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Abstract

We present a deflated version of the conjugate gradient algorithm for solving linear systems. The
new algorithm can be useful in cases when a small number of eigenvalues of the iteration matrix are
very close to the origin. It can also be useful when solving linear systems with multiple right-hand
sides, since the eigenvalue information gathered from solving one linear system can be recycled for
solving the next systems and then updated.
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1 Introduction

A number of recent articles have established the benefits of using eigenvalue deflation when solving nonsym-
metric linear systems with Krylov subspace methods. It has been observed that significant improvements
in convergence rates can be achieved from Krylov subspace methods by adding to these subspaces a few
approximate eigenvectors associated with the eigenvalues closest to zero [2, 4, 7, 8, 13, 14]. In practice,
approximations to the eigenvectors closest to zero are obtained from the use of a certain Krylov subspace,
then these approximations are dynamically updated using the new Krylov subspace. Results of experi-
ments obtained from these variations indicate that the improvement in convergence over standard Krylov
subspaces of the same dimension can sometimes be substantial, especially when the convergence of the
original scheme is hampered by a small number of eigenvalues near zero, see e.g., [2, 8].

In this paper we consider extensions of this idea to the Conjugate Gradient algorithm for the symmetric
case. Our starting point is an algorithm recently proposed by Erhel and Guyomarc’h [5]. This is an
augmented subspace Conjugate Gradient method aimed at linear systems with several right-hand sides.
Erhel and Guyomarc’h [5] propose an algorithm which adds one specific vector obtained from a subspace
related to a previous right-hand side. We first extend this algorithm to one which handles an arbitrary
block W of vectors. We note that introducing an arbitrary W into the Krylov subspace of CG has already
been considered by Nicolaides in [9]. The algorithm introduced in this paper is mathematically equivalent
with the one in [9]. Nicolaides’ algorithm is directly derived from a deflated Lanczos procedure and uses the
3-term recurrence version of the conjugate gradient algorithm. The algorithm in this paper exploits the link
between the Lanczos algorithm and the standard Conjugate Gradient algorithm. The LDL factorization
of the projected system obtained from the same deflated Lanczos procedure leads to a procedure that is
closer to the standard CG algorithm.

In the second part of the paper, we apply this technique to the situation when the block W of added
vectors is a set of approximate eigenvectors. This, in turn is used for solving linear linear systems with
sequential multiple right-hand sides.
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2 The Deflated Lanczos Algorithm

Consider a symmetric positive definite (SPD) matrix A € R™*" and let k real vectors wq, w2, -, wy be
given along with a unit vector v; that is orthogonal to w; for i = 1,2,---, k. Define W = [wy, wa, - -, wg].
We assume that [wy, wa, -+, wg] is a set of linearly independent vectors. Since A is SPD, the matrix

WT AW is then non singular.
The Deflated Lanczos Algorithm builds a sequence {v;};—12,... of vectors such that

Uj+1 L span{W, U1, V2, "71)]'} (1)

and
lvjall2 = 1. (2)
To obtain such a sequence, we apply the standard Lanczos procedure [12, p.174] to the auxiliary matrix

Bi= A— AW (WTAW) " WTA (3)

with the given initial v;. The matrix B is symmetric but not necessarily positive definite. Then we have
a sequence {v;};—1,2,..., of Lanczos vectors which satisfies

BV} = V;Tj + 0j110j41€5 (4)
where
p1 02
o2 p2 O3
T, =
Oj-1 Pj-1 0j
gj Pj
and where Vj := [v1,v2,---,v;] and e; is the last column of the j x j identity matrix I;.

It is guaranteed by the Lanczos procedure that the vectors v; are orthonormal to each other. From
(4), it follows that

0j41Vj41 = BU]' — 0Vj—1 — P;jU;-

Using induction and noting that W7 B = 0, we have ’UJT_,’_IW =0for j =1,2,---, and hence the sequence
{v;}j=1,2,.. of Lanczos vectors has the properties (1) and (2).

Substituting B in the Lanczos algorithm applied to B with the right-hand side of (3) gives the following
algorithm.

ALGORITHM 2.1 Deflated Lanczos Algorithm

1. Choose k vectors wy,ws, - -,wy. Define W = [wy, wa, -+, wg].

2. Choose an initial vector vy such that vi W =0 and ||vi||2 = 1. Set o1vo = 0.
3. Forj=1,2,---,m, Do:

4. Solve WE AW D; = WT Av; for b

5 25 = A’l)j - AWﬁJ

6. pj =] 2z

7 Oj+1 = 2j = 0jUj-1 = Pjv;

8. 0j+1 = [0j41ll2; If 0j41 == 0 Ewit.

9. Vit = Ojy1/0441
10. EndDo

The deflated-CG algorithm proposed by Nicolaides [9] can be readily obtained from the above algorithm
by deriving a sequence of iterates whose residual vectors are proportional to the v-vectors.



3 The Deflated-CG Algorithm

We now turn to the linear system
Az = b, (5)

where A is SPD. Based on the deflated Lanczos procedure described in section 2, we wish to derive
a projection method, following a standard technique used in the derivation of the Conjugate Gradient
algorithm [12, p.179] from the standard Lanczos procedure.

Here, the w;’s and v;’s are as defined in the deflated Lanczos procedure and we use the notations W
and V; introduced in Section 2. Assume an initial guess xo to (5) is given such that rq := b — Az L W.
We set v = ro/||rol|2- Define

Kkyj (A7 WJ TO) = span{W, ‘/}}

At the j-th step of our projection method, we seek an approximate solution z; with

xj € xo + K ; (A, W,rg) (6)
and
r; =b—Ax; L Ky ;(A,W,r0). (7
Lemma 3.1 If z; and r; satisfy (6) and (7), then
Tj = CjUj+1 (8)
for some scalar ¢;. Thus Ky ;(A, W, ro) = span{W,ro,r1,---,rj_1} and the residuals r; are orthogonal to

each other.
Proof. Using (6), the approximate solution z; can be written as
zj = w0+ W&+ Vi (9)
for some éj and 7j;. Moreover, from (3) and (4) we have
AV = AWA; + V;Tj + 01105416, ,
where A; := (I/VTAT/V)_1 WTAV;. Hence
r;i = To— AWéj — AV;n;
= 10— AWE — (AWA; + ViTj + 0j410j11€7 ) 1;. (10)

Multiplying (10) with W7, and using the orthogonality conditions (1) and (7) immediately leads to the
following system of equations for ¢; and 7;,

WTAWE + WT AW A;ij; = 0.
Since WT AW is non singular, we get éj = —Ajij;. Then (9) and (10) become
zj =z — WA;N; + V;i;

and
rj =10 — ViTjilj = 0jr10j41€] 1);. (11)
Moreover, since ro = ||ro||2v1 by definition and VjTrj = 0 by (7), we have
Vi'rj = Vi'ro = Tin; = |Irollaer — Tyil; = 0,
where e, is the first column of I;. Hence
fij = lIroll2T; 'e1. (12)

Substituting (12) into (11), one can see that r; = ¢;v;41 for some scalar ¢;. ]



Let Tj = L;D;L] be the LDL™ decomposition of the symmetric matrix Tj. Define
P =[po, p1, -+, pj—1] = (-WA; + V;) L7 TA; (13)
where A; = diag{co,c1,---,¢j—1}.

Proposition 3.2 The solution x;, the residual r;, and the descent direction p; satisfy the recurrence
relations

Tj = Tj-1+Qj_1Pj-1,
rj = Tj-1—-14pj-1, (14)
pj = T+ Bi-pi1 — Wi,

fOT‘ some ajflngjfl;p‘j‘ Thus ICk’j(A, WJ TO) = Spa”{W7P07P17 T 7pj71}

Proof. Let
2 -1
G =lIroll2 (L;DjA;) " ex.

The approximate solution is then given by

z; o + [Irolla (=WA; +V;) T} 'ex

= 9+ Pjéj.

Because of the lower triangular structure of L;D;A;, we have the relation

5, _ Cj—l
;=
aj_1
for some scalar aj_;. The recurrence relation for z; immediately follows.

Now, rewriting (13) as
-17T
PiA Lj Aj = —WA;A; + VA,
and noting that AJ-_IL]-TAJ- is unit upper bidiagonal, we have by comparing the last columns of both sides
of the above equation
pj-1 — Bj—2pj—2 = —Wij_1 + ¢j—10j,

where B;_2 = —cj_1uj_1,j/¢j—2 and fi;_1 = ¢;j_1¥;. Thus, the recurrence for the p;’s is obtained. O

Proposition 3.3 The vectors p; are A-orthogonal to each other, i.e., P]'TAPJ' is diagonal. In addition,
they are also A-orthogonal to all w;’s, i.e., WT AP; = 0.

Proof. Indeed,

PIAP; = Pl (—AWA; +AV)) L;TA;

P (ViT; + 0j+1vj+1eng) L7TA,

ATLT (~WA; + Vi) (ViTj + 0jravjre] ) L7 TA;
ATLI'T LA,

ATD;A,;

is diagonal and

wtAP;

W (—AWA; + AV;) L7 TA;
wT (VjTj + O’j+1’Uj+1€;‘-”) LJ-_TA]-
0.



By using the orthogonality of r;’s and the A-orthogonality of p;’s, the coefficients in (14) can be
expressed via the vectors W,r; and p;.

Proposition 3.4 The coefficients in Deflated-CG satisfy the relations

o = i
)
p; Ap;
g = (WTAW) " W7 Ar;, (15)
g, = Tl
J riry
Proof. Multiplying (14) with 7], yields
TJT-Llijl T]T,lijl _ r;‘-”flrj,l

Q51 = = N = .
7','T71Apj—1 (Bj—2pj—2 +Tj1 — W,Ujfl)T Apj_1 p;"r;1APj—1

Similarly, the expressions for fi; and (;_; are obtained as follows by applying (AW)T and (Apj_l)T to
(14) respectively,

;= (WTAW) ™ W7 Ar;,

T
3 piaAry 1 (=)'
o= - _
! p]T_1Apj71 51 pf_1Apj71
1 T";I-—’Tj _ 'I‘JTT]'

= T T :
aj1 P Apj—1 T T

O
Putting relations (14) and (15) together gives the following algorithm.
ALGORITHM 3.5 Deflated-CG
1. Choose k linearly independent vectors wy,ws,- -, wg. Define W = [wy, w2, -, wg].
2. Choose an initial quess xo such that WTryg =0, where ro = b — Axy.
3. Solve WTAW juig = WT Arg for i and set pg = ro — Wjlg.
4. Forj=1,2,--- m, Do:
5. a1 = T’]I-LlTj_l/p’]I-LlApj_l
6. Tj =Tj—1 +0j-1Pj—1
7. ry ="Tj-1— Oéj_lApj_l
8. Bi—1 = 7’27"7‘/7';-1;17']'_1
9. Solve WEAW i; = WT Ar; for ju
10. pj = Bj—1pj—1 +r; — Wiy
11. EndDo
To guarantee that the initial guess xo satisfies WTry =0, we can choose zg in the form
wo=a 1+ W (WTAW) " WTr_y, (16)

where z_; is arbitrary and r_; := b— Az_;. This choice was used in [5, 10, 11, 15].
A preconditioned version of Deflated-CG can be derived in a straightforward way. Suppose we are
solving the split-preconditioned system

L7'AL Ty=L""%, z=LTy.



Set M = LLT. Directly applying the Deflated-CG algorithm to the system L™'AL~Ty = L=1b for the
y-variable and then redefining the variables

L-Tw — W,
LiTyj -+ Zj, (17)
LT]' - Ty,
Liij - Dj-

yields the following algorithm.

ALGORITHM 3.6 Preconditioned Deflated-CG

Choose k linearly independent vectors wy,ws, - --,wy. Define W = [wy,wa, - - -, wg].
Choose o such that WTrq =0, where ro = b — Azg. Compute zo = M~ 'rg.
Solve WT AW fig = WT Azq for ju and set po = —W jio + 2o.
Forj=1,2,---,m, Do:

aj1 =r]_12j-1/p]_1Apj—1

Tj=Tj-1+05-1pj-1

rj=Trj-1— ej-1Apj

Zj = M_lTj

Bij—1 = rzzj/rf—lzj—l
10. Solve WEAW i; = WY Az; for ji
11. pj = Bj—1Pj-1 + 25 — Wi,
12 EndDo

© %0 R Gt Lot~

When W is a null matrix, Algorithm 3.6 reduces to the standard preconditioned CG algorithm, see,
for instance, [12, p.247]. In addition to the matrices A and M, five vectors and three matrices of storage
are required: p, Ap, r, x, z, W, AW and WTAW.

4 Theoretical Considerations

We observe that Deflated-CG is a generalization of AugCG [5] to any subspace W. Since the theory
developed in [5] did not use the fact that W was a Krylov subspace, the convergence behavior of Deflated-
CG algorithm can be analyzed by exploiting the same theory. Define

H=I-W (WTAW) " (AaW)T
the matrix of the A—orthogonal projection onto W+4 and
HT =1 — AW (WTAW) " w7

the matrix of the A~!-orthogonal projection onto W+. These matrices satisfy the equality

AH=H"A=HTAH (18)
as depicted below.
A
R" - R» x = Ax

wia o oL Hx — AHz=HTAx

We first prove that xo must be chosen by formula (16). Then we prove that the Deflated-CG algorithm
does not break down, converges and finally, we will derive a result on the convergence rate.

Proposition 4.1 In order to obtain an initial residual ro that is orthogonal to W, Algorithm Deflated-CG
must start with zo given by (16).



Proof. Formula (16) can be rewritten as zo = Hz_1 +W (WTAW)~1WTh. We want to have (AW)Tzo =
WTh. The linear mapping (AW)7 is of rank k because its kernel is W4 of dimension n — k which is
also the image of H. Therefore the solutions of (AW)T 2y = WTb are of the form Hz_; + = where z is a
particular solution. It is easy to see that z = W(WTAW) 1 Wb satisfies (AW)Tz = WTb. Deflated-CG
must then start with zo given by (16). O

Proposition 4.2 Algorithm 3.5 is equivalent to the Balanced Projection Method [6], defined by the solution
space condition
Tjy1 — x5 € Ky (A, W,ro) (19)

and the Petrov-Galerkin condition
ro LW and r; L Ky ;(A,W,rg). (20)

Proof. It is easy to show by induction that p; € K ;j(A, W, 7o) hence the solution space condition is
satisfied in Algorithm 3.5. It satisfies by construction the Petrov-Galerkin condition.

Converserly, the BPM defined with (19) and (20) satisfies all the recurrence relations stated in Deflated-
CG algorithm. O

The following result follows immediately.

Theorem 4.3 Let A be a symmetric positive definite matriz and W a set of linearly independent vectors.
Let x* be the exact solution of the linear system Ax = b. The algorithm Deflated-CG applied to the linear
system Az = b will not break down at any step. The approxzimate solution x; is the unique minimizer
of the error norm ||x; — x*||a over the affine solution space xo + Ky ;(A,W,ro) and there exists € > 0,
independent of xqo, such that for all k

llzj —2*[|la < (1 —€) [lej1 — 2[4
Proof. See theorems 2.4, 2.6 and 2.7 in [6] and theorem 2.2 in [5]. O
We can now directly apply the polynomial formalism built in [5] to obtain convergence properties.

Theorem 4.4 Let k be the condition number of H' AH. Then

Ve -1}’
«—Zilla <2
o — 2yl <2 (YT
Proof. See theorem 3.3 and corollary 3.1 in [5]. Theorem 3.3 proves that r; = Pj(AH)ro where P; is
a polynomial of degree j so that, using (18), we get r; = P;(HT AH)ro. Then the minimization property
leads to the desired result. O

[l — 2ol - (21)

Deflated-CG can also be viewed as a Preconditioned Conjugate Gradient (PCG) but with a singular
preconditioner. Define
C=HH".

We use the taxonomy defined in [1], where two versions of PCG are denoted by Omin(4,C,A) and
Odir(A,C, A).

Lemma 4.5 Deflated-CG algorithm is equivalent to the version Omin(A, C, A) of PCG applied to A with
the preconditioner C = HH™T and started with rq such that ro L W.

Proof. The relations po = =W jig +ro and p; = =W ji; + B;_1pj—1 + r; can be rewritten respectively as
po = Hro and p; = Hr; + Bj—1pj—1 . However, since r; L W, we have r; = H r; so,

Po = Cro and p; = CT]' =+ ﬁj—lpj—l

These are exactly the same relations as those of Omin(A4, C, A). We must now prove that the coefficients o;
and 3; are the same. It is sufficient to show that (rj,Cr;) = (rj,r;). We have (r;,Cr;) = (rj, HHr;) =
(H"rj, HTrj) = (rj,75). O



Here the preconditioner C' is singular so that convergence is not guaranteed. However, since the initial
residual is orthogonal to W, the following result can be proved.

Theorem 4.6 Deflated-CG is equivalent to the version Odir(A,C,A) of PCG applied to A and C and
started with ro L W. Therefore Deflated-CG converges.

Proof. Since o = (r;,7;), we have a; # 0 except if z; is the exact solution. Hence Deflated-CG does
not break down and, as shown in [1], both versions Omin and Odir are equivalent. Now, using theorem
3.1 in [1], we infer that Deflated-CG converges. O

To derive the convergence rate, we prove another equivalence.

Theorem 4.7 Deflated-CG is equivalent to Conjugate Gradient, version Omin(A,I,A), applied to the
linear system HTAHZ = HTb. Therefore, the convergence rate is governed by the condition number k of
HTAH and given by (21).

Proof. Deflated-CG starts with zo = HZo + Wy given by formula (16). Therefore
ro=HTrg=HT(b— Axo) = H'b— HTAH%y — HT AWy, = HTb — HT AH .

Algorithm Omin(A,I,A) applied to HT AHZ = H™b is as follows,

1. Choose &#g. Define 7o = HTb — HT AH#%, and py = 7.
2. For j =1,2,---, until convergence Do:
A — 7T = 5T T 5. -
3 Gj_1 =75 _1Fj—1/Pj_H" AHP;_1;
4. .fﬁj = Ii'j_l + dj_lﬁj_l;
5. ’FJ' = fj,1 — dj,lHTAHﬁj,“
6 Bi—1 =17 75 /T 1715
7 Dj =T+ Bj-1Pj1;
8. EndDo

Now, define z; = Hz; + Wyo and p; = Hp;. Using r; = HIr; and HT AWy, = 0, we get
ri=H"(b— Az;) = H'b— H' AHz; = 7.

Now
P H"AHp; 1 = (Hp; 1)  A(Hp; 1) = pj Ap;.

Putting everything together, we get &; = r]r;/p] Ap; and B = rir;/r]_yrj_1. If we rewrite the
above algorithm using z;,7;,p; we get exactly algorithm Deflated-CG. Therefore, the classical result on
the convergence rate of CG can be applied, see, e.g., [12, p.194]. m|

5 Systems with multiple dependent right-hand sides

In this section, we present a method which applies the Deflated-CG algorithm to the solution of several
symmetric linear systems of the form

Az = s=1,2--- (22)

where A € R™*" is SPD and where the different right-hand sides b*) depend on the solutions of their
previous systems. This problem has been recently considered by Erhel and Guyomarc’h [5]. The main idea
in [5] is to solve the first system by CG and to recycle the Krylov subspace K, (4, zg) created in the first
system to accelerate the convergence in solving the subsequent systems. The disadvantage of this approach
is that the memory requirements could be huge when m is large [3] since it requires keeping a basis of
an earlier Krylov subspace K, (4,0). An alternative whose goal is to maintain a similar convergence



rate, is to adopt the idea of eigenvalue deflation, as used in the Deflated-GMRES algorithm for example,
see [2, 4, 8]. Deflated GMRES injects a few approximate eigenvectors into its Krylov solution subspace.
These approximate eigenvectors are usually selected to be those hampering the convergence of the original
scheme. Imitating the approach of Deflated-GMRES, we will add some approximate eigenvectors, usually
corresponding to eigenvalues nearest zero, to the Krylov solution subspace when we solve each, but the
first, system of (22). The eigenvectors are refined with each new system (22) being solved. In this way, we
may expect that the convergence will be improved as more systems are solved. The memory requirements
for this approach are fairly low, since only a small number of eigenvectors, typically 4 to 10, are required.

We start by deriving the convergence rate from section 4 when W is a set of eigenvectors. We label all
the eigenvalues of A in increasing order

A< A << A

In the special case where the column vectors, wy,ws, - - -, wg, of W are exact eigenvectors of A associated
with the smallest eigenvalues A1, A2, -+, Ag, then clearly

k(HTAH) = Ay /Mpy1-

In this special case, the improvement on the condition number of the equivalent system solved by Deflated-
CG is explicitly known. When the column vectors of W are not exact but near eigenvectors associated
with A1, A2,---, Ax, one can only expect that

k(HTAH) ~ My /Mpy1.

5.1 Computing approximate eigenvectors

There are several ways in which approximate eigenvectors can be extracted and improved from the data
generated by the successive conjugate gradient runs applied to the systems of (22). Let

W(S) = [w£8) ) wgS)a o awl(:)]

be the desired set of eigenvectors to be used for s-th system. Initially W) = ¢. In what follows vector
and scalar quantities generated by Deflated-CG applied to the s-th system of (22) are denoted by the
superscript s. Ideally, W (%) is the set of eigenvectors associated with the k eigenvectors corresponding to
the eigenvalues A1, Aa, -+, Mg, of A. Deflated-CG is used to solve each of the systems of (22) except the
first which is solved by the standard CG.

After the s-th system of (22) is solved, we update the set W () of approximate eigenvectors to be used
for the next right-hand side, yielding a new system W(s+1)_ In [2], three projection techniques are described
to obtain such approximations. Here we only describe one of them suggested by Morgan [8] and referred to
as harmonic projection. This approach yielded the best results in finding eigenvalues nearest zero. Given [
linearly independent vectors { z1, 23, - -, z; }, the method computes the k desired approximate eigenvectors

by solving the generalized eigenproblem
Gy —0Fy =0,

where Z := [21,22,+,21],G = (AZ)T AZ and F = ZT AZ. For each new system, the matrix Z is defined
as follows,

7 =W, R, (23)
where !
P = [pc(f), P, B
The generalized eigenvalue problem
Gy —0Fy; =0, i=1,---,k (24)

1One may keep the system of residual vectors rq‘(s) instead of the search directions pz(-s) . But the formulas (28 - 30) become

more complex.



is solved, where
T T
FO = (Z<S>) AZ® GO = (AZ(S)) AZ®), (25)

and where 64, ...,0; are the k smallest Ritz values. Then the new approximate set of eigenvectors to be

used for the next system is defined as
Wit = z()y(s), (26)

where
y® = [y§s), .. ,y,(:)].

This describes the method mathematically. From the implementation point of view, it is possible to
avoid the matrix-matrix multiplication AZ(®) in G®*) and F(®) in (25).

Lemma 5.1 Let

Rl(s) = I:T(()S)y 7'§5)7 T Tl(s)l] ’ Al(j—)l I:N(S) A(S)7 ) nal(S) )
and
- (15) -
%o (s)
I L
0 1 1 _/81
- 1 ., -
L = T , O = - .
(s)
a{lS_)l 1 B ]f71
1
NO)
L -1

Then the matrix APl(s) can be computed by
AP = L = (WORE, + PGB HO )
Proof. The result follows immediately from the following two relations of Algorithm 3.5:

O R O
(s) _ 1 (s) _ 1 (s)
Ap;” = a(_s)rj a(s)rj+1
J

O

Next, the relation established in the following proposition enables us to solve the harmonic problem (24)
without requiring additional products with the matrix A.

Theorem 5.2 Define

DY = diag{d, d”, -+, di2, ), where & = (57) " Arf?,

and -
B s d s b
(1 +657) +
_d (s)) _ 4
ags) al (1 + /3 ags)
- ') .
G = —ﬁ
1
i,
(s) () g=
de d :
al(:)1 (1 + ﬁ(s) )

10



Then the matrices G, F®) and AW®) are given by

’ (W)W () AR E
G o= A 7Y (T g () A(s) (28)
(AL) (W) aw G
ON140)
s _ [ (W) AW 0
Fl) = ( . B (29)
AWEHD = AW, APy ) (30)

where APl(s) is given by (27).

Proof. The desired results can be obtained by using (26), (25), (27) and the A-othorgonality of P against
w. O
(s) ()

In order to use this approach we must save d; ,aﬁs), gs), ﬂﬁs) )

as well as the matrices W), AW () and (W(S))T AW ),

and p;”’ of the first [ steps of the algorithm

5.2 Deflated-CG algorithm for Dependent Multiple Right-hand Sides

In summary the deflated algorithm for multiple right-hand sides works as follows. Assume we want to
deflate with k eigenvectors. In a first run, the standard CG is run with a number of steps ! which is no

less than k. The data dgl), agl), ﬁz(l) fori =0,1,---,1—1, and Pl(l) = [p(()l), e ,pl(l_)l] are saved. Then
G and FM are computed according to (28) and (29) with s = 1. The eigenvalue problem (24) is solved
for k eigenvectors which will constitute the columns of Y and W2 is computed as W = [Pl(l)] Yy
since W) = (). In subsequent steps, the deflated algorithm is used instead of the standard CG using the
set W = W (). The matrices AW and (W)T AW () are computed using (30). We proceed as before
except that W+ is now defined by W+ = [W(s),PZ(s) JY). The matrices G**) and F(®) to compute

the eigenvectors ygs) are computed according to the formulas (28 - 30).
A preconditioned version of the method described above can be readily obtained by considering the

split preconditioned systems
LYAL Ty = L= 20 = [=Ty(®), s=1,2,---,v.

As in the case of Preconditioned Deflated-CG, we apply the method to systems L™'AL=Ty(s) = L—1p()
for the y-variable and then redefine the original variables according to (17). Everything in (24) remains
the same except G*) which now becomes

(AW M-taw® (W) aw@AL), 1O

G = e L NT 5 , 31
(B, 20)" (v awee G 31
where M = LLT.
Also the computation of API(S) in (27) now becomes
WA = M R L = (WOAD, + HO0) I 2)

Putting these relations together we obtain the following algorithm.

ALGORITHM 5.3 Deflated PCG for Multiple Right-hand Sides

1. Selectl and k with [ > k.
2. Solve the first system of (22) with the standard PCG.
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8. Compute G and FO) using (31) and (29). Set W) = 0.

4. Fors=2,3,---,v, Do:

5. Solve (24) for k eigenvectors ygs_l),yés_l), ‘e ,y,(cs_l). Set W) =
[W(S—l),Pl(s’l) y(s=1)

6. Choose [ > 0.

7. Solve the st system of (22) by Preconditioned Deflated-CG with W = W (),
Compute G®) and F®) according to (31), (28), (29) and (32).

8. EndDo

In addition to the memory required by the Preconditioned Deflated-CG algorithm, I + 1 vectors

ﬂ((f), ﬁ@, - ﬂl(s) must be stored along with the three matrices f/l(s), Ul(s) and f)l(s).

6 Practical Considerations

We now consider the memory and computational cost requirements of the deflated CG algorithm. We
assume that k¥ < n so that we can neglect terms not containing n.

In Deflated-CG, we must store W and AW in addition to the usual vectors of CG. This means an
additional storage of 2k vectors of length n. Deflated-CG requires to compute Hr; at each step. This
can be done using common BLAS?2 operations in z; = (AW)%r; and r; — W(WTAW)~1z;. The cost of
these operations is O(kn) so that the CPU overhead is not too high. There remains to consider the cost
of computing W. In AugCG, which can be viewed as a particular case of Deflated-CG, W is the set of
descent directions from the first system, so that the set W is A-orthogonal. The method has at least two
advantages : only the last column of W needs to be saved instead of all W. The projection H simplifies
into only one orthogonalization (for only the last vector wg). However, if s is greater than 2, then it is not
easy to refine W. The only solution would be to store all consecutive sets of direction descents W () at a
cost of a high memory requirement.

From a computational point of view, it is advantageous to have a set of vectors W that is A-orthogonal,
in which case, the matrix W7 AW becomes diagonal. However, this is not essential and the difference in
cost involved is minimal.

Approximate eigenvectors are computed from the generalized eigenproblem (24). We need to store not
only W and AW but also [ vectors Pl(s), amounting to 2k + I vectors of length n. The computation of
W using (26) and AW using (30) require mainly BLAS3 operations of complexity O(n(l + 1)k) and the
computation of WT(AW) is a BLAS3 operation of complexity O(nk?). If k and [ are kept small, the
overhead is modest.

7 Numerical Experiments

In this section, we present some examples to illustrate the numerical convergence behavior of Algorithm 5.3
and the analysis in Section 5. All the experiments were performed in MATLAB with machine precision
10716, The stopping criterion for examples 1 - 3 is that the relative residual ||b — Axz;||2/||b||2 be less than
1077, All the figures except Figure 2 (b) plot the true relative residual versus the number of iterations
taken.

Example 1. The purpose of this example is to test the analysis of Section 5. We considered the matrix
A = Lapl(20,20), a matrix of size n = 400 generated from a 5-point centered difference discretization of
a Laplacean on a 22 x 22 mesh (20 points in each direction). The right-hand side b of (5) was chosen to
be a random vector with independent and identically distributed (iid) entries from a normal distribution
with mean 0 and variance 1 (IN(0,1)). The largest eigenvalue of A is 7.9553 and the four smallest ones
are 0.0447,0.1112,0.1112,0.1777. We first computed the exact eigenvectors wq,ws,ws associated with
the three smallest eigenvalues 0.0447,0.1112,0.1112 respectively and then applied the standard CG with
zg = 0, the Deflated-CG with z_; = 0 in (16) and W = [w], [w1,w2], [w1, w2, ws] respectively, to the
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system (5). Their convergence behaviors are plotted in Figure 1 (a) with solid, dashdot, plus and dashed
curves respectively.

From Figure 1 (a), we can see that the convergence behavior of Deflated-CG with W = [w;] is better
than that of CG. Deflated-CG with W = [w1] solves a system with the condition number x = 7.9553/0.1112.
On the other hand, the convergence rates of Deflated-CG with W = [wi] and W = [w, w2] respectively
are almost the same since they are solving systems with the same condition numbers x = 7.9553/0.1112. It
can be understood that Deflated-CG with W = [w;, w2, w3] has the best behavior since the corresponding
condition number £ = 7.9553/1.777 is the smallest.

Examples 2 and 3 demonstrate the efficiency of our algorithm when applied to (22). We always choose
the initial guess o = 0 in solving the first system and z_; = 0 in (16) for the remaining systems solving.
The number of right-hand sides of (22) is 10 and the b(*)’s are independent random vectors with iid
entries from N(0,1). Although we have selected the right-hand sides independently, we believe same
conclusions can be made when they are dependent. Also, we kept the data in the first [ = 20 steps and
k = 5 approximate eigenvectors associated with smallest eigenvalues were calculated via the QZ algorithm
in Matlab, when we solved each system. We compared our Algorithm with Algorithm AugCG [5] with
m = 30 for the second system (s = 2). All the test matrices were from the Harwell-Boeing Collection?.

The convergence behavior of system s = 1, corresponding to the standard preconditioned CG algorithm,
is plotted with a dotted line. The convergence behaviors of systems s = 2,---,s = 10 using Algorithm 5.3
are plotted with a dashed line. The convergence behavior of system s = 2 using Algorithm AugCG is
plotted with a solid line.

Example 2. This example is the second matrix named BCSSTK15 from the BCSSTRUC2 group of the
Harwell-Boeing Collection. The order of the matrix is 3948. The system was preconditioned by Incomplete
Cholesky factorization ic(1). Results are shown in Figure 1 (b).

Example 3. The matrix is the fourth one named 1138BUS from the PSADMIT group. The order of the
matrix is 1138. i¢(0) preconditioner was used and the results are shown in Figure 2 (a).

We observe that the number of iterations decreases significantly after the first few systems solving and
quickly tends to its lower bound. It is because the approximate eigenvectors we chose quickly approach
to their corresponding limits in the first few rounds of refinements. When these approximate eigenvectors
have reached their limits, the number of iterations no longer decreases.

In practice, we may omit Line 5 or vary k and [ when we find that the approximate eigenvectors are
no longer improved when running Algorithm 5.3. However, it is still an open problem how to define a
criterion to characterize the situation when eigenvectors no longer improve.

The algorithm does not always behave so well as demonstrated in the last two examples. The one
below illustrates this situation.

Example 4. The test matrix is the one named SSRMT3M3 from the CYLSHELL group of Independent
Sets and Generators®. In this experiment, we chose | = k = 10 for Algorithm 5.3 and m = 30 for
Algorithm AugCG. Moreover, the incomplete Cholesky preconditioner ic(2) was used and we set the
stopping criterion ||b— Az;[|2/||b||2 < 10~® and the number of right hand sides of (22) to be 5. Everything
remained the same as in Examples 4 and 5 and the convergence behaviors were plotted in Figure (3) (a).

We observe from the experiment that systems 2, 3, and 5 solved by deflated-CG and system 2 solved
by AugCG do not converge. What is worse is that their convergence seems to be subject to instability.
Theoretically, the residuals r; in both deflated-CG and AugCG are orthogonal to all the columns of W.
In practice, however, this orthogonality is gradually lost as the algorithms progress. In fact, Figure (2) (b)
shows a plot of the function

T,
othor(j) = min (L, i = 1,2,---,k)
llwill2llr;l2

2,3 WWW: http://math.nist.gov/MatrixMarket/data,/
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Figure 1: (a) Illustration of the analysis in Section 5. (b) Convergence curves for matrix BCSSTK15.
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Figure 2: (a) Convergence curves for matrix 1138bus. (b) dashed: system 2 solved by AugCG; dashdot:
system 5 solved by Deflated-CG; solid: system 2 solved by AugCG with correction; dotted: system 5 solved
by Deflated-CG with correction.
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Figure 3: (a) Convergence curves for matrix SSRMT3M3. (b) Convergence curves with correction of r;
for matrix SSRMT3M3.

for system 2 solved by AugCG and system 5 solved by Deflated-CG. Both curves of the function othor(j)
show that loss of orthogonality is so high that it ruins convergences.
One remedy to recover orthogonality is to add the reorthogonalization step

rj =1, =W (WIW) " W7, (33)

right after r; is computed in the algorithms. We ran Algorithm 5.3 and Algorithm AugCG again with this
correction included and plotted the results in Figure (3) (b). This time, only systems 3 and 5 solved by
Deflated-CG and system 2 solved by AugCG do not converge and all of them have decreasing convergence
curves. By comparison, we also plotted the function othor(j) after correcting r; with (33) in Figure (2)
(b). Note that the curves with correction are much lower than those without correction.

8 Conclusion

An algorithm was presented which incorporates deflation to the conjugate gradient algorithm with arbitrary
systems of vectors. The method can be used for solving linear systems with multiple and dependent right-
hand sides. The main advantage of this approach is that the size k of the subspace to be kept can be kept
small without loss of efficiency relative to methods which require saving whole previous Krylov subspaces.
Another advantage is that it is easy to refine the set W as each new system is solved. Theoretical results as
well as experimentation confirm that convergence which results from the deflation improves substantially
as the number of systems increases. As is expected, as soon as the set W of approximate eigenvectors
is computed accurately, there is no further improvement for each new system to be solved unless the
dimension of W is increases.
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