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Abstract

This paper introduces techniques based on diagonal threshold tolerance when devel-
oping multi-elimination and multi-level incomplete LU (ILUM) factorization precondi-
tioners for solving general sparse linear systems. Existing heuristics solely based on the
adjacency graph of the matrices have been used to find independent sets and are not
robust for matrices arising from certain applications in which the matrices may have
small or zero diagonals. New heuristic strategies based on the adjacency graph and the
diagonal values of the matrices for finding independent sets are introduced. Analytical
bounds for the factorization and preconditioned errors are obtained for the case of a
two-level analysis. These bounds provide useful information in designing robust ILUM
preconditioners. Extensive numerical experiments are conducted in order to compare
robustness and efficiency of various heuristic strategies.
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1 Introduction

We study reordering techniques in developing efficient multi-level preconditioner to solve

general sparse linear system
Au = b, (1)

where A is an unstructured matrix of order n. Such large linear systems are often solved by
Krylov subspace methods coupled with a suitable preconditioner [30]. It is widely accepted
that the convergence rate of a preconditioned Krylov subspace method is primarily deter-
mined by the quality of the preconditioner employed [20, 30]. As a result, recent focus has
shifted from designing iterative accelerators to constructing efficient preconditioners.
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Many preconditioners have been developed with specific applications in mind and as
such their efficiency is somewhat limited to those applications. The main trade-offs when
comparing preconditioners are in their intrinsic efficiency, their parallelism, and their robust-
ness. An experimental study on robustness of some of these general-purpose preconditioners
has been conducted in [14]. For an introduction to Krylov subspace methods and various
preconditioning techniques, see [30].

The ‘multi-elimination ILU preconditioner’ (ILUM), introduced in [29], is based on
exploiting the idea of successive independent set orderings and several heuristic algorithms
have been suggested to find the independent set. The ILUM preconditioner has a multi-level
structure and offers a good degree of parallelism. Similar preconditioners have been designed
and tested in [5, 32] to show near grid-independent convergence for certain problems. In a
recent report, some of these multi-level preconditioners have been tested and compared
favorably with other preconditioned iterative methods and direct methods at least for the
Laplace equation [7].

Some of these approaches require grid information. Examples of such approaches
include the nested recursive two-level factorization and the repeated red-black orderings
[2, 6,9, 22, 33] (see also the survey paper by Axelsson and Vassilevski [1]). Other methods
require only the adjacency graph of the coefficient matrices [5, 29, 32]. For the repeated
red-black ordering approach, a near-optimal bound O(n%!5%) for the condition number of
the preconditioned matrix has been obtained [21]. There are other algebraic multigrid meth-
ods [11, 24, 25, 26] and multigrid methods with matrix dependent treatments [15, 23], as
well as multi-level preconditioning techniques based on hierarchical basis or ILU decompo-
sition associated with the finite difference or finite element analysis [3, 4, 10]. The ILUM
preconditioning technique has been extended to block version (BILUM) in which the piv-
oting elements are not diagonals, but small block diagonals [8, 32]. For some hard-to-solve
problems, the performance of ILUM may be enhanced by the block treatment.

The heuristic algorithms introduced in [29] to find independent sets ignore the values
of the matrix. For matrices arising from certain applications such as finite element methods
in computational fluid dynamics on unstructured meshes, some diagonal values may be very
small or even zero. Heuristics that only consider the adjacency graph of the matrices will
cause nodes with small or zero diagonal values to be part of the independent set. As a
result, the inverse of the diagonal matrix with such diagonal entries will contain very large
elements and this may cause the resulting preconditioner to be ‘unstable’ [14]. Although
techniques may be used to invert a near singular diagonal matrix approximately, the resulting
preconditioner is sometimes less efficient.

A common method for assessing the quality of a preconditioner is to estimate the
condition number of the preconditioned system. These estimates are difficult to obtain when
the matrix in question has no predetermined structure. Instead we choose to analyze the
factorization and preconditioned errors to get an insight on how the parameters affect the
performance of the ILUM preconditioning technique. It is possible to compare different
preconditioners by comparing their preconditioned errors. In general, a preconditioner with
a smaller preconditioned error tends to yield faster convergence.

In summary, this paper introduces a simple strategy to prevent a node with a small
or zero diagonal from being included to the independent set. Algorithms for finding inde-
pendent set based on the adjacency graph and diagonal values of the matrix are introduced
and studied in Section 2. The factorization and preconditioned error bounds of ILUM are
derived in Section 3 to guide the design of robust ILUM preconditioner. We test robustness



and efficiency of several ILUM implementations and a single-level ILUT over a few sets of
problems in Section 4. Concluding remarks are included in Section 5.

2 Independent Set Orderings

The ILUM preconditioning technique exploits a set of unknowns that are not coupled to
each other by an equation. Such a set is called an ‘independent set’. In independent set
orderings, the unknowns are permuted such that those associated with the independent set
are listed first, followed by the other unknowns. The permutation matrix P, associated with
such an ordering, transforms the original matrix into a matrix which has the following block

structure
D F
T _
awrart (D 1), @

where D is a diagonal matrix of dimension m, and C' is a square matrix of dimension
l = n — m. In the sequel, the notation is slightly abused by not distinguishing the original
system from the permuted system, so both permuted and unpermuted matrices will be
denoted by A. We use the notation:

D = diaglds,...,dm], F = (fij)mxts E=(eij)ixm, and C = (cij)ixi-

The right-hand side of (2) can be factored in block form as

D F I 0 D F
(E C>:<ED11>X<O A1>:LU’ (3)

where the matrix A; = (a;) is the Schur complement with respect to C
Ay =C—-ED'F. (4)

In the simplest two-level method, the reduced system associated with the matrix A; is solved
exactly and the solution of the original system is found by backward substitution.

Since D is diagonal and C, E, F are sparse, A; is also sparse in general. In many
applications, A; is still too large to be solved inexpensively and the above reduction process
can be repeated on A;, until a reduced system that is small enough is reached. Standard
threshold dropping strategies can also be used to maintain a certain level of sparsity in the L
and U factors, and in the reduced systems. The solution is then backward substituted level
by level until the solution of the original system is found on the finest level. However, the
analysis proposed in the next section will be restricted to the two-level method.

Since we need the inverse of D for the Schur complement (4) and for the block (ED 1)
in the right-hand side of (3), a small or zero d; in D may cause problems in the process of
forming D! and may also give rise to instabilities in the LU-solves [14]. An obvious strategy
to prevent these problems is to choose each d; so that |d;| > ¢ for some tolerance €. This
can be combined with the process of finding the independent set.

We now consider finding restricted independent sets, i.e., independent sets with some
threshold tolerance restriction on the diagonal entries. Let G = (V, E) denote the adjacency
graph of the matrix A, where V' = {v1,v9,...,v,} is the set of vertices and E is the set of
edges. Let (v, vy) denote an edge from vertex v; to vertex vg. Recall that an independent set
S is a subset of the vertex set V such that no two elements of S are coupled by an equation,



see for example, [29, 30, 32]. An independent set S is mazimal if there is no independent set
which strictly includes S, i.e., for any v € V, S U {v} is not independent.

The vertex cover S,. associated with the independent set S is the subset S,. of all
vertices that are coupled with vertices in S, i.e.,

if vjeS then {(vj,vx) €E or (vg,v;)€ E} = v € Sye- (5)

Obviously, the relation S U S,. = V holds only when S is maximal. The complement of S
with respect to V', denoted by S¢, clearly always satisfies SU 5S¢ = V.

The term independent set is often used to mean a Mazimal Independent Set (MIS),
see for example [29, 32]. Clearly, because of the restrictions on the diagonal elements, the
independent sets discussed in this paper are not necessarily maximal.

2.1 Algorithms for independent sets with diagonal threshold

In [30], several heuristic algorithms were discussed to find a maximal independent set. Some
of these strategies use locally optimal heuristics and numerical experiments in [30] suggeste
that they have similar performance. We first give the simplest greedy algorithm with diagonal
threshold tolerance.

ALGORITHM 2.1 Greedy algorithm

1. Set S = () and select a threshold tolerance £ > 0.

2. forj=1,2,...,n, do:

3 if node j is not marked and if |a; j| > €, then

4 S=SuU{j}.

5. mark node j, then mark all its nearest neighbors and add them to Sy..
6 else

7. mark node j if it is not marked and add it to S°€.

8 endif.

9. enddo.

The greedy algorithm is one of the simplest and most efficient algorithms for finding inde-
pendent sets. A variant to the diagonal threshold tolerance in Algorithm 2.1 would be to
use relative instead of absolute tolerance. In other words, the acceptance test in line 3 is to

be replaced by
€

|aj | > NGl > lagl. (6)
DV € Na)
in which Nz(j) is the set of indices i for which a;; # 0, i.e., the nonzero row-pattern for row
j. We will also consider another heuristic algorithm that searches an independent set with
increasing degree traversal and diagonal threshold tolerance [29].

ALGORITHM 2.2 Increasing degree traversal algorithm
1. find an ordering i1, ...,1, of the nodes by increasing degree.
2. run a version of Algorithm 2.1, in which the do loop in Line 2 is replaced by the loop:
3. forj:il,z'z,...,in.



There are other locally optimal heuristics that could be used to find an independent
set, see [29] for a discussion and comparisons. In this paper, we restrict our attention to the
above two heuristics.

Note that the independent set found by Algorithms 2.1 and 2.2 is not necessarily max-
imal, but has the property that |D| > ¢ which is defined (component-wise) as |d;| > € for all
1. For sufficiently large ¢, this property will ensure that the size of the inverse of D is not
too large. This property will be assumed in the rest of this paper.

The first question we raise is what happens to a node that is in S¢ but not in Sy.. The
following proposition states that the reduction process will not alter its corresponding row.

Proposition 2.1 Assume that node j € S¢ does not belong to Sy, i-e., that it is a node that
is neither in S nor in its vertex cover. Then the corresponding row of C associated with this
node is not altered by the reduction process.

Proof. This is an immediate consequence of the graph model of Gaussian elimination [19].
The reduction process corresponds to eliminating all nodes in S in Gaussian elimination.
When a node s in S is eliminated, all its incident edges are removed and only the nodes
associated with nodes adjacent to s are altered. These are nodes in S, and therefore no
other row (rows in S¢ — S.) is modified. O
In other words, a node that is excluded from the independent set at some level due to
diagonal thresholding will remain excluded in the following levels unless it becomes part of
a vertex cover later in the process. With the acceptance test used in Algorithm 2.1 as well
as the relative test (6), a small diagonal element will be rejected for as long as it is not a
neighbor of an element in the independent set. It may be altered later in the elimination
process so that its magnitude increases, and may then become eligible to be part of an
independent set. Otherwise it will become part of the last reduced system to solve.

2.2 Relation to dropping tolerance

As mentioned before, the ILUM reduction process is usually implemented with some dropping
strategies to keep the sparsity of the LU factors and the reduced systems. Standard threshold
dropping strategies are suggested in [29, 32]. In the simplest case, all entries in some blocks
whose absolute values are smaller than some threshold tolerance 7 are dropped, i.e., a; is
dropped whenever

|aj k| <. (7)

Other dropping strategies are based on the values of the row or column or both. For example,
the dropping rule used in [32] is relative to the average absolute value of the current row,
i.e., an entry a; in the U factor ED~! and in the reduced system A; is dropped if

;
|aj,k|<7| — > ajl (8)

nz(j)| , 2 (i)

Diagonal entries in the reduced systems are not dropped regardless of their magnitude. There
are other dropping strategies that control the total number of entries in the LU factors and
in the reduced systems, see [28, 29, 31, 32].

For an M-matrix, it can be shown that the magnitude of a diagonal element is non-
increasing during the reduction process, i.e., a;; < c¢; ;. This seems to suggest that we need
to reduce € as the number of levels grows. It has also been suggested to decrease the dropping



tolerance 7 for the coarser levels [8]. For general matrices, the magnitudes of the diagonal
entries may increase, decrease, or remain the same during the reduction process and so it
is preferable to keep € constant unless dropping tolerance 7 changes. We found no obvious
benefit in changing 7 during the construction of ILUM or its block variant BILUM [29, 32].
Similarly, our tests showed no gains in reducing the diagonal threshold tolerance. Hence,
based on our experience we recommend keeping both £ and 7 constant and close to each
other throughout the reduction process.

3 Factorization and Preconditioned Errors

The actual reduction process is accompanied by dropping strategies discussed in the last
subsection. Hence, we have an approximate LU factorization

I o0\(D F
A= = " )+r=LU+R 9
(ED—1 I)(O A1>+ M )

WhereAR is the error matrix resulting from the dropping rule employed. The matrices ED!
and A; result from applying a dropping rule to ED~! and Aj, respectively, see [29] for
details. If we use the simplest dropping rule (7) and only drop small entries in ED ! and

A, then
0 O
R—('I"j,k)—<R0 Rl >’

where Ry = (fj,k)lxm and Ry = (fj,k)lxl are

Ry, = E— ED-'D,
R, = C- (4, +ED'F).

It is difficult to give a precise representation of the terms r;; that is satisfied by every
dropping rule, as well as every implementation. However it is expected that r; ; will be of
the order of 7. In fact for an implementation based on ‘elimination’, the terms dropped are
exactly the error terms above and therefore

Irjel <7, 1<jk<n. (10)

We now discuss this implementation in some detail since it has useful properties and allows us
to give an algorithmic interpretation of the Schur complement system. We call this technique
a restricted IKJ version of Gaussian elimination. The rows associated with the independent
set, i.e., rows 1 to m are eliminated using a variant of the IKJ version of Gaussian elimination
[30]. The IKJ version of Gaussian elimination determines the i-th row of L and the i-th row
of U in the ¢-th step of Gaussian elimination as follows:

ALGORITHM 3.1 Gaussian elimination — IKJ variant.
1. doi=2,n
2. dok=1,1—1
3. a(i, k) :== a(i, k) /a(k, k).
4 doj=k+1,n
5 a(i, j) = a(i,j) — a(i, k) * a(k, ).



6. enddo.
7. enddo.
8. enddo.

Assume that the first m equations are associated with the independent set. Then, in order
to perform the block factorization (3) it is sufficient to eliminate rows 1 to m but restrict
the triangulation to the columns 1 through m. In other words we would obtain the following
algorithm:

ALGORITHM 3.2 Restricted IKJ version of Gaussian elimination.

1. doi=m+1,n

2 do k = 1, min(i — 1,m)

3 a(i, k) == a(i, k)/a(k, k).

4. doj=k+1,n

5. a(i, j) == a(i,j) —a(i, k) * a(k, ).
6. enddo.

7. enddo.

8. enddo.

It is easy to see that this does indeed perform the block factorization (3) — in other words,
the a(i, k)’s for k < i are the elements in ED~! and the other elements are those in A;. We
now add dropping to Line 3 (L-part):

3a. if |a(i,k)| < 7 then a(i, k) :=0

and to the final row obtained after line 8 (U-part):

8a. dok=m+1,n
8b. if la(i, k)| < 7 then a(i, k) := 0.
8c. enddo.

Call w the working row represented by a(i,k),k = 1,...,n, in the above algorithm with
dropping. Initially w is the original i-th row of A. Then each elimination represented by
Lines 4-6 combines this row with a row in the U-part of the factorization (occupied by a(k, :)
for k < m). The dropping rule in Line 3a actually changes w prior to this combination:

w(k) :=w(k) —r(i, k).
Then the elimination in Lines 4-6 does an operation of the form,
w:=w — (i, k) * u(k,:).
At the end of all these operations, the dropping rule in Lines 8a-8c is applied:

w(k) = w(k) —r(i, k), k=m+1,...,n

7

in which (i, k) is zero unless the corresponding element is dropped in which case it is a(i, k).
The U-part of w becomes the i-th row of A;. In the end,

m
u(i, *) = a(i,*) — >_1(i,k) = u(k, x) — r(i,*).
k=1



And therefore,
(2
a(i,*) = Z 1(i, k) * u(k,*) + r(3, *),
k=1

with the convention that [(7,7) = 1 and I(z,7) = 0 for m < j < 4. In other words, with
this implementation the R matrix is ezactly the matriz of the successive elements dropped
during the elimination process. The magnitude of these elements is less than 7 for the simple
dropping strategy (7).

The notation is simplified by removing the hat signs from representation (9) in the
following discussion. Furthermore, we denote by nz(A) the number of nonzeros in A, for an
arbitrary matrix A.

Proposition 3.1 When the simple dropping strategy (7) is applied with a threshold tolerance
T, then the factorization error of (9) is bounded by

[Rl|7 < 7 nz(R) < 7y/l(m +1). (11)

The proof of this result is straightforward.

The bound (11) shows that the norm of the factorization error depends on the dropping
tolerance and the number of elements dropped. The actual convergence rate of the precon-
ditioned iteration is controlled by the so-called preconditioned error. The preconditioned
matrix is

L'Au ' =1+ L 'RU.

The matrix L~'RU~! is the preconditioned error matrix [14], which actually governs the
convergence of the preconditioned iteration. It is easy to verify that

1 I 0 +_( D' —D7'FA;?
L _<—ED—1 [ R W ATt '

The next result will require the following inequality on matrix norms:
XY ||lr < 1X[|7 [IY]]2, (12)

where || - ||r and || - ||2 are the matrix Frobenius norm and 2-norm, respectively. (12) follows
from the fact that

m
IXY[F = Y IXY,l3
7j=1

m
1X12 S Y4013 < 11X 3V )12
j=1

IA

The desired result is obtained by applying the above inequality to the matrix Y7 X7 .

Proposition 3.2 Assume that the dropping rule (7) is applied and A; is non-singular, and
€ < 1. Then, the preconditioned error of ILUM with diagonal threshold tolerance is bounded
by
—_ _ T _
ILT'RU™ P < - X nz(R)(1 + [[Fll2) x max{1, [ A} Mo} (13)



Proof. We have

I 0 0 0 D' —D'FA;!
—1prr—1 _
2t = (Cgpe 1) (g m) (0 an )
1 _p-lpg-1
_ (0 0>(D DFl‘Al) (14)
Ry R; 0 Al
B (0 0>(D_1 0)(1 —F)(I 0 )
Ry Ri 0 I 0 I 0 Al_l )
Using inequality (12) it follows that
—1prr—1 -1 I -F -1
IZZRU Ip < [[Bllr x max{L, [D™{l2} < |{ , , x max{l, [[A; "[l2}.
It can be easily shown that
(I _F) <1+ |F|
o IJ)|,= Z
Hence the desired result:
_ _ T _
IL"RU||p < nz(R) x X (14 [|Fll2) x [[ 4] 2-
|

Proposition 3.3 The nonzero eigenvalues of the preconditioned error matriz are identical
with the eigenvalues of the generalized problem

(Ry — RyD™'F)z = )\ A;z. (15)

Assuming that there exists v > 0 such that, (Aiz,z) > y(z,z) then

I\ < % (nz(Rl) + w> . (16)

Proof. Starting from (14)

Aprr—1 _ 0 0 )
LWRU = (1%()D_1 (R — RoD_lF)Afl '

The eigenvalues of the above matrix consist of a multiple eigenvalue of zero and the eigenval-
ues of the matrix (R; —RoD~'F) A7 which are the same as the eigenvalues of the generalized
problem (15) The bound (16) follows from the fact that

((R1 — R()D*lF)z, Z)
(A12,2)

I\ = ‘ < ‘(Rlz’z)

(A12,2)

(RyD 'Fz,z)
(Alz’ Z)

The result follows by exploiting the inequality
(X2, 2)| < [IX2ll2llz]l2 < 1 X]|# |22

for an arbitrary matrix X. O



It is interesting to note that the eigenvalues of the error matrix involve two similar
Schur complements: A; and the Schur complement of

D F
(Ro Ry ) '
If a few assumptions were to be added on the nature of the matrix A (symmetric positive
definiteness), it could be shown that the -y constant for exact Schur complement A; will
remain bounded from below.

Since the preconditioned error determines the convergence rate of the preconditioned
iteration, by examining the bound (13), the following observations on the convergence behav-
ior of ILUM with diagonal threshold tolerance can help selecting parameters for constructing
ILUM:

1. An accurate factorization with small 7 yields fast convergence;

2. Given a dropping threshold 7, a small diagonal threshold tolerance will usually deteri-
orate convergence;

3. Iterative processes are likely to be slower for larger systems (with large n, m and ).
However, this may be offset by a small reduced system (small /). The size of the reduced
system relative to the size of the independent set seems to influence the convergence,
provided the (last) reduced system can be solved accurately;

4. The quality of the solution of the reduced system has a strong influence on convergence.
However, highly accurate solutions of the reduced system are expensive (assuming an
iterative process is used);

5. Sparsity of the F block influences convergence. The sparser F', the faster the conver-
gence.

The fact that the sparsity of F' influences the convergence can also provide some justification
to the increasing degree traversal algorithm. By visiting the nodes with small degree first,
F is likely to be sparser, leading, in general, to a larger independent set. This observation
has been confirmed by our numerical results in [29, 32].

Although several parameters have an effect on the convergence rate, it is the size of the
reduced system and its minimization that seem to draw most of the recent attention. This
leads to the development of various blocking strategies and dropping rules [31, 32].

4 Numerical Experiments

Standard implementations of ILUM and BILUM have been described in detail in [29, 32].
The iteration process consists of an outer iteration, which is the main preconditioned process
to solve the underlying linear system, and an inner iteration, which is the secondary precon-
ditioned process to solve the last reduced system. We used FGMRES(10) as the accelerator
for both the inner and outer iterations [27]. The outer iteration process was preconditioned
by ILUM with diagonal threshold tolerance as discussed in this paper, using 10 levels of
reduction. The inner iteration process for solving the last reduced system approximately
was preconditioned by a dual-threshold ILUT(7,p) [28]. Unless otherwise stated explicitly,

10



we chose 7 = 1074, p = 20 for ILUT. The same 7 was also used as the dropping threshold tol-
erance in the construction of ILUM. In each table, the last column with title ‘ILUT’ shows
the results when the (single-level) ILUT with the same parameters was used to solve the
whole system. Although the single-level ILUT used less memory than ILUM in this case, the
results do give us some indication of the robustness of the multi-level preconditioned method
versus single-level method. Formula (6) was not used in our tests. The construction and
application of ILUM preconditioner was described in [32], but here we applied the dropping
rules (8) from the first level (the dropping rules were applied starting from the 2nd level only
in [32]).

For all linear systems, the right-hand side was generated by assuming that the solution
is a vector of all ones. The initial guess was a vector of some random numbers. The inner
iteration was stopped when the (inner iteration) residual in 2-norm was reduced by a factor
of 102 or the number of iterations exceeded 10, whichever was reached first. The outer
iteration was stopped when the 2-norm of the residual was reduced by a factor of 107. We
also set an upper bound of 100 for the outer FGMRES(10) iteration. (A symbol 1 in a table
indicates that convergence was not reached in 100 outer iterations.)

The FIDAP matrices and the matrices from the driven cavity problem can be hard to
solve. In some situations, it is beneficial to scale both columns and rows before constructing
the preconditioner [13]. However, we did not resort to scaling or permuting for any matrix
before computing the preconditioner. For ILUM without diagonal threshold tolerance (¢ =
0), we set a safeguard to prevent the inversion of D from breaking down by putting d; = 10716
whenever |d;| < 10716,

The numerical experiments were conducted on a Power-Challenge XL Silicon Graphics
workstation equipped with 512 MB of main memory, two 190 MHZ R10000 processors, and
1 MB secondary cache. We used Fortran 77 programming language in 64-bit precision.

4.1 FIDAP matrices

Our first set of test matrices were extracted from the test problems provided in the FIDAP
package [18]. The examples tested model the incompressible Navier-Stokes equations. The
right bottom sub-block of these matrices may be a zero block [13] and many of these matrices
have small or zero diagonals and are very hard to solve with standard ILU preconditioners.
Table 1 is a simple description of the FIDAP matrices ' with n being the dimension of the
matrix, nz its number of non-zero elements.

We varied the diagonal threshold tolerance € and recorded the number of iterations in
Table 2 for the greedy algorithm and in Table 3 for the increasing degree traversal algorithm.
Without diagonal tolerance, ILUM could solve 4 out of 17 systems with the greedy algorithm
and 5 out of 17 with the increasing degree traversal algorithm. With some diagonal toler-
ance, ILUM can solve 16 matrices with the greedy algorithm and all 17 matrices with the
increasing degree traversal algorithm. However, it seems that ILUM with the greedy algo-
rithm converged in more cases than with the increasing degree traversal algorithm. Also,
the algorithm seems to be most robust when the diagonal threshold tolerance ¢ was chosen
close to the dropping tolerance 7 of ILUM. In both cases, the single-level ILUT performed
similarly to ILUM without diagonal threshold tolerance.

"Matrices available online from the MatrixMarket (http://math.nist.gov/MatrixMarket). Some values
for nz in Table 1 are larger than those listed in Table 4.2 of [13] and those of the same set in the MatrixMarket
because all diagonal elements of the right bottom sub-blocks are kept even though their actual values may
be numerically zero.
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Matrix n nz Matrix n nz

EXO01 216 | 4352 || EX04 | 1601 | 32299
EX12 | 3973 | 80 211 | EX20 | 2203 | 69 981
EX21 656 | 19 144 | EX22 839 | 22715
EX23 | 1409 | 43703 | EX24 | 2283 | 48 737
EX25 848 | 24 612 || EX26 | 2163 | 94 033
EX27 974 | 40 782 || EX28 | 2603 | 77 781
EX29 | 2870 | 23 754 || EX31 | 3909 | 115 357
EX32 | 1159 | 11343 || EX36 | 3079 | 53 843
EX37 | 3 565 | 67 591

Table 1: Size and number of nonzero elements for the FIDAP matrices.

€ 1 100! 102 10°% 10% 10° 10°% 107 10 ]0.0] ILUT
EX01 | 3 4 3 3 3 3 3 3 3 3 9
EX04 [ 11 4 4 21 1 1 1 1 1 1 1
EX12 |45 45 45 t t t T 1 1 1 1
EX20 | t 1 1 5 6 6 7 T T T T
EX21 | t 1 30 50 21 29 T T 1 98 1
EX22 | 3 4 7 7 7 11 T 19 19 1 22
EX23 | 1 T T T T T T T T T T
EX24 | 6 T T T T T T T T T T
EX25 | 7 T T 10 T 7 T T T T T
EX26 | 7 T T 62 T T T T T T T
EX27 | t 1 8 4 1 3 20 T T 1 T
EX28 | 9 8 T T T T T T T T T
EX29 | 2 2 2 2 2 2 2 2 2 2 3
EX31 | 4 4 12 16 16 16 16 16 14 1 31
EX32 | 4 4 5 6 6 6 6 6 6 1 41
EX36 | 4 4 4 T T T T T T T T
EX37 [11 10 10 10 10 9 9 10 11 11 5

Table 2: Number of iterations for the greedy algorithm with different diagonal threshold
tolerance ¢ for solving the FIDAP matrices.
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€ 1 10 102 10% 10% 10° 10% 107 10 1%]0.0] ILUT
EX01 | 3 4 3 3 3 3 3 3 3 3 9
EX04 |11 4 4 T T T T T T T T
EX12 [ 50 40 47 1 1 T T T 1 1 T
EX20 | 1 1 1 6 5 5 7 T 1 90 1
EX21 | 7 T T T 56 T 43 T T T T
EX22 | 3 4 4 18 1 1 1 1 1 1 22
EX23 | 1 T T T T T T T T 19 T
EX24 | 6 T T T T T T T T T T
EX25 | 7 T T T o 7 T T T T T
EX26 | 7 T T 16 T T T T T T T
EX27 | 1 1 8 4 3 4 90 1 1 1 1
EX28 |30 17 T T T T T T T T T
EX29 | 2 2 2 2 2 2 2 2 2 2 3
EX31 | 4 3 4 4 1 1 1 1 1 1 31
EX32 | 4 4 4 1 1 1 1 1 1 T 41
EX36 | 4 4 4 T T T T T T T T
EX37 [ 11 10 10 10 10 9 9 10 11 |11 5

Table 3: Number of iterations for the increasing degree traversal algorithm with different
diagonal threshold tolerance ¢ for solving the FIDAP matrices.

Results of Tables 2 and 3 show that ILUM with diagonal threshold tolerance is more
robust than ILUM without diagonal tolerance.

As to the efficiency of forming independent set, the increasing degree traversal algo-
rithm seems slightly more efficient than the greedy algorithm in the sense that the last
reduced system which it yields has a smaller size. Figure 1 describes the relation between
the size of the last reduced system and the value of the diagonal threshold tolerance for two
FIDAP matrices. (For easy visualization, we actually plotted the iteration counts against the
reciprocal of the diagonal threshold tolerance (1/¢).) For EX20, both algorithms produced
a last reduced systems of comparable size except when ¢ is very small. The reduced systems
are quite different for ILUM without diagonal threshold tolerance. For EX31, the increasing
degree traversal algorithm produced an obviously smaller last reduced system. However,
comparison of convergence results of Tables 2 and 3 indicates that the greedy algorithm is
more robust than the increasing degree traversal algorithm, despite of its delivering slightly
smaller independent sets. Hence, we prefer the greedy algorithm in general.

Figure 2 shows the convergence history (the residual in 2-norm against the number
of iterations) of ILUM for solving the EX31 matrix with and without diagonal threshold
tolerance. We see that ILUM with suitable diagonal threshold tolerance converged fast.
The convergence of ILUM without diagonal threshold tolerance was fast for the first few
iterations, but quickly slowed down and started stagnating.
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Figure 1: Size of the last reduced system as a function the reciprocal of the diagonal threshold
tolerance 1/e generated by the greedy algorithm and the increasing degree traversal algorithm
for two FIDAP matrices.
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Figure 2: Convergence history of ILUM with and without diagonal threshold tolerance for
solving the EX31 matrix.
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Matrix ) nz Description

RAEFSKY1 | 3 242 294 276 | Incompressible flow in pressure driven pipe, T=05
RAEFSKY2 | 3 242 294 276 | Incompressible flow in pressure driven pipe, T=25
RAEFSKY3 | 21 200 | 1 488 768 | Fluid structure interaction turbulence problem
RAEFSKY5 | 6 316 168 658 | Landing hydrofoil airplane FSE model
RAEFSKY6 | 3 402 137 845 | Slosh tank model

VENKATOL | 62 424 | 1 717 792 | Unstructured 2D Euler solver, time step = 0
VENKAT25 | 62 424 | 1 717 792 | Unstructured 2D Euler solver, time step = 25
VENKATS50 | 62 424 | 1 717 792 | Unstructured 2D Euler solver, time step = 50

Table 4: Description of the Simon matrices.

€ 1 107! 1072 10=® 10=* 10=° 10=% 107 10716 | 0.0 ILUT
RAEFSKY1 | 7 7 7 7 7 7 7 7 7 7 1
RAEFSKY2 |10 10 10 10 10 10 10 10 10 | 10 T
RAEFSKY3* | 1 4 4 T 5 1 T 6 5 5 19
RAEFSKY5 | 2 2 2 2 2 2 2 2 2 2 3
RAEFSKY6 | 2 2 2 3 3 3 3 2 3 2 3
VENKATO01 | - - - 3 3 4 4 4 4 3 10
VENKAT25% | - - - 12 16 17 16 16 16 | 16 93
VENKAT50F | - - - 19 36 40 34 33 34 | 34 1

Table 5: Number of iterations for the greedy algorithm with different diagonal threshold
tolerance ¢ for solving the Simon matrices. “*” indicates 7 = 102 was used in the reduction.
“*” indicates p = 30 was used in ILUT. “-” indicates insufficient memory for ILUT.

4.2 Simon matrices

Our next set of test matrices are the so-called Simon matrices. These matrices were supplied
by H. Simon and other researchers and are generally larger than other sets of matrices.
They are all from applications in computational fluid dynamics and have been used as test
matrices for high order ILU preconditioners in [12, 31]. Table 4 gives a brief description of
these matrices. Table 5 lists the number of iterations. Since some of these matrices are very
large, we had to adjust some parameters in ILUM and ILUT in order to solve them. These
adjustments are also indicated in Table 5. For the VENKAT matrices with large ¢, the last
reduced system were too large with the parameters set in ILUT. We abandoned our attempt
to solve them in these cases.

Since the Simon matrices in general do not have a large number of small or zero di-
agonals, ILUM with and without diagonal tolerance performed comparably. These results
also indicate that ILUM may also be very efficient for solving large linear systems. It does
not hurt to impose suitable diagonal threshold tolerance, but a very large diagonal threshold
may result in a large reduced system that is hard to solve. For this set of test matrices, the
single-level ILUT is not as good as ILUM with or without diagonal threshold tolerance.

Figure 3 depicts the CPU time in seconds for solving the RAEFSKY1 and RAEFSKY5
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RAEFSKY1 (n = 3242 ) and RAEFSKY5 (n = 6316 )
16 : : ‘
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Figure 3: CPU time in seconds against the reciprocal of the diagonal threshold tolerance for
solving the RAEFSYK1 and RAEFSKY5 matrices.

Matrix n nz | Matrix n nz
ADD20 2395 | 17 319 | FS7602 760 | 5976
ORSIRR1 | 1030 | 6 858 || ORSIRR2 886 | 5970
ORSREG1 | 2 205 | 14 133 | PDE9511 961 | 4681
PORES2 1224 | 9613 || SAYLR4 | 3 564 | 22 316
WATT1 1856 | 11 360 || WATT2 1856 | 11 550

Table 6: Description of the Harwell-Boeing matrices.

matrices using different diagonal threshold tolerance. We see that there is no much difference
in the CPU time by using different diagonal tolerances if the convergence rate is the same.

4.3 Harwell-Boeing collection

The third set of test matrices was taken from the Harwell-Boeing collection [16, 17]. (The
only exception is that the matrix ADD20 was taken from NIST’s MatrixMarket.2) Many of
these matrices have been used as test matrices for iterative sparse matrix solvers [29, 32].
The description of these Harwell-Boeing matrices is listed in Table 6 and the test results
are listed in Table 7. Since most of these matrices have large absolute diagonal values,
the iteration counts do not vary much. For FS7602 and WATT2, ILUM performed poorly
without diagonal threshold tolerance. These test results also indicate that it normally does
not hurt convergence to use diagonal thresholding in ILUM, even when the diagonal entries
are large. Furthermore, ILUM outperformed the single-level ILUT for most problems in this
set of test matrices.

2 Available online at http://math.nist.gov/MatrixMarket.
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€ 1 10 102 103 10%* 10° 10°% 107 10 ]00] ILUT
ADD20 4 3 3 3 3 3 3 3 3 3 4
FS7602 5 7 6 7 29 17 17 17 17 | 17 1
ORSIRR1 | 4 4 4 4 4 4 4 4 4 4 6
ORSIRR?2 | 4 4 4 4 4 4 4 4 4 4 6
ORSREG1 | 3 3 3 3 3 3 3 3 3 3 4
PDE9511 | 3 3 3 3 3 3 3 3 3 3 5
PORES2 |20 20 20 20 20 20 20 20 20 | 20 38
SAYLRA4 8 8 8 8 8 8 8 8 8 1
WATT1 1 1 1 1 1 1 1 1 1 1 2
WATT2 1 1 1 1 1 1 1 1 42 | 42 25

Table 7: Number of iterations for the greedy algorithm with different diagonal threshold
tolerance ¢ for solving the Harwell-Boeing matrices.

4.4 Driven cavity problem

Our last set of test problems was from a finite element discretization of the square driven
cavity problem. Rectangular elements were used, with biquadratic basis functions for veloc-
ities, and linear discontinuous basis functions for pressure. All matrices arise from a mesh
of 20 by 20 elements, leading to matrices of size n = 4562 and having nz = 138, 187 nonzero
entries. These matrices have 3363 velocity unknowns and 1199 pressure unknowns. The
sub-matrices associated with the velocity unknowns have small or zero diagonals. We tested
11 matrices with Reynolds number (Re) from 0 to 1000.

To ensure convergence of the coarsest level solution for these matrices, we had to use
more fill-ins for ILUT on the coarsest (10th) level. The parameter 7 = 104 was kept
as before for the dropping rule in the ILUM reduction and ILUT, but the value of p was
increased until at least we had one convergence. The iteration counts as a function of the
diagonal threshold tolerance, along with the p values used, are listed in Table 8.

Table 8 shows that without diagonal threshold tolerance, ILUM did not converge for
any test problems. This was precisely caused by the small and zero diagonals of the ma-
trices. There are so many such diagonals that simply replacing them by a small value
in the construction of ILUM deteriorated the quality of the preconditioner. The result-
ing ILUM preconditioner had little preconditioning effect on the iterative solver. This is a
case when ILUM with diagonal threshold tolerance strongly outperformed ILUM without
diagonal threshold tolerance and the single-level ILUT.

We also tested how the diagonal threshold tolerance ¢ affects the construction of ILUM.
We fixed the coarsest level ILUT as 7 = 1076, p = 40. We then used different 7 as the
dropping threshold tolerance to control the sparsity of ILUM. The problem we solved is the
driven cavity problem with Re = 200. We took 7 = 1072,107*,107%,10~® and recorded
the number of iterations in Figure 4. Note again that the iteration numbers were actually
plotted against the reciprocal of the diagonal threshold tolerance (1/¢). It is seen that the
value of € did influence the quality of the ILUM preconditioner. It seems that the optimal
value of ¢ is related to the value of 7 used as dropping rule in constructing the ILUM
factorization. Since our dropping rule is based on the average absolute value of the current
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Re p|1 1071 102 103 10* 10° 10® 107 1076 [ 0.0 |ILUT
0 30/20 20 20 21 21 1 1 1 1
100 [30]20 20 19 20 81 1 1 1 1
200 |40 |25 25 26 26 49 1 1 1 1
300 |60 |50 58 50 39 61 40 39 40 38
400 [70[35 35 35 38 51 1 1 1 1

500 (80 |20 21 20 21 27 22 22 20 21
600 |80 |31 29 27 25 61 45 50 54 49

| =t | = | = | = | = | = | = | | = | —
| =t | = | = | = | = | = | = | = | = =

700 [ 80|91 90 91 98  { 1 i 1 ¥
800 | 90|20 20 20 19 67 37 47 50 36
900 |90 |51 58 55 58  { T T T T
1000 (90 |72t 83 71 ¢ t t t ¥

Table 8: Number of iterations for the greedy algorithm with different diagonal threshold
tolerance ¢ for solving the driven cavity matrices. p was different for each matrix.

row (8), there is no exact match between 7 and &, but we again suggest to choose 7 around
e. This also indicates that more accurate ILUM factorization (smaller 7) works better with
smaller diagonal tolerances (smaller €).

Figure 5 shows the CPU time in seconds of the same test as in Figure 4. An iteration
number of 100 in Figure 4 means lack of convergence and this is reflected in Figure 5 by a
large CPU time (100 seconds). Figure 5 looks similar to Figure 4, showing that there is no
obvious penalty in computational efficiency by using a diagonal threshold tolerance.

Figure 6 shows the convergence history of the ILUM preconditioner for solving the
driven cavity problem (Re = 800) with and without diagonal threshold tolerance. We see
that ILUM with suitable diagonal tolerance converged fast. Unlike the convergence displayed
in Figure 2 for the EX31 matrix, the convergence of ILUM for solving this driven cavity
matrix without diagonal threshold tolerance just stagnated, with little reduction in residual
norm in 100 iterations.

5 Conclusion

We have presented a number of techniques for incorporating diagonal threshold strategies into
heuristic algorithms for finding independent sets in constructing ILUM preconditioners. The
new algorithms work by essentially never accepting into the independent sets any diagonal
elements that are too small. These elements are therefore moved down the matrix and they
are either modified during the elimination to become acceptable later in the process, or they
remain in the last reduced system which is solved with high accuracy with a standard ILUT
preconditioned Krylov technique or a direct solution method.

These heuristics have been tested to show improved robustness for hard-to-solve systems
arising from finite element discretization of flow problems in computational fluid dynamics.
Many of these problems could not be solved by ILUM without diagonal threshold tolerance
or by the single-level ILUT. The numerical tests also reinforce earlier conclusions made on
this type of methods and show the advantages of the multi-level preconditioned methods
over their single-level counterparts.
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Driven cavity problem ( Re = 200 )
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Figure 4: Comparison of iteration counts against the reciprocal of the diagonal threshold
tolerance with different 7 used in constructing ILUM. Driven cavity problem with Re = 200.
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Figure 5: Comparison of CPU time in seconds against the reciprocal of the diagonal threshold
tolerance with different 7 used in constructing ILUM. Driven cavity problem with Re = 200.
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Driven cavity problem ( Re =800 )
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Figure 6: Convergence history of ILUM with and without diagonal threshold tolerance.
Driven cavity problem with Re = 800.

The analytical bounds for the factorization and preconditioned errors proved in Section
3 are limited to a two-level factorization. Yet they provide some insight on how to select
parameters in practical implementations of ILUM. The main insight provided by these an-
alytical bounds is that the value of the diagonal threshold tolerance € should be chosen to
be around the value of the threshold tolerance 7 used as for the dropping strategy in ILUM.
Our numerical experiments confirmed that this is indeed an effective strategy.

Because of the restrictions imposed by thresholding, it may well happen that after a few
levels of reduction, the resulting independent set is very small. In these cases, it is preferable
to stop the reduction process and try to solve the reduced system on that level. Keeping a
small independent set and continuing the reduction process can require too much memory.

An alternative to avoid small or zero diagonals is to perturb diagonal entries. These
perturbations introduce errors into the upper parts of the error matrix. However, this ap-
proach does not exclude the nodes in question from the independent set and the resulting
independent set may be larger. (This is not absolutely true for all cases, since a node with
small diagonal value may have a neighbor with large diagonal value which is to be excluded
from the independent set by this approach.) We intend to compare this alternative with our
diagonal threshold tolerance strategy in the future.
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