 4, but are displayed here explicitly to facilitate comparisons.
The Schur complement matrices that need to be stored for ARMS-1 constitute a larger proportion
of the total memory requirement as the number of levels grows. The numbers for 3 levels of
ARMS-2 are not included because the solution process fails to converge with these low fill levels.

Individual Factors Total Memory
# Levels || Ind. Sets | Schur ILUT ARMS-1 | ARMS-2
1 265 878 | 112115 | 204 156 || 582 149 | 470 034
2 405 663 | 172119 | 107 782 || 685 564 | 513 445
3 480 798 | 205273 | 59 022 745 093

Table 5: Memory used in the second set of solutions of the TOKAMAK matrices.

Convergence is slow for more than one level with these low fill levels. The residual levels as
a function of time are shown in Figure 6. The plot on the left shows the 2-norm of the residual
as a function of time for ARMS-1, where the Schur complement matrices are stored at each level.
The plot on the right is for ARMS-2, where the matrix vector products required at each level for
FGMRES are performed using the global matrix and the lower triangular block L matrices. The
total time required to converge increases as the number of levels goes up. Note that while time to
reach convergence is much greater for 3 levels the outer iteration count for ARMS-1 is lower with
3 levels than with 2 levels. The numbers are 38 and 51, respectively. Comparisons are difficult in
ARMS-2 because there is no convergence for more than one level.

The number of iterations on the last level is decreased from 10 to 5 for the second set of
tests. It is worth mentioning how this affects the quality of the preconditioners. The number of
outer iterations is 40 in each case for ARMS-1, and the total time is practically the same. The
situation is different for ARMS-2. The number of outer iterations increases from 54 to 72, but
the total solution time drops by more than a third. This illustrates the importance of keeping
the number of the inter-level iterations small for ARMS-2. It is also worth noting that ARMS-
1 requires fewer outer iterations at this fill level. If the factorization of the original matrix, A,
were exact, convergence would be achieved in one iteration. As it is, entries are dropped in the
restriction and interpolation matrices, and also in the LU factorization of the last level. When
the block LU operators are accurate, a low fill level in the incomplete LU factorization of the last
level can be compensated for with an increased inner iteration count. However, when the block
LU operators are not accurate, increasing the number of inner iteration is wasteful.

In the next example the fill level, py, is increased to provide more accurate block LU operators.

The stopping criteria is also adjusted. Table 6 shows parameters common to all trials in this third
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Figure 6: Convergence history for different numbers of levels of ARMS preconditioner solving the
matrix UTM.5940 with small levels of fill. The plot on the left is from ARMS-1, where the Schur
complement matrices are stored at each level. The plot on the right is from ARMS-2.

set of experiments. There are two main differences between this example and the two previous

ones. The fill level, pg, for these trials is increased to 500 and the number of iterations on the last

level is increased to 50. To prevent further iteration when a sufficiently accurate solution of the

last system has been computed, GMRES will stop when the 2-norm of the residual has decreased
by 107%.

General Intermediate Levels Last Level
bsize 32 kmagz,i 50 kmaz,N 50
T 0 €; 10~4 EN 10~
nlev | varies || p; 500 PN 50

Table 6: Parameters used in third set of solutions of the TOKAMAK matrices.

There is a difference in the sizes of the independent sets. Table 7 shows the details. With pg
10 times as large as for the first two examples, it is expected that the block LU matrices will be
larger. The Schur complement matrices are also much denser. This leads to smaller independent
sets in the lower levels. The reduced system in the fourth level has 650 unknowns, where in the
previous set of experiments, the reduced system in the third level has roughly the same number.

Unknowns

Memory
Level || Tot. | Ind. Set | Red. Sys. || Ind. Sets | Schur | ILUT
1 5940 3672 2268 551 589 | 708 562 | 209 752
2 2268 590 1678 495 219 | 665 998 | 159 131
3 1678 513 1165 798 806 | 536 849 | 110 336
4 1165 515 650 667 800 | 300 254 | 60 632

Table 7: Memory used in third set of solutions of the TOKAMAK matrices.
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The total number of nonzero entries in the preconditioning matrices are contained in Table

8. There is a substantial increase in the memory required at these fill levels. The dense Schur

complement matrices also constitute a large portion of the memory for ARMS-1 preconditioners,

and make ARMS-2 more attractive if there are memory constraints.

Individual Factors Total Memory
# Levels || Ind. Sets Schur ILUT ARMS-1 | ARMS-2
1 551 589 708 562 | 209 752 || 1469 903 | 761 341
2 1046 808 | 1 374 560 | 159 131 || 2 580 499 | 1 205 939
3 1845614 | 1911409 | 110 336 || 3 867 359 | 1 955 950
4 2513414 | 2211663 | 60632 | 4785709 | 2574 046

Table 8: Memory used in third set of solutions of the TOKAMAK matrices.

The convergence histories for the third set of experiments are shown in Figure 7. The plot on
the left is for ARMS-1 and the plot on the right is for ARMS-2. The different curves are for different

numbers of levels. In addition, each symbol corresponds to the conditions at the completion of

one outer iteration. The first symbol in each line corresponds to the 2-norm of the initial residual,

and also the time required for factorization. Factorization time becomes a factor as the number of

levels grows for this high fill level. There are also differences in the relationship between ARMS-1

and ARMS-2. Both versions of the preconditioner are able to promote convergence for up to 4

levels. In practice, however, 4 levels are not practical at this fill level since the factorization time

alone is more than total solution time for fewer levels.
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Figure 7: Convergence history for different numbers of levels of ARMS preconditioner solving the
matrix UTM.5940 with intermediate fill level, pg = 500 and low fill, p;y = 50 on the last level.

Two levels appears to be optimal for these fill levels. The longer factorization time compared

to that for one level is offset by the lower number of outer iterations required to reach convergence.

Three and four level preconditioners both require only 3 outer iterations to converge, but the

combination of longer factorization times and longer times per outer iteration make for higher

total solution times. Also note that in the ARMS-1 tests the 3 level preconditioner is faster than
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the single level one, whereas in the ARMS-2 test the one level preconditioner is faster. This is
due to the increased cost of matrix vector multiplies in the FGMRES algorithm in ARMS-2. The
benefit in the ARMS-2 method is a savings in memory requirements. Similarly, notice that solution
times between the two versions do not vary much for 1, 2 or 3 levels, but there is a big difference
at 4 levels.

5.2 Tests with the RAEFSKY4 Matrix

The RAEFSKY4 matrix ® has 19,779 unknowns and 1,328,611 nonzeros. It is from a buckling
problem for a container model and was supplied by H. Simon from Lawrence Berkeley National
Laboratory (originally created by A. Raefsky from Centric Engineering). This is probably the
hardest of the 6 RAEFSKY matrices.

The first set of experiments on the RAEFSKY4 matrix compare a 5 level ARMS precondi-
tioner with no iteration to a couple of ILUT preconditioners. Since there is no iteration within the
ARMS preconditioner, no Schur complement matrices are needed and hence, there is no distinction
between ARMS-1 and ARMS-2. The parameters used in ARMS are contained in Table 9. The
memory requirements are listed in Table 10. The fill levels in ILUT were selected so that the
matrices in one of the ILUT preconditioners would occupy more memory than those of the ARMS
preconditioner, and those of the other would occupy less.

General Intermediate Levels Last Level
bsize | 200 || kmag,i 0 kmaz,N 0
T 0 || pi 100 PN 100

Table 9: Parameters used in first set of solutions of the RAEFSKY4 matrix.

Unknowns Memory
Method Tot. | Ind. Set | Red. Sys. [ Ind. Sets [ ILUT | TOTAL
ILUT(0,100) || 19779 0 19779 0 3632937 | 3632937
ILUT(0,200) || 19779 0 19779 0 6 934 486 | 6 934 486
ARMS-2 19779 12237 7542 2 488 896 0
7542 3716 3826 1 046 361 0
3826 2158 1668 559 183 0
1668 1123 545 251 411 0
545 403 142 83 114 17 146 4446 111

Table 10: Memory used in first set of solutions of the RAEFSKY4 matrix.

The convergence histories are shown in Figure 8. ARMS is clearly a better preconditioner
for this matrix. A GMRES accelerator using the ARMS preconditioner requires 48 outer iterations
to converge. The ILUT(0,200) preconditioner requires only 38 iterations. However, it takes more
time to create the the ILUT(0,200) preconditioner than the total solution time for the ARMS
preconditioner. The ILUT(0,100) preconditioner takes less time than ILUT(0,200) to factor, but

3The RAEFSKY matrices are available online from the University of Florida sparse matrix collection [11] at
http://www.cise.ufl.edu/"davis/sparse.

23



still more than the total solution time using ARMS. In addition, ILUT(0,100) requires over 600

iterations to reach convergence.
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Figure 8: Convergence history of two ILUT and one 5 level ARMS preconditioner for solving the
matrix RAEFSKY4.

The second set of experiments on the RAEFSKY4 matrix are designed to investigate the
effect of using different numbers of levels of ARMS with iteration on the last level, but not at
intermediate levels. Experiments showed that intermediate level iteration is inefficient at these low
fill levels for the RAEFSKY4 matrix. ARMS-1, where the reduced systems are stored for each
level, is compared with ARMS-2, where the reduced systems are not stored. The preconditioner
parameters may be found in Table 11.

General Intermediate Levels Last Level
bsize | 200 || kmaz,i 0 kmaz,N 5
T 0 Di 100 PN 100

Table 11: Parameters used in second set of solutions of the RAEFSKY4 matrix.

The memory requirements for the preconditioners are shown in Table 12. Since there is no
iteration at intermediate levels, the only Schur complement matrix stored is the last one. Hence,
the difference in storage required for ARMS-1 and ARMS-2 decreases as the number of levels
increases. Note that the size of the preconditioner actually decreases for ARMS-1 as the number
of levels increases. This is due to a large initial decrease in the number of unknowns in the reduced
systems.

The convergence histories of the second set of tests on the RAEFSKY4 matrix are plotted in
Figure 9. The 2-norms of the residuals for ARMS-1 are on the left and those for ARMS-2 are on
the right. The different symbols correspond to different numbers of levels. At least two levels are
needed to yield convergence for ARMS-1. However, a total of five levels are required for ARMS-2.
This indicates that the last system, which is solved iteratively, is not constructed adequately by
the block LU operators. This problem could be overcome with higher fill levels in the block LU
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Memory Requirements Total Memory
# Levels || Ind. Sets [ ILUT [ Schur Comp. || ARMS-1 | ARMS-2
1 2 489 535 | 1 432 167 753 600 4 675302 | 3921 702
2 3533877 | 728 844 382 900 4 645 621 | 4 262 721
3 4 065 601 | 356 211 191 800 4613 612 | 4 421 812
4 4 365 036 | 103 572 62 400 4 531 008 | 4 468 608
5 4 456 169 26 827 18 600 4 501 596 | 4 482 996

Table 12: Memory used in second set of solutions of the RAEFSKY4 matrix.

matrices, but that would also increase the factorization time, and the time required for each outer

iteration.

The plots in Figure 9 also show that there is very little difference in the time required to

construct a preconditioner with 1, 2, or more levels, and that when the solution process converges,

it does so quickly, compared with the time required to perform the factorization. The 5 level

ARMS-2 preconditioner converges in only 47 iterations, compared with 49 iterations required for

the 5 level ARMS-1 preconditioner. However, since each iteration of ARMS-2 is more expensive,

due to the Schur Product routine used for the matrix vector product operations on the last level,

it takes much longer
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Figure 9: Convergence history of ARMS-1 and ARMS-2 with different numbers of levels for solving
the matrix RAEFSKY4.

5.3 Tests with the BARTH Matrices

These matrices, which originate from a 2D high Reynolds number airfoil problem, have been
supplied by Tim Barth of NASA Ames #. The mesh for the matrices investigated in this paper has

a concentration of elements with poor aspect ratios close to the airfoil resulting in ill-conditioned
matrices. They both have 14,075 unknowns. The BARTHT1A matrix has 481,125 nonzeros and

4The BARTH matrices are available from the authors.
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the BARTHT2A matrix investigated in the next section has 1,311,725 nonzeros. These matrices
are discussed in [10]. The idea in [10] is to use the ILUT factors of the first order discretiation
matrix BARTHT1A to precondition the second order matrix BARTHT2A. This is not done in this

paper.

BARTHTI1A. The first set of tests compare a number of ARMS preconditioners with no iter-
ation, to ILUT preconditioners with various levels of fill. They show that even a crude ARMS
preconditioner performs well on this matrix compared with some other preconditioners. The so-
lution parameters and total memory for each preconditioner are listed in Tables 13 and 14. The
ARMS preconditioners have a smaller memory requirement than ILUT. It is not of interest to test
ILUT with smaller fill levels because with ILUT(0,100) the solution process requires 381 outer
iterations to achieve a reduction in the 2-norm of the residual of 10~8. This number drops to 81
for ILUT(0,200).

General Intermediate Levels || Last Level
bsize | 200 || pi | 100 pn | 100

Table 13: Parameters used in first set of solutions of the BARTHT1A matrix.

All three of the ILUT preconditioners tested require more memory than all of the ARMS
preconditioners in this test. The memory requirements listed in Table 14 include the sizes of the
block LU matrices and the ILUT factorization of the last level.

Method Total Memory Requirement
ILUT(0,100) 2 763 711
ILUT(0,200) 5 352 233
ILUT(0,300) 7 805 162
1-level ARMS 2 188 913
2-level ARMS 2 300 116
3-level ARMS 2 367 746
4-level ARMS 2 396 588
5-level ARMS 2 408 088

Table 14: Memory used in second set of solutions of the BARTHT1A matrix.

Figure 10 compares the convergence history of the two methods. The plot on the left is the
ILUT preconditioner with different levels of fill. Note that ARMS has a much shorter factorization
time, and takes fewer iterations to converge. Best performance is achieved for a single level of
ARMS. However, performance for higher level ARMS preconditioners are still better than for ILUT.
The main advantage in ARMS is the shorter factorization time. All of the ARMS preconditioners
converge before any of the ILUT preconditioners are even factored.

The first set of experiments on the BARTHT1A matrix do not involve any intermediate
level iteration. The next set of experiments investigate whether iteration on reduced systems can
speed up convergence. The same fill levels are used. The second set of tests compare ARMS-1
and ARMS-2 in a V-cycle, where there is iteration at the last level but not at intermediate levels.
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Figure 10: Convergence history of ILUT(0, p) and ARMS with no iteration for solving the matrix

BARTHTI1A.

The third set of tests compares them when implemented in a W-cycle, where intermediate level

iteration is also included in the solver. Solver parameters and memory requirements for the second
set of experiments are shown in Tables 15 and 16. When there is no iteration at intermediate

levels, the only reduced system that needs to be stored is the last one. This matrix shrinks as the
number of levels increases.

General Intermediate Levels Last Level
bsize | 200 || kmag,i 0 kmaz,N 5
T 0 Di 100 PN 100

Table 15: Parameters used in second set of solutions of the BARTHT1A matrix.

Memory Requirements Total Memory
# Levels | Ind. Sets | ILUT | Schur Comp. || ARMS-1 | ARMS-2
1 1410769 | 778 144 427 060 2615973 | 2189913
2 1999 912 | 300 204 172 800 2472916 | 2 300 116
3 2 238 557 | 129 189 75 300 2 443 046 | 2 367 746
4 2 346 530 | 50 058 32 600 2 429 188 | 2 396 588
5 2391218 | 16 870 14 700 2 422 788 | 2 408 088

Table 16: Memory used in second set of solutions of the BARTHT1A matrix.

The convergence histories are shown in Figure 11. The fastest method is ARMS-2 with one
level which converges in 8 outer iterations and requires a total time of about 63.7 seconds. The next
best time is with ARMS-1 with one level. Each iteration takes less time, but 17 outer iterations
are needed for convergence leading to a total time of about 68.5 seconds.

Similar phenomena, for the ARMS-2 preconditioner appear in Figures 9 and 11. Both sets of

experiments involve preconditioners with iteration at the last level, but not any intermediate level
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Figure 11: Convergence history of ARMS-1 and ARMS-2 with different numbers of levels for
solving the matrix BARTHT1A. Tteration at the last level, but not at any intermediate levels.

iteration. There is a difference, though, in that for the RAEFSKY4 matrix, a high number of levels
tends to work, while a low number does not, and the situation is reversed for the BARTHT1A

matrix. We do not attempt to explain the phenomena, here.

For this matrix, there is no advantage in iterating at intermediate levels, because convergence
is reached quickly with only one level of ARMS. In fact, it was found that for a level of fill py = 100,

intermediate level iteration is quite slow. Intermediate level iteration does decrease the number of

outer iterations if the fill level for the grid transfer matrices is increased. The purpose of the third

set of experiments on the BARTHTI1A matrix is to show that intermediate level iteration can be

helpful if the parameter po is set high enough. The full set of parameters used for the third set of

tests on the BARTHT1A matrix is displayed in Table 17.

General Intermediate level Last Level
bsize | 100 || kmaz,i 5 kmaz, N 5
T 0 €; 10~4 EN 10~4
Po 300 || p; 300 PN 100

Table 17: Parameters used in third set of solutions of the BARTHT1A matrix.

The preconditioners require slightly more memory, but convergence is attained in far fewer
outer iterations, sometimes in less time. The memory requirements are shown in Table 16. Note
that since iterative solves are performed at each level, the memory requirement for Schur comple-
ment systems is higher for ARMS-1 than in the previous set of tests.

It takes very few outer iterations to converge with this relatively high fill level when inter-
mediate level iteration is included in the solution algorithm. The quickest convergence is still for
a single level of ARMS, though, because of the extra work involved in intermediate level itera-
tion. The lowest total solution times are lower with this higher fill level, while preconditioners

with higher fill levels are not as quick due to increased factorization times. Fine tuning an ARMS
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Memory Requirements Total Memory

# Levels | Ind. Sets | ILUT | Schur Comp. || ARMS-1 | ARMS-2
1 1767 389 | 784 288 798 045 3349 722 | 2 551 677
2 2 987 222 | 391 094 1 398 678 4776 994 | 3 378 316
3 3676 705 | 182 967 1 688 780 5 548 452 | 3 859 672
4 4053399 | 71919 1 812 680 5937 998 | 4 125 318

Table 18: Memory used in the third set of solutions of the BARTHT1A matrix.
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Figure 12: Convergence history of ARMS-1 (left), and ARMS-2 (right) with different numbers of
levels for solving the matrix BARTHT1A. GMRES iteration at all levels.

A few remarks are in order for this set of tests. Iterating at intermediate levels is able to de-
crease the number of outer iterations required. In fact, for a 2, 3 or 4 level ARMS-2 preconditioner,
convergence is reached in only two outer iterations. A single level preconditioner is fastest for each
method, and both take about the same amount of time, but ARMS-1 takes 4 outer iterations, while
ARMS-2 requires only 3. For this higher level of fill, the L. U block factors are able to produce
a better approximation of the reduced systems actually being solved than the Schur complement

systems saved after each level of factorization can. Lastly, note that as few as 5 iterations per level
are able to greatly reduce the number of outer iterations needed.

BARTHT2A. The second Barth matrix, BARTHT2A is more difficult to solve than the first
one. Higher fill levels are required to get the method to converge in a reasonable number of outer
iterations. The first set of experiments compare some ARMS preconditioners using parameters that
are not carefully selected, with an ILUT preconditioner with very high fill. Later examples show
how performance is enhanced when the parameters are more carefully selected. The parameters
used to create the ARMS preconditioners are shown in Table 19. In this first set of tests, the

parameter, tol;,q, which determines whether or not a node is diagonally dominant enough to be
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included in a particular independent set, is set to 0.1. This means that node 7 may be rejected
from an independent set and grouped with the reduced system if the diagonal entry is not large
enough compared to the rest of the entries on that row, see Section 4 for details.

General Last Level
toling | 0.1 dimpn 10
bsize | 400 || kmaz,N 10
T 0 EN 1015
Po 400 || pn 400

Table 19: Parameters used in first set of solutions of the BARTHT2A matrices.

Memory usage is tabulated in Table 20. The ILUT preconditioner needs a high fill level in
order to work at all. Details of the sizes of various parts of the ARMS preconditioners are shown
in lines 2-5, and total sizes are shown in the last two lines. Note that both of them, while large,
are still smaller than what is required in a marginally effective ILUT preconditioner. For these

tests, there is no iteration on intermediate levels.

Unknowns Memory

Method Tot. | Ind. Set | Red. Sys. || Ind. Sets | Schur | ILUT | TOTAL
ILUT(0,1000) 14075 0 14075 0 0 23 210 849 | 23 210 849
ARMS, level 1 || 14075 4931 9144 4 620 905 0 0
ARMS, level 2 || 9144 2311 6833 3 880 962 0 0
ARMS, level 3 || 6833 1358 5475 2928 035 0 0
ARMS, level 4 || 5475 1227 4248 2483 697 | 1699 200 | 3 190 549

ARMS-1 18 803 348

ARMS-2 17 104 148

Table 20: Memory used in first set of solutions of the BARTHT2A matrix.

The convergence history is shown in Figure 13. The ILUT preconditioned solver was stopped
after 100 iterations. The residual had decreased to close to 10~* after about 20,000 seconds.
The system is solved with the two ARMS preconditioners by the time the ILUT preconditioner
has been created. The ARMS-1 preconditioner converges in 57 outer iterations and the ARMS-2
preconditioner converges in 76 outer iterations. Total time to convergence is less for the ARMS-1
preconditioner.

In the next set of tests, the parameter tol;,q is set to zero. This leads to larger independent
sets, or, equivalently, smaller reduced systems. Experimentation leads to the conclusion that
fill levels of po = 400 and py = 400, with a block size of bsize = 400 form a fairly efficient
preconditioner. The preconditioner parameters are tabulated in Table 19. The number of iterations
on the last level is 5, while it is 10 in the first set of experiments. Otherwise, there is little change
from the previous experiments except for the parameter tol;,q.

The memory requirements are also different. Details concerning the sizes of the independent
sets are in Table 22 and totals are in Table 23. The numbers of unknowns in the independent sets

and reduced systems are almost exactly reversed in the first level.
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Figure 13: Comparison of convergence history for ARMS and ILUT preconditioners for solving the
matrix BARTHT2A.

General Last Level
toling 0 dimpn 5
bsize | 400 || kmaz,N 5
T 0 EN 1015
Po 400 || pn 400

Table 21: Parameters used in the second set of solutions of the BARTHT2A matrices.

Comparisons of the convergence histories appear in Figure 14. The parameter tol;,q has a
tremendous effect on the performance of the preconditioner for this matrix. Factorization times are
reduced to about a quarter of those in the first set of tests. The ARMS-2 preconditioner behaves
similar to the way it does on the BARTHT1A matrix. Convergence is achieved with few levels,
but performance deteriorates as the number of levels increases.

A single level ARMS preconditioner appears to perform best at these fill levels. The last
set, of tests are performed to try to fine tune the ARMS preconditioners to this particular matrix.
Combinations of parameters were tested to find a set that performed well for both ARMS-1 and
ARMS-2 with one level. The reasoning behind the selection of parameters that were tested is
discussed below.

For many of the more effective preconditioners, the majority of the time is spent in the

Unknowns Memory
Level | Tot. | Ind. Set | Red. Sys. || Ind. Sets
1 14075 9845 4230 5 270 399
2 4230 2574 1656 2 319 362
3 1656 922 734 928 495
4 734 407 327 327 487

Table 22: Memory used in second set of solutions of the BARTHT2A matrix.
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log10(residual)

Memory Requirements Total Memory
# Levels || Ind. Sets ILUT Schur Comp. || ARMS-1 | ARMS-2
1 5270 399 | 2 858 080 1578 273 9706 752 | 8 128 479
2 7 589 761 | 1 016 846 662 400 9 269 007 | 8 606 607
3 8 518 256 | 403 273 293 600 9215129 | 8 921 529
4 8 890 743 | 106 930 106 929 9104 602 | 8 997 673

Table 23: Memory used in the second set of solutions of the BARTHT2A matrix.
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Figure 14: Comparison of convergence history for ARMS-1 and ARMS-2 preconditioners with
different numbers of levels for solving the matrix BARTHT2A. There is iteration at the last level,
but not at intermediate levels.

factorization phase, with relatively little time spent in the acceleration phase. This can be exploited

when the same system must be solved repeatedly, with different right hand sides. However, in

situations where the system is solved only once, the area in which there is greatest room for

improvement is in the factorization of the preconditioner. The ILUT factorization of the last level

is expensive. The cost can be reduced by decreasing the fill on the last level, pn, while retaining a

relatively high fill level for the grid transfer operators, py. Some experimentation reveals that the

parameters in Table 24 perform quite well.

Table 24: Parameters used in third set of solutions of the BARTHT?2 matrix.

General Intermediate Levels Last Level
bsize | 400 || kmaz,i NA kmaz,n | 0-20
T 0 || toling 0 €N 10~*
nlev 1 Di 300 PN 100

Factorization yields preconditioners with the sizes listed in Table 25. Note the large number of

unknowns lumped into the independent set on account of tol;,4 being set to 0. The preconditioners

are constructed with one level, so there is no intermediate level iteration. The only remaining

variable in the solution process is the number of iterations performed on the last level.
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Unknowns Memory
Method Tot. | Ind. Set | Red. Sys. || Ind. Sets Schur ILUT TOTAL
ARMS-1 || 14075 9845 4230 4539 490 | 1222 417 | 791 229 || 6 553 136
ARMS-2 || 14075 9845 4230 4 539 490 0 791 229 || 5330 719

Table 25: Memory used in third set of solutions of the BARTHT2A matrix.

Convergence histories appear in Figure 15. Note that the horizontal axis begins at 150

seconds rather than 0. This is to highlight the differences, since factorization time is the same for

all. There are some general differences between the ARMS-1 and ARMS-2 preconditioners. The

ARMS-1 method is less expensive per outer iteration due to the way the matrix vector product

on the lower level is performed. There is a penalty in memory requirements to be paid for this

computational savings, as is seen in Table 25. It is not reflected in the plots, but the minimum
number of outer iterations required drops to 9 for ARMS-2, but only down to 11 for ARMS-1, as

the number of inner iterations is increased. However, total solution time increases for ARMS-2

more as the number of inner iterations increases. The effects of varying the number of inter-level

iterations in each of the two methods is discussed below.
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Figure 15: Comparison of convergence history for single level ARMS-1 (left) and ARMS-2 (right)

preconditioners with different numbers of iterations on the inter level for solving the matrix
BARTHT2A.

The cost of a matrix vector product operation on the reduced system for the ARMS-1 pre-

conditioner is proportional to the size of the Schur complement matrix, 1.2M. The total cost of a

reduced system iteration also includes the preconditioning step, which is an LU forward-backward

step using the incomplete LU factorization, for a total of around 2M. This is much lower than

the cost of an ARMS-2 inner iteration. A conservative estimate for the block L factor matrix is

2.4M. Combined with a cost of 1.3M for a full system matrix vector product and the cost of an
LU forward-backward step, the total cost of an ARMS-2 inner iteration is more than 4.50M. The
number of iterations performed on the last reduced system is an important consideration. There
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is a trade-off between work done towards an accurate solution of the last system, and work done
on the outer iterations.

For the BARTHT2A matrix we found that ARMS-1 performed better than ARMS-2. With
no iteration on the lower level, 44 GMRES iterations are required on the outer level. Two inner
level iterations reduce the number of outer iterations to 34, but increase the total solution time.
Four inner iterations reduce the number of outer iterations to 19, and reduce the total solution
time to below that required for 0 iterations. Eight inner iterations is optimal, leading to a drop of
the number of iterations to 12. More iterations on the lower level only reduces the outer iteration
count to 11, but this pushes up the total solution time. Twelve inner level iterations in an ARMS-2
preconditioner can reduce the number of outer iterations to 9, but tests reveal that no number of
inner level iterations in an ARMS-2 preconditioner can reduce the total solution time below that
for O iterations. However, four through fourteen inner level iterations all perform better than two

inner level iterations.

6 Conclusion

The ILU multilevel solver presented in this paper works for general sparse matrices and is often able
to solve large, unsymmetric matrices when other methods fail. It is competitive with ILUT(, p)
on relatively small matrices, but is far superior on larger matrices.

The method presented here generalizes BILUTM [20] by exploiting more fully the recursive
nature of multilevel block ILU factorizations. In particular, ARMS allows intermediate level iter-
ations. The main benefit of iterating at these levels is to make it possible to obtain an accurate
solution to the Schur complement systems with a less accurate factorization. This leads to a less
costly factorization, in terms of memory and computation time.

Fine tuning of parameters is required to get the most out of the method. As is often done
in typical applications, this is best done by intensive testing on samples of problems from the
application and determining what parameters work well. A few general guidelines follow. For
some matrices, ARMS appears to work best as a multi-grid type method, with no Krylov subspace
iteration at any level. The system is restricted until a small enough problem is reached, then
solved approximately on the last level and prolonged. This is the case for the RAEFSKY4 matrix.
For other matrices, it appears that using only 1 or 2 levels of ARMS works best, and that it is
important to have accurate restriction and prolongation operators - especially if ARMS-2 is being
used. In general, it can pay to iterate at last level, but it is not always helpful at other levels.

The method is parallelizable being a form of domain decomposition method and its parallel

implementation is currently under way.

7 Conclusion

The ILU multilevel solver presented in this paper works for general sparse matrices and is often able
to solve large, unsymmetric matrices when other methods fail. It is competitive with ILUT(, p)

on relatively small matrices, but is far superior on larger matrices.
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The method presented here generalizes BILUTM [20] by exploiting more fully the recursive
nature of multilevel block ILU factorizations. In particular, ARMS allows intermediate level iter-
ations. The main benefit of iterating at these levels is to make it possible to obtain an accurate
solution to the Schur complement systems with a less accurate factorization. This leads to a less
costly factorization, in terms of memory and computational time.

Fine tuning of parameters is required to get the most of the method. A common practice in
typical applications is to perform intensive tests on samples of problems from the application and
determine what set of parameters work well. A few general guidelines follow. For some matrices,
ARMS appears to work best as a multi-grid type method, with no Krylov subspace iteration at any
level. The system is restricted until a small enough problem is reached, then solved approximately
on the last level and prolonged. This is the case for the RAEFSKY4 matrix. For other matrices,
it appears that using only 1 or 2 levels of ARMS works best, and that it is important to have
accurate restriction and prolongation operators - especially if ARMS-2 is being used. In general,
it can pay to iterate at the last level, but it is not always helpful at other levels.

The method is parallelizable being a form of domain decomposition method and its parallel

implementation is currently under way.
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