ARMS: An Algebraic Recursive Multilevel Solver for general
sparse linear systems *

Yousef Saadf Brian Suchomel?

April 17th, 2001

Abstract

This paper presents a general preconditioning method based on a multilevel partial solution
approach. The basic step in constructing the preconditioner is to separate the initial points into
two subsets. The first subset is obtained by using “block” independent sets, or “aggregates”.
Two aggregates have no coupling between them, but nodes in the same aggregate may be
coupled. The nodes not in the first set are part of what might be called the “coarse” set.
It is natural to call the nodes in the first set “fine” nodes. The idea of the methods is to
form the Schur complement related to the coarse set. This leads to a natural block LU
factorization which can be used as a preconditioner for the system. This system is then solved
recursively using as preconditioner the factorization that could be obtained from the next
level. Unlike other multilevel preconditioners available, iterations between levels are allowed.
One interesting aspect of the method is that it provides a common framework for many other
techniques. Numerical experiments indicate that the method can be fairly robust.

Key words: Incomplete LU factorization, ILUT, multilevel ILU preconditioner, Krylov subspace methods,
multi-elimination, Recursive solution, multigrid

AMS subject classifications: 65F10, 65N06.

1 Introduction

Multigrid methods are often the preferred iterative techniques used to solve linear systems arising
from problems with regular meshes. Their main attraction is their excellent scalability with respect
to mesh size. Their scope however is limited. A number of methods developed in the last decade
have aspired to combine the good intrinsic properties of multigrid techniques and the generality of
preconditioned Krylov subspace methods. Among these we cite [3, 5, 9, 7, 19, 22, 23, 26, 27, 28].

Multigrid methods are difficult to surpass when they work. However, their implementation
requires multilevel grids and specialized tuning is often needed. The Algebraic Multigrid (AMG)
methods were introduced in the seventies — initially by Ruge and Stuben [18] — to remedy these
limitations. Their overall success depends on the underlying PDE problem, and has been somewhat

mixed. In contrast, preconditioned Krylov methods, using ILU preconditioners, are designed to be

*Revised version. This work was supported in part by NSF, and in part by the Minnesota Supercomputer
Institute.

fDepartment of Computer Science and Engineering, University of Minnesota, 4-192 EE/CS Building, 200 Union
Street S.E., Minneapolis, MN 55455. E-mail: saad@cs.umn.edu.

fNumerica, Inc.; 252 E. Mountain Ave., Suite D; Ft. Collins, CO 80524. email: suchomel@numericainc.com

‘general-purpose’ methods for solving arbitrary sparse linear systems of equations. They can work
in many situations where multigrid methods fail but their main drawback is that the convergence
rate usually deteriorates as the size of the linear system increases.

Recently, a collection of ILU factorizations was introduced in the literature which drew much
attention. These methods possess features of multilevel methods as well as some features of ILU
factorizations. ILUM [19] is one such approach and recent work by Botta and co-workers [8, 9],
and [22, 23], indicates that this type of approach can be fairly robust and scale well with problem
size, unlike standard ILU preconditioners. The idea was extended to a block version (BILUM)
using dense blocks [22] and then this was further extended into BILUTM which treats the diagonal
blocks as sparse [23]. Tests in [22] indicate that BILUM is generally more efficient and more robust
than a standard ILUT-preconditioned GMRES [20] as well its scalar sibling, ILUM. For certain
hard problems, these attributes come with the added benefit of smaller memory usage.

BILUTM provides a general framework for multilevel parallel ILU preconditioning which can
accommodate both fine-grain and coarse-grain parallelism. The recursive nature of BILUTM is
recognized in [23], though recursivity was not implemented. A recursive version of preconditioning
process is discussed in [28]. The main contributions of this paper relative to [22, 23, 28] are as
follows: (1) a fully recursive implementation is introduced; (2) new independent set strategies are
introduced including one that is based on the Nested Dissection reordering, and (3) numerical
experiments on realistic matrices are reported.

The rest of this paper is organized as follows. Section 2 gives a general overview of Algebraic
Multilevel methods based on Block ILU factorizations. Section 3 discusses the construction and
implementation of the Algebraic Recursive Multilevel Solver. The coarsening process, i.e., the
reordering strategies used by ARMS, are covered in Section 4. Section 5 is devoted to numerical

experiments. Some conclusions are drawn in Section 6.

2 Multilevel ILU preconditioners: an overview

Most of the existing Algebraic Multilevel solution methods start by separating the unknowns of
the original system in two sets, one of which is labeled “coarse”. It is important to mention at
the outset that in “algebraic” methods there is no real mesh and therefore the labeling of vertices
into coarse and fine is somewhat arbitrary. There has been some inconsistency in the literature
in the way this is done and used. In this paper “coarse” points refer to those that are kept when
forming a reduced system. The “fine” points are those eliminated via the independent sets. In the
simplest scalar independent set case, this corresponds to a set of points that are not coupled. Once
the independent set is obtained the various methods differ in how they (approximately) solve the
resulting Schur complement system obtained by (approximately) eliminating the independent set.

The multilevel ILU preconditioners developed in [19, 9, 7, 23, 22] exploit the property that a
set of unknowns that are not coupled to each other can be eliminated simultaneously in Gaussian
elimination. Such sets are termed ‘independent sets’, see e.g., [16]. In [22], the ILUM factorization
described in [19] was generalized by resorting to “block independent sets”. A block independent
set is a set of groups (blocks) of unknowns such that there is no coupling between unknowns of
any two different groups (blocks) [22]. Unknowns within the same group (block) may be coupled.

This is illustrated in Figure 1. The terminology used in the Algebraic Multigrid community for
certain types of block independent sets is “aggregates” [24]!. Some simple methods for finding
standard and block-independent sets have been considered in [19, 22] and elsewhere. A parallel

implementation is described in [1]. In Section 4 we will revisit this issue and other strategies will
\\\
. No Coupling

Figure 1: Aggregates, groups or blocks.

be examined.

In various existing forms of multilevel ILU factorizations [4, 19, 9, 8] the unknowns are
reordered, listing the nodes associated with the Independent Set first, followed by the other un-
knowns. After this reordering, the original matrix A; at the [-th level takes the following form

r_ (B F
rarf = (5 &))
This is then approximated by
L o o W
- ~ . 2
(GII)X(O Al+1> @

where I is the identity matrix, L; and U; are the LU (or ILU) factors of By,

G~ BU W ~ L7 F; (3)
and A;4; is an approximation to the Schur complement with respect to Cj,

Aij1 ~ Ay = C - E/B; 'F.

Typically it is inexpensive to solve linear systems with U; and L; since these arise from
an ILU-type factorization. Therefore that all we need for defining a preconditioning for A; is to
provide a way to solve the reduced system (i.e., a system associated with A;y1). It is here that
different methods proposed vary.

An obvious option is to use direct solution methods. The reduced system is likely to still be
large and a direct method will tend to be expensive both in terms of computation and memory
requirement. However, the Nested Dissections (ND) method of George and Liu [14] is a method
in this class. The ND reordering exploits independent aggregates obtained by recursively dividing

the graph into two disconnected subgraphs using “separators”.

IThough “independent aggregates” would have been more appropriate.

In traditional Algebraic Multigrid (AMG, [18]), grid transfer operators are defined that re-
strict and interpolate. In a Galerkin formulation, an interpolation matrix is determined alge-
braically - and then the restriction matrix is its transpose. In other formulations, as in [10] the
grid transfer matrices are not transposes of each other. Interpolation weights are typically defined
after some coloring scheme determines fine and coarse grid points. This procedure is repeated until
a final coarse grid system is reached, which is then solved either via relaxation or a with direct
method.

In ILUM [19], B is a diagonal matrix and the above factorization is repeated for A;1; after
an independent set ordering is found. A dropping strategy is used to limit fill-in. In BILUM [22],
BILUTM [23], and in this paper, B is a block diagonal matrix. One motivation behind this type
of factorization is that the diagonal elements or blocks may be used as pivots simultaneously, in
parallel. The method being introduced in this paper is a generalization of these methods. The
factorization techniques are similar, but the factors are utilized differently in the solve phase.

The AMLI [4, 5] preconditioners are based on a set of nested finite element grids. Here, B,
is associated with basis functions that exist on level I, but not on level [+ 1. The factorization is
repeated until the coarsest mesh is reached. In some versions [3], couplings are deleted in order to
maintain a sparse Schur complement. Another method based on a series of nested finite element
grids is NGILU [7]. In this method, the nodes are reordered so that B contains connections between
fine mesh nodes that are not in the coarse mesh. The NGILU method breaks down on unstructured
grids. In a subsequent method, MRILU [9], two of the authors develop a preconditioner similar to
ILUM where B is a diagonal matrix.

In MLILU[6], B is constructed by an algorithm that determines an optimal set of parents,
or coarse grid nodes based on generating a small amount of fill upon factorization. Alternatively,
in [25], B is made diagonal by modifying the right-hand-side.

The AMLI, MLILU and NGILU preconditioners are recursive in nature. Not only is the
factorization defined recursively, but the (I 4+ 1)t level preconditioner is part of the preconditioner
for the It" level. In AMLI and NGILU, all of the matrices A; are symmetric positive definite. This
allows iterative solution at each level using a preconditioned conjugate gradient algorithm. Results
of some non-symmetric test cases are presented for MLILU. The methods work for a wide range of
matrices derived from elliptic operators on finite element or finite difference grids. However, their
applicability for general sparse matrices has not been documented and remains unclear.

3 The ARMS Factorization

As described above the main factorization step is as follows

tap_ (B By (L 0 U LR

P AR = (El o)\ gur 1)\ 0 A) (4)
There are a number of major differences with the BILUTM factorization described in [23]. ARMS
relies heavily on recursivity which is exploited to simplify the construction of the factorization as

is done in other multilevel codes. This was not be done for BILUTM which was implemented
in Fortran77. BILUTM keeps the approximations Gy and W; in (3) and the intermediate Schur

complements. ARMS does not save any of these matrices resulting in substantial memory savings.
This is explained in Section 3.2. ARMS allows inter-level iteration. BILUTM can, in principle also
allow inter-level interaction — though this would have required a completely different implementa-
tion. Most important, ARMS includes much more elaborate strategies for block independent sets.
For example a Nested Dissection method has been added as a means of computing block indepen-
dent sets. In addition, other techniques borrowed from sparse direct solution methods have been
included to reorder the nodes of the block-independent set. As always in sparse linear systems
solutions, implementation details are crucial and for the reason we devote Section 3.3 to this issue.

The ARMS factorization algorithm consists of a sequence of independent set orderings fol-
lowed by a reduction and a recursive block factorization on the reduced system.

ALGORITHM 3.1 ARMS(A;e,) factorization
1. Iflev = last_lev then
Compute Ajey & LieyUley [6.8. ILUT factorization of Ajey |
Else:

Find an independent set permutation P,

Compute the block factorization (4)
Call ARMS(Ajept1)

2
3
4
. Apply permutation Aje, := PlvalevPlev
6
7.
8. EndIf

A number of additional details will be provided in Section 3.3. In particular, the matrices G;, W,
in (3) which approximate ElUl_1 and Ll_lF respectively are approximately computed in order to
obtain A;;; but they are not kept. Possible variants here are in steps 2 and 4. In step 2, different
approximations can be used to solve the last level system. In step 4, we can utilize a variety
of ordering techniques for finding independent sets. Pivoting is not performed during the block
factorization. Some amount of diagonal dominance can be assured as the block independent sets
are being selected so small pivots are avoided. Any pivoting that was performed would need to
be within individual block independent sets so that the block diagonal structure is not destroyed.
This is not a problem on the last level, where a method which includes pivoting, such as ILUTP
[20], may be used. The last level system is solved by either a single forward-backward ILUT sweep,
or by GMRES preconditioned with ILUT.

3.1 Preconditioning operations

At level I, the linear system A;x; = b;. to solve is stored in the permuted form

B, F
PIT(Ej CZ)Plxwl:bl-

Apart from permutations, the factored form of the system can be written as

(Eéi—l?)x(éﬁ,)x(%’ LZ_IIF})X(Z;>:(Z>' (5)

The solution of (5) requires (1) a forward solve followed by (2) a solve with the coarser level

matrix S;, followed by (3) a backward solve. The first and third of these operations move from one

level to another and are similar to a restriction or prolongation operation in multigrid techniques.

It is helpful to illustrate the process in order to understand the variations that can be obtained

Original system Back to original system

Forward Backward

Reduced system: solve by any means

Figure 2: Illustration of a preconditioning operation.

by an abstract recursive thinking. The diagram in Figure 2 simply illustrates the point that at
any given step the box at the lower level can be any approximate or exact solution technique for

solving the system at the next level, i.e., the system
S X z1 = h; (6)

from the forward (restriction) operation. The variations that arise are related to the ways in which
this coarser level system is solved. Below are three simple options that come to mind and which
we have implemented and tested. There are many other options which we have not explored.

(VARMS) If the current level is not the last, continue to descend by using the level-structure.
When the last level is reached solve with GMRES-ILUT and then ascend back to the current

level.

(WARMS) If the current level is not the last, use a few steps of GMRES to solve the reduced
system - utilizing VARMS as a preconditioner. When the last level is reached solve with
GMRES-ILUT.

(WARMS*) If the current level is not the last, use a few steps of FGMRES to solve the reduced
system - using WARMS* (recursively) as a preconditioner. At the last level ILUT-GMRES

is again used.

WARMS* was discussed in the technical report [21]. However, since this algorithm turns out to be
fairly expensive for most practical situations we only mention it here for reference. The VARMS

preconditioning step is shown in the following algorithm.

ALGORITHM 3.2 VARMS-solve(A;,b;) — Recursive Multi-Level Solution
1. Solve Ll fll = fl

Ascend, i.e., compute f]' = f/ — L;IFI 2
Back-Substitute y, = U;" f!!

2. Descend, i.e., compute hj := h; — ElUl_1 fi

3. Ifl =lastlev then

4. Solve A1z = h) using GMRES+ILU factors
5. Else

6. Call VARMS-solve(Ajy1, h})

7. Endif

8.

9.

Note that in the analogous WARMS-solve algorithm, line 6 would be simply replaced by the

line:
6w. Solve A;412 = hj using GMRES preconditioned by VARMS(A; 41, %)).
3.2 ARMS-2

Inner-outer cycles, such as WARMS, require matrix-vector operations with the iteration matrix
A; at level I. One possible way to do this is simply to store the matrix A; at each level as was
discussed in [21]. The permuted form of the Schur complement at level [is the matrix of level [+1,
ie.,

B F
PaSPh = ot). 7
12T (Ey Cia ™

Since the blocks Bjt1, Ejt1, Fi+1, Ci41 are available from the next level, the product S; x w may be
obtained with two permutations and matrix-vector products with these blocks. On the last level,
this cannot be done and the obvious remedy is to store the last Schur complement matrix in order
to perform these products. An alternative obviates the need to store this last Schur complement
matrix by computing S5; X w as

S xw = (C; — EB; ' F)w (8)

which uses matrices from the current level instead of the next one. The inverse of By is applied by
using its (incomplete) LU factors.

This approach can be used at any level not just the last one. In other words we can use (8)
instead of the procedure based on (7) for multiplying S; by a vector. This approach, referred to
as ARMS-2, is currently used in our codes, in contrast with the earlier implementations in [21, 23]
The two results will of course be (slightly) different in general. An interesting observation is that
if By is factored exactly, then an algorithm based on formula (8) produces the action of the Schur
complement matrix exactly, regardless of dropping in the Schur complement. This suggests that
an algorithm based on formula (8) is more accurate than one based on the use of (7) and this is
confirmed by the noticeable improvement observed in the quality of the resulting preconditioning
operation.

3.3 A few implementation details

In [23, 21] an ILUT-like algorithm was proposed for computing the factorization (4). Let np be the
dimension of the block B. In words, the method in [23, 21] performs a variant of the IKJ-version
of Gaussian elimination process whereby the index k in the loop runs from 1 to min(ng,i — 1)
(instead of from 1 to i —1 as is done in standard Gaussian elimination). As it turns out this results
in the factorization as in (2) (2,2) part of the second factor is the desired Schur complement needed
for the next level. The new implementation proceeds differently. Referring to (4), we first compute
the appropriate factors, L; and Uj, of B; and an approximation W;, to f/l_lFl. In a second loop
an approximation to the Schur complement is computed one row at a time. The [subscripts are
dropped to simplify notation.

(a) version (b) version

U
W W

Figure 3: Differences between the old (a) and new (b) versions. In the a version G, W, and S are
stored. In the b version L, U and S are stored.

E Last level
I R

U

C L

Figure 4: The matrices stored in the VARMS block factorization.

The differences between the method presented in [21] and the method presented in this paper
are displayed schematically in Figure 3. The previous implementation is labeled with an a and
the new implementation is labeled with a b. In the a version a row of the upper triangular piece,
W, contains entries from both U and L='F. The lower triangular piece G holds L and EU~!
explicitly. In the b version dropping is performed separately in the factors L, U, W, G and S.

The W block is stored temporarily, and then discarded after the Schur complement is computed.
Only a single row of G is needed at a time, and it is discarded after the corresponding row of S
is computed. Two advantages seen in the b version are lower storage requirements, and the ability
to factor B ~ LU accurately without incurring additional costs in G and W.

Block factors of matrices used in the preconditioning process are stored in a linked list of
structs which have as members structs for matrices stored in Compressed Sparse Row (CSR)
format. For VARMS, the matrices that are needed at each level are the LU factors of the B matrix
along with the blocks F,E. In this case the C' blocks are not needed. Only the last one (last
last Schur complement) is required in order to be able to compute matrix-vector products via (8).
Another struct is required to store the ILUT (or any other factorization such as ILUTP) of the
last Schur complement along with the associated C block. In WARMS, the C' block is required at
each level in order to permit matrix-vector products via (8).

3.4 Quality of the Multilevel Factorization Preconditioning

We make the simplifying assumption that dropping is allowed only when forming the Schur com-
plement matrix A;41. This means that there is no dropping in the B-block or the intermediate
matrices G; and W; used to obtain A;;1. It is also assumed that ARMS-2 is used, meaning that
the action of product of the Schur complement by an arbitrary vector is performed via formula

(8). This leads to a factorization of the form,

_(Li O Uu W 0 O
a=(a 1) (0 4l)+ (0 ma)

where Rss is the matrix of elements that have been dropped. The matrices L; and U; are the exact
LU factors of the matrix B;. In practice this assumption does not cause any particular problem if
the structure of A; is carefully selected when obtaining the independent set (for example when A; is
diagonal). Furthermore, it is assumed that the solve with A; 1, is exact. Notice that A;1; = S;—Ras
where

S, =C;— EB;'F, = C, — GiW,.

is the exact Schur complement associated with the matrix C;. Now consider the preconditioned
matrix obtained from the resulting factorization.

(59" a (52 = retan) =6 k) @
G I 0 A 0 I+ R22Al+1 0 SIAH_1
Therefore, the spectrum of the preconditioned matrix consists of the eigenvalue one repeated
n; — ny4+1 times where ny, is the dimension of the matrix Ay and the eigenvalues of SlAljrll.

In ARMS-2 the solves in lines 4 and 6 of Algorithm 3.2 and its WARMS variant involve an
approximation S; to the Schur complement S; that is different from the matrix A; ;. We mentioned
in the previous section that under the current assumption of exact solves with .S; and no dropping
other than in the (2,2) part, the matrix S; used in (8) is actually the exact Schur complement for
the matrix at level I. Thus, under this assumption, a one-level ARMS-2 preconditioner becomes

exact.

It is common when analyzing Block-ILU type preconditioners to make assumptions on the
approximation to the Schur complement under consideration [2]. Here we make a similar assump-
tion on the smallness of Ryo relative to S;. Specifically, it is assumed that for some vector norm,

we have
| Ro2z|| <y ||Siz]| , V= (10)

with |y| < 1. Then the following proposition follows immediately.

Proposition 3.1 Assume that S; is nonsingular and that (10) holds for some 0 <y < 1 and some

vector norm ||.||. Then the eigenvalues of the preconditioned matriz A; are such that

1 A 1

—— < INA) < —. 11
s S Nl < = (1)
Proof. From (10) it is seen that the eigenvalues p; of the generalized problem Rassx = uSix
are bounded in modulus by . Since S is nonsingular an arbitrary eigenvalue \; of SlAljrll =
Si(S; + Ra2) ! is nonzero and it can be shown that it is the inverse of 1 + y;, for some eigenvalue

w; of the generalized problem Rasx = pS;z. We have
=y <1 |pf <P +p <1+ |ps| <1+7y

which gives the result, after inversion, for all eigenvalues of the block SlAljrll in (9). The other
eigenvalues are equal to one and satisfy the inequality as well. []
We note that the condition (10) can be replaced by one involving the transposes of the matrices
Rys and S;:

|Rzll < v ISfll, Vz (12)

with |y| < 1, and the above result would also hold.

It would now be useful to provide sufficient conditions under which assumption (10) or (12)
is satisfied. When constructing the approximate Schur complement A;,;, elements are dropped
when they are smaller than the tolerance, relative to the norm of the original row. The assumption

we make is based on this (though not equivalent to it):
IRe;lly < 7l eslly G =1,... 1. (13)

In other words the 1-norm of each row of Rss is bounded from above by a multiple of the cor-
responding row in S;. We preferred to utilize the row version (12) instead of (10) because our

implementations are row oriented. We now have the following proposition.
Proposition 3.2 Assume that (13) holds. Then

||R2T2~'U||1

L St 14
B sl =7) -

where k1(S]) is the condition number for S{ associated with the 1-norm.

Proof. From (13) it follows that
[R5l < 7187 Tl

10

Hence

IRzl <IRS|zl < 7 17 "]l (15)
On the other hand Iz
Tl
1S{ 2l > —=F— (16)
1S 1l
Dividing (15) by (16) and taking the max yields the desired result. [|

The result of (11) can now be exploited with v = 7k1(S}'). This result is pessimistic in that - is

only guaranteed to be less than 1 for values of 7 that are less than the condition number of Sj.

4 ARMS reordering

The goal of the block-independent set reordering is simply to obtain a matrix of the form (1) where
B has a block-diagonal structure. A few strategies for finding block independent sets have been
discussed in [23, 21]. However, many other existing methods can be adapted for this purpose. In
fact, all methods that are based on some form of domain decomposition — whether from a graph
point of view (nested dissection) or physical point of view (mesh partitioning) can be exploited to
provide one level of the ARMS reordering.

The simplest of these techniques consists of a repeated Breadth-First Search traversal where
the algorithm breaks the traversal whenever enough levels are reached to form a subgraph of the
desired size, see [23, 21]. When the algorithm restarts, it takes the next non-visited node and
initiates a BFS traversal from it. Nodes that are visited are marked so they will not be visited
again in the next expansion. In order to improve the robustness of the factorization the numerical
values are also considered. A row is rejected to the complement set whenever it does not show
enough diagonal dominance relative to the other rows. To determine which rows to reject, a vector
of weights w is computed as follows. First, some diagonal dominance coefficients are computed as:

|aii]
> i lagj]

Note that 0 < #(i) < 1 and that when a; # 0 the inverse of w(i) is w(i)~! =1+ >z laij/aiil-
These raw weights are close to one for strongly diagonally dominant, and close to zero for very

(i) =

non-diagonal dominant rows. For matrices that have all of their rows far from being diagonally
dominant a strategy based on using the above weights might reject all the rows. A more effective
strategy is to utilize the criterion on a relative basis by normalizing all the @(i) ratios by the
average or the maximum. For example, we can use instead,
w(i)zm, i=1,n. (17)
Variations also exist whereby the weights combine both column and row diagonal dominance ratios.
A second strategy which we have used is based on the class of Nested Dissection (ND)
algorithms [14], already mentioned in Section 2. ND algorithms exploit graph separators. A
separator in a graph is a set of vertices which splits the graph into two subgraphs such that
there is no coupling between nodes of the two subgraphs. The nodes of this separator are labeled

11

I B
ol
H
I

33

Figure 5: Independent set orderings for 9-point matrices. Top left: original matrix for 10 x 10
grid. Top right: result using a min block size of 2. Bottom left: result using a min block size of
12. Bottom right: result using a min block size of 50 for a matrix resulting from a 25 x 20 mesh.

12

last and the process is repeated recursively on each of the two subgraphs until a desirable block-
size is reached. This reordering has been used as a means of reducing fill-in in sparse Gaussian
Elimination, see [14] for details. The problem reduces to that of finding good separators. In recent
years much progress has been made in ND reorderings as the idea of separating the graph into two
subgraphs became of prime importance for parallel processing. In particular, a nested dissection
technique based on the Metis partitioner is available as part of the Metis package [15]. The leaves of
the Nested Dissection tree represent the blocks of the independent set. In more recent fill-reduction
strategies, these blocks are also relabeled using a different reordering technique, — typically one
that is based on a minimum degree-type ordering. The tests shown in the experiments reorder
these blocks with the well-known Multiple-Minimum Degree algorithm of George and Liu [17]. We
refer to this combination as ND-ARMS. ND-ARMS also incorporates diagonal dominance selection.
The weights (17) are computed for all the rows belonging to the leaves of the ND tree. Those rows
among this set that do not satisfy the diagonal dominance criterion, are rejected to the complement
set.

The above discussion leads to some comments on the relationships between ARMS and
sparse direct solvers based on Nested Dissection. It is clear that one level of the ND-ARMS,
without dropping would result in a nested dissection sparse direct solver. The Schur complement
resulting from the first level reduction would be basically dense in most cases. However, ARMS
resparsifies it by dropping small elements. The resulting system can now be reordered again using
Nested Dissection and the process repeated until the Schur complement is small enough. Thus,
ARMS can be viewed as a sort of recursive nested dissection — which can be used only in presence
of dropping.

5 Numerical Tests

The experiments have been conducted on a PC with two Intel Pentium IIT processors with a clock
speed of 866 MHz and 900 MB of main memory. In the first test a set of matrices is selected and
three methods are compared for their overall performance on these matrices. In the second, we
illustrate a number of facts using as two matrices from Computational Fluid Dynamics.

5.1 Comparison with ILUT and ILUTP

To give a rough idea of how ARMS performance compares with existing methods, we selected a
number of matrices that are known for being relatively difficult to solve with iterative methods
and run all three methods under roughly comparable conditions. The matrices selected here
are all available from the matrix-market?. The matrix names, along with their sizes, number of
nonzero elements, and a short description of their origin is given in Table 2. The parameters
used for the experiment are listed in Table 1 Here, bsize denotes the block-size selected for the
block-independent sets and nlev is the maximum number of levels allowed. Recall that the actual
block-size itself may differ from the input value of bsize which acts as a threshold: traversal from

a point is done by level-sets and as soon as the size is above (or equal) bsize, the traversal stops.

2http://math.nist.gov/MatrixMarket. The FIDAP matrices in this experiment are the same as those in [12],
except that the two smallest matrices have been omitted.

13

bsize | nlev | fillinter | filliast | droptolr | droptoly | droptoligs: | tolpp
500 5 60 50 50 0.0001 0.001 0.2

Table 1: Parameters for the test in Table 3.

Similarly, the actual number of levels found may differ from the input value of nlev. The subscript
I indicates that the parameter is used when generating the intermediate matrices, while last refers
to the last level. The drop tolerance indexed with I is for the ILU factorization of each B -matrix
at each level as well as for the construction of the temporary matrices G, W, see, e.g., equations
(3). The parameter tolpp is the threshold value used for the relative diagonal dominance criterion
discussed in Section 4.

Matrix n nnz | Description

FIDAPO4 1601 31850 | Hamel flow

FIDAPO06 1651 49063 | Die swell

FIDAP12 3973 79078 | Stokes flow

FIDAP14 3251 65875 | Isothermal seepage
FIDAP20 2203 67830 | Surface disturbance attenuation
FIDAP23 1409 42761 | Fountain flow

FIDAP24 2283 47901 | Forward roll coating
FIDAP26 2163 74465 | Driven thermal convection
FIDAP28 2603 77031 | Two merging liquids
FIDAP31 3909 91223 | Dilute species deposition
FIDAP36 3079 53099 | Chemical vapor deposition
FIDAP40 7740 | 456189 | 3D Die swell

RAEFSKY1 | 3242 | 294276 | Incompressible flow in pressure driven pipe
RAEFSKY2 | 3242 | 294276 | Incompressible flow in pressure driven pipe
RAEFSKY3 | 21200 | 1488768 | Fluid structure interaction turbulence
RAEFSKY4 | 19779 | 1328611 | Buckling problem for container model
RAEFSKY5 | 6316 | 168658 | Landing hydrofoil airplane fse model
RAEFSKY6 | 3402 | 137845 | Slosh tank model

UTM3060 3060 42211 | Tokamak plasma reactor model

UTM5940 5940 83842 | Tokamak plasma reactor model

Table 2: A collection of 20 test matrices.

In addition to the above parameters, we should add that the tolerance used for the stopping
criterion is € = 1.e — 08, meaning that the (outer) iteration is stopped as soon as the residual norm
is reduced by 8 orders of magnitude. This does not mean that the resulting solution is accurate,
as some of the matrices are very ill-conditioned. We allow a maximum of 300 iterations. No inner
iteration is used, i.e., the last reduced system is solved by a simple backward-forward sweep with
the ILUTP preconditioner. In addition, the diagonal scaling option was turned on. This means
that the rows of each generated Schur complement are scaled by their 2-norms, then the columns
are scaled in a similar way. We use similar parameters and options for ILUT and ILUTP, namely
the drop-tolerance parameter for the ILUT/ILUTP factorization is tol = 0.001 and we allow a
maximum of 50 fill-ins in the L and U factors. Diagonal scaling was also applied before the ILU

factorization is computed. The first measures of performance shown are related to the setup of

14

the preconditioner. We first show a “fill-factor” (labelled ‘Fill’ in the tables) which is the ratio
of the number of words required to hold the preconditioner over the number of words required to
hold the original matrix. Often, users of iterative methods are especially concerned by this last
ratio, which ideally should not exceed 2 or 3. For harder problems, one should expect this number
to be bigger. Then we show the time it takes to compute the factorization for each of the three
preconditioners. Results are in Table 3

V-ARMS ILUTP ILUT
Matrix Fill | Teer | It | T3 Fill | Tt It | T; Fill | Teer | It | T;
FIDAP004 2951121 |13|029| 453|054 | 10| 0.19 || 4.42 | 0.42 0.16
FIDAP006 24114913039 269|039 | 35| 0.71 | 2.65 | 0.32 | 25 | 0.49

FIDAPO012 3.09 | 442 | 13 | 0.71 || 3.37 | 0.86 * * 0.8 | 0.18
FIDAPO14 2.74 | 1.78 | * * |1 3.29 | 0.84 ! 1132 0.3
FIDAP020 2056|116 71022 251 | 06| 33|0.92]| 221 | 0.43
FIDAPO023 24114114028 279 | 04| 12| 0.2 || 2.66 | 0.29
FIDAP024 277 (135|111 | 03] 362|073 | 20| 0.51 | 1.71 | 0.14
FIDAP026 1.58 | 1.94 | * * 11 1.85 | 0.71 | 116 | 3.46 || 1.74 | 0.58 !
FIDAP028 2.46 | 2.17 | 14 | 0.61 || 2.82 | 0.67 | 63 | 2.04 || 2.71 | 0.58 | 13 | 0.41
FIDAPO031 1751213 | 15| 08 2.71 | 0.95| 15| 0.69 | 2.32 | 0.63 | 11 | 0.46
FIDAP036 262|159 90311 3.09]| 0.41 * * 11264 03] * *
FIDAP040 2.09 31 40 | 898 || 1.68 | 637 | 24| 3.14 || 1.68 | 5.6 | 24 | 3.13
RAEFSKY1 | 1.37 | 6.11 | 26 | 2.55 || 1.05 | 2.75 | 18 | 1.13 || 0.99 | 2.34 | 18 | 1.13
RAEFSKY2 || 1.49 | 114 | 30 | 3.21 || 1.06 | 3.8 | 21 | 1.41 | 1.03 | 3.36 | 21 | 1.36
RAEFSKY3 | 1.31 | 295 | 8| 4.12 | 0.87 | 11.3 | 15| 4.81 || 0.83 | 9.76 | 16 | 5.17
RAEFSKY4 || 1.82 | 69.6 | 31 | 19.1 1.4 | 22.6 * *111.39 1205 | * *
RAEFSKY5 || 1.01 | 0.42 | 2| 0.13 || 0.92 | 0.23 0.09 081 02| 2|0.09
RAEFSKY6 || 0.92 | 0.44 | 2| 0.09 0.7 0.2 0.11 061|017 | 3] 0.08
UTM3060 3.61 | 1.81 | 58 | 2.15 || 5.28 | 0.82 * || 4.89 | 0.59 | 21 | 0.62
UTM5940 3.23 | 327 | 67| 4.7 | 5.35| 2.2 *5.01 | 171 | * *

— e = e im am OT O

* ¥ LW N

Table 3: Comparison of three methods on a set of 20 matrices.

A star indicates non-convergence in 300 steps. An exclamation point indicates a serious
arithmetic failure, such as the occurrence of a NAN. Note that the actual number of levels found
may differ from the maximum number of levels allowed. Though these are not shown on the table,
for reasons of space, in all cases, the ending level number was 2, except for FIDAP13 (nlev=1),
FIDAP14, FIDAP40, UTM5940 (nlev=3) RAEFSKY4 (nlev=4) and RAEFSKY3 (nlev=5).

Notice from the table that going from left (ARMS) to right (ILUT) the number of failures
increases substantially. Also note that the ARMS factorization is generally more costly to compute.
The performance of the set-up phase can be improved. However, it is also important to point out
that the memory used is much less than with either ILUT or ILUTP.

5.2 Tests with the BARTH Matrices

These matrices originate from a 2D high Reynolds number airfoil problem and have been supplied

by Tim Barth of NASA Ames 3. The mesh for the matrices investigated in this paper has a

3The BARTH matrices are available from the authors.

15

concentration of elements with poor aspect ratios close to the airfoil resulting in ill-conditioned
matrices. They both have 14,075 unknowns. The BARTHT1A matrix has 481,125 nonzeros and
the BARTHT2A matrix which uses a higher order discretization has has 1,311,725 nonzeros. These
matrices are discussed in [11]. Originally, the ILUT factors of the first order discretization matrix
BARTHT1A were used to precondition the second order matrix BARTHT2A, see [11] for details.
In this paper we simply solve linear systems formed from both matrices independently.

We compare two ARMS preconditioners with no inner iteration, with the ILUT precondi-
tioner. Various levels of fill are used. In our first experiment, we used the parameters shown in
Table 4 Three methods are compared in this example. First, is VARMS with the simple BFS

bsize | nlev | fillinter | filliast | droptoly | droptolr | droptolias: | tolpp
500 5 100 100 100 0.0001 0.001 0.05

Table 4: Parameters for first test with BARTH1 matrix

strategy for building independent sets. Then, we run the Nested-Dissection based ARMS. This
algorithm uses the same strategy for rejecting the rows that are the least diagonally dominant.
Three measures of performance are shown. The most important ones are the execution times
and the memory used. We show the times required to set-up the preconditioners, then the time
required for GMRES(40) to converge as well as the corresponding number of GMRES iterations.
The convergence tolerance was 1.e-09, meaning that iteration is stopped as soon as the residual
norm is reduced by nine orders of magnitude. The results are shown in Table 5. A star indicates
non-convergence in 200 steps. The column lev shows the actual number of levels found in the

factorization.

Method Fill | lev | iter | Setup sec | Iters. sec
BFS 3.21 5 21 | 2.12e+01 | 6.34e+00
NDARMS | 3.51 2 56 | 3.58e+01 | 2.21e+01
ILUT 5.04 0 | 200*% | 3.39e+01 | 6.29e+01

Table 5: Performance measures for the BARTH1 matrix

A similar test was done with the matrix BARTH2. Since this matrix is slightly more ill-
conditioned, we modified the parameters in order to obtain a more accurate factorization. The
parameters used in Table 6. In addition, diagonal scaling was turned on. The rows of each

bsize | nlev | fillinter | filliast | droptoly | droptoly | droptoly.si | tolpp
500 5 200 200 200 0.0001 0.0001 0.05

Table 6: Parameters for first test with BARTH2 matrix

generated Schur complement are scaled by their 2-norms, then the columns are scaled in a similar
way. Note that the limit of 200 for fill-in per row is used as an upper limit and is not indicative

of the number of nonzero elements kept, which is also controlled by the droptol parameter. The

16

results are shown in Table 7. It has been our general observation that, as is shown in these two tests,

nested dissection does not provide a better reordering than the simpler multiple-BFS strategy.

Method Fill | lev | iter | Setup sec | Iters. sec
BFS-ARMS | 2.25 4 21 | 1.06e+02 | 1.47e+01
ND-ARMS | 2.32 3 47 | 8.80e+01 | 3.07e+01
ILUT 3.82 0 | 200* | 3.05e+02 | 1.43e+02

Table 7: Performance measures for the BARTH2 matrix

An interesting experiment consists of exploring the effect of the parameter tolpp on the
overall performance. This was done for the standard BFS variant. Without going into the details,
we note the general observation that the performance is often poorer for tolpp = 0 and then
improves — sometimes substantially.

To give a rough idea of a comparison with a direct solver, the SuperLU code [13] with
Approximate Minumum degree (APM) required 6.203 M of memory words to factor the BARTH1A
matrix, resulting in a fill-factor of 12.89. For the BARTH2A matrix, 13.07M words are needed
resulting in a fill-factor of about 10. The factorization times on the same machine are 9.92 and
44.2 sec. respectively. It is worth noting that sparse direct solution codes usually exploit dense
computations (similar rows are treated as one unit leading to block computations) better than
iterative codes, so the raw speeds are usually much better. It has been our experience that for
two-dimensional problems such as the one tested here, the gains in execution time, if any, are
often minor. Gains in memory can be more convincing, and perhaps overwhelming for large 3-D

problems.

5.3 Inner iterations at last level

We now consider again the matrix BARTH1A. The goal of this experiment is to illustrate the
flexibility of the ARMS framework. We will show how ARMS can be adapted to solve a harder
problem using less memory. The parameters used above seem to indicate that it would be hard to
solve a system with the matrix BARTH1A with a preconditioner requiring less than 3.2 times the
memory size of the original matrix. Our tests confirm that this is more or less the case. However,
this is only if no iteration is performed at the intermediate levels or the last level. In the next
experiment we will reduce the memory requirement substantially and see if the system can be
solved using inner iterations.

In the experiment we use only one level. In order to be close to the situation of section 3.4,
we select a set of parameters that will produce an accurate ILU factorization of B, but a rough
Shur complement factorization. Specifically, the table of parameters in Table 4 is replaced by the
one in Table 8.

bsize | nlev | fillinter | filligse | droptolr | droptolias: | tolpp
1000 1 40 20 0.0001 0.01 0.05

Table 8: Parameters for the inner-outer iteration test with BARTH1 matrix

17

The last reduced system is now solved iteratively with GMRES preconditioned with ILUTP.
The GMRES iteration is not restarted and takes two parameters: a maximum number of steps

(which is also the dimension of the Krylov subspace) and a tolerance with which to solve the
systems. We set the tolerance to e = 0.001 (iteration is stopped when residual norm is reduced

by € and varied the parameter im ., from 0 (no iteration) to 60, with an increment of 5. The

resulting number of steps and the time required to converge are shown in Figure 6.

Figure 6: Convergence of inner-outer FGMRES/VARMS as a function of maximum number of
inner iterations

Outer FGMRES iterations vs.max—innner iterations allowed Time to converge vs. max-innner iterations allowed
200 T T T T T 140 T T T
-7

120

"
1
3

@
3
T

Outer iterations to converge
o 5
3 8
T
Seconds to converge
o
8

N
=)
T

4

S --g-

)

-e--9--o0--0--<
. i ! 20 . .

30 40 50 60 [10 20
Max inner iterations

o
-
S

N

S

L
30 40 50

60
Max inner iterations

The Fill-factor achieved with these parameters is 1.62. At the beginning, i.e., for im = 0
and im = 5, convergence is difficult to achieve. Surprisingly enough, im = 0 works better than
im = 5. As im increases, performance increases substantially until a level is reached when the
additional inner iterations are no longer cost-effective. If we were to reduce the drop-tolerance for
the intermediate levels from 0.0001 to an even lower value we will be able to reduce the number of
outer iterations below the limit of seven that has been reached. In words, it is not worth solving

the last reduced system with an accuracy that is higher than the level of tolerance with which this
Schur complement was computed.

6 Conclusion

The method presented here generalizes BILUTM [23] and existing related multilevel ILU strategies
[7,8,9, 19, 21, 22] by allowing a whole array of additional possibilities within the same framework.
In particular, by better exploiting the recursive nature of multilevel block ILU factorizations, it
is possible to devise many inner-outer iterations for solving the inter-level or last-level systems.
The main benefit of iterating at these levels is to make it possible to obtain an accurate solution
to the Schur complement systems with a less accurate factorization. This leads to a less costly
factorization, in terms of memory and computation time. Numerical experiments show that the

strategies for selecting the block-independent set are very important. For example, a simple tech-
nique for rejecting rows from the B-set based on a rather trivial diagonal dominance criterion, has

been shown to make a big difference in performance. The close relationship discussed in Section 4

18

between ARMS and the ND-based sparse direct solvers , suggests that there is a potential to build
far more robust iterative solvers than what is currently available, by exploiting the best techniques
of both worlds.

References

[1] L. M. Adams. Iterative algorithms for large sparse linear systems on parallel computers. PhD
thesis, Applied Mathematics, University of Virginia, Charlottsville, VA, 1982. Also NASA
Contractor Report 166027.

[2] O. Axelsson. Iterative Solution Methods. Cambridge University Press, New York, 1994.

[3] O. Axelsson and M. Larin. An algebraic multilevel iteration method for finite element matrices.
J. Comput. Appl. Math., 89:135-153, 1997.

[4] O. Axelsson and P. Vassilevski. Algebraic multilevel preconditioning methods. I. Numer.
Math., 56:157-177, 1989.

[5] O. Axelsson and P. Vassilevski. Algebraic multilevel preconditioning methods. II. SIAM J.
Numer. Anal., 27(6):1569-1590, December 1990.

[6] R. Bank and C. Wagner. Multilevel ILU decomposition. Numer. Math., 1999. to appear.

[7] E.F.F. Botta, A. van der Ploeg, and F.W. Wubs. Nested grids ILU-decomposition (NGILU).
J. Comp. Appl. Math., 66:515-526, 1996.

[8] E.F.F. Botta, A. van der Ploeg, and F.-W. Wubs. A fast linear-system solver for large un-
structured problems on a shared-memory computer. In O. Axelsson and B. Polman, editors,
Proceedings of the Conference on Algebraic Multilevel Methods with Applications, pages 105—
116, 1996.

[9] E.F.F. Botta and F.W. Wubs. MRILU: it’s the preconditioning that counts. Technical Report
W-9703, Department of Mathematics, University of Groningen, The Netherlands, 1997.

[10] Q. Chang, Y.S. Wong, and H. Fu. On the algebraic multigrid method. J. Comp. Phys.,
125:279-292, 1996.

[11] A. Chapman, Y. Saad, and L. Wigton. High-order ILU preconditioners for CFD problems.
Technical Report umsi-96-14, Minnesota Supercomputer Institute, 1996. to appear.

[12] E. Chow and Y. Saad. Approximate inverse techniques for block-partitioned matrices. SIAM
Journal on Scientific Computing, 18:1657-1675, 1997.

[13] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu. A supernodal
approach to sparse partial pivoting. SIAM J. Matrixz Anal. Appl., 20:720-755, 1999.

[14] J. A. George and J. W. Liu. Computer Solution of Large Sparse Positive Definite Systems.
Prentice-Hall, Englewood Cliffs, NJ, 1981.

19

[15] G. Karypis and V. Kumar. A fast and high-quality multi-level scheme for partitioning irregular
graphs. SIAM Journal on Scientific Computing, 20:359-392, 1998.

[16] R. Leuze. Independent set orderings for parallel matrix factorizations by Gaussian elimination.
Parallel Computing, 10:177-191, 1989.

[17] Joseph W-H Liu. Modification of the minimum degree algorithm by multiple elimination.
ACM Transactions on Mathematical Software, 11:141-153, 1985.

[18] A. Ruge and K. Stiiben. Algebraic multigrid. In S. McCormick, editor, Multigrid Methods,
volume 3 of Frontiers in Applied Mathematics, chapter 4. STAM, 1987.

[19] Y. Saad. ILUM: a multi-elimination ILU preconditioner for general sparse matrices. SIAM
Journal on Scientific Computing, 17(4):830-847, 1996.

[20] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS publishing, New York, 1996.

[21] Y. Saad and B. Suchomel. ARMS: An algebraic recursive multilevel solver for general sparse
linear systems. Technical Report umsi-99-107, Minnesota Supercomputer Institute, University
of Minnesota, Minneapolis, MN, 1999.

[22] Y. Saad and J. Zhang. BILUM: Block versions of multi-elimination and multi-level ILU
preconditioner for general sparse linear systems. SIAM Journal on Scientific Computing,
20:2103-2121, 1999.

[23] Y. Saad and J. Zhang. BILUTM: A domain-based multi-level block ILUT preconditioner for
general sparse matrices. SIAM Journal on Matriz Analysis and Applications, 21, 2000. to
appear in SIMAX.

[24] C. Wagner. Introduction to Algebraic Multigrid - Course Notes of an Algebraic Multigrid
Course at the University of Heidelberg in the Wintersemester 1998/99.

[25] C. Wagner, W. Kinzelbach, and G. Wittum. Schur-complement multigrid, a robust method
for groundwater flow and transport problems. Numer. Math., 75:523-545, 1997.

[26] J. Zhang. A grid based multilevel incomplete LU factorization preconditioning technique for
general sparse matrices. Technical Report 283-99, Department of Computer Science, Univer-
sity of Kentucky, 1999.

[27] J. Zhang. A multilevel dual reordering strategy for robust incomplete LU factorization of
indefinite matrices. Technical Report 285-99, Department of Computer Science, University of
Kentucky, 1999.

[28] J. Zhang. RILUM: a general framework for robust multilevel recursive incomplete lu precon-
ditioning techniques. Technical Report 284-99, Department of Computer Science, University
of Kentucky, 1999.

20

