Modified Krylov acceleration for parallel

environments *

Caroline Le Calvez

Université de Lille I, LIFL, Batiment M3, 59655 Villeneuve d’Ascq Cedex, France

Yousef Saad

University of Minnesota, Deparment of Computer Science and Engineering,
200 Union Street, SE, Minneapolis, MN 55/55-0159, USA

Abstract

This paper considers a few variants of Krylov subspace techniques for solving linear
systems on parallel computers. The goal of these variants is to avoid global dot-
products which hamper parallelism in this class of methods. They are based on
replacing the standard Euclidean inner product with a discrete inner product over
polynomials. The set of knots for the discrete inner product is obtained by estimating
eigenvalues of the coefficient matrix.

1 Introduction

The storage and computational requirements of the Generalized Minimum
Residual (GMRES) algorithm [6] in its original form can be prohibitive when
a large number of steps are required to achieve convergence. A simple remedy
proposed in [6] consists of restarting the algorithm every m steps, using each
time a Krylov subspace of dimension m and taking the initial guess to be
the latest approximate solution obtained. The convergence behavior of this
restarted method, referred to as GMRES(m), is not as well understood as
the non-restarted GMRES but it represents a good trade-off and can be quite
effective when combined with a good preconditioner.

* Expanded version of a presentation given at the 1997 IMACS World Congress
(Berlin, August 1997). This work was partially supported by NSF grant CCR-
9618827, DARPA grant number NIST 60NANB2D1272, and by the Minnesota Su-
percomputer Institute

Preprint submitted to Elsevier Preprint 12 February 1998

Another difficulty appears when implementing GMRES in a parallel environ-
ment: The modified Gram-Schmidt algorithm of the Arnoldi process requires
the computation of inner products which must be performed sequentially and
this can be time-consuming. To address this difficulty, we propose a strategy
in which the Euclidean inner product is replaced by a discrete inner product
over the space of polynomials. In this approach, the Krylov subspace is actu-
ally viewed as a space of polynomials and the linear least-squares problem in
GMRES translates into a least-squares problem over polynomial spaces. The
idea is to replace the standard inner product in this least-squares problem by
a discrete inner product over points selected from some approximation to the
spectrum.

In the computational procedure, it is desirable to use a basis of orthogonal
polynomials. These will satisfy a three-term recurrence when the discrete set
of knots is real. Otherwise a Hessenberg recurrence similar to that of the
Arnoldi process is used. These polynomials are computed only in the form of
the values which they take in the knots used for the discrete inner products. As
is done for QMR (see [3]), we then consider this new basis to be orthonormal
and perform a quasi-minimization of the resulting least-squares problem which
yields a quasi-minimal residual solution. The set of knots used in the discrete
inner product, which are approximate eigenvalues of A, are then updated and
the process is repeated.

We first cover the case when the spectrum is real and then extend the tech-
niques to cases when the spectrum is complex.

2 Case of a real spectrum

The main cost in GMRES(m), apart from the matrix-vector product and
preconditioning operations, is in the Arnoldi process which constructs an or-
thogonal basis of the Krylov subspace. Since the vectors to be orthogonalized
are not known in advance, the Gram-Schmidt process must be performed one
step at a time, meaning that each new vector in the Arnoldi sequence must
depends on the previous vector of the sequence. A new vector is introduced to
the subspace and then it is orthogonalized against all previous basis vectors,
using either a Classical (more parallel) or a Modified Gram-Schmidt frame-
work. The main idea proposed here is to replace these inner products of size
n, by localized discrete inner products over polynomials.

We begin by recalling the intimate link between Krylov subspaces and poly-
nomial spaces. A Krylov subspace is a subspace of R™ of the form,

K,, = Span{v, Av,---, A" v} (1)

where v is an initial vector generally equal to the initial residual ry. Any
member w of K,, is of the form w = ¢(A)v where g belongs to the space P,
of polynomials of degree < m — 1. As is well-known the usual Euclidean inner
product on K,, gives rise to an inner product between two polynomials q1, g2
on P, via the mapping,

(01,02) = (@1 (A)v, ¢2(A)v)

and this has been exploited in a number of earlier studies. Conversely, it is also
possible to define an inner product on K,,, from an arbitrary inner product on
P,.. The defining relation is the equation,

(w1, wz) = <Q1, Q2> (2)

in which ¢;,4 = 1,2 is the (unique) polynomial which represents w; by the
relation w; = ¢;(A)v. One way to define the algorithms presented in this pa-
per is simply this: run a version of a Krylov subspace algorithm (CG, BiCG,
FOM, GMRES, ..) in which the Euclidean inner product is replaced by an
inner product of the form (2) where {.,.) is some discrete inner product over
polynomial spaces. It is important to note that we have no restriction what-
soever in the choice of the polynomial inner product. The Arnoldi basis thus
constructed will no longer be orthogonal with respect to the usual Euclidean
inner product but it will be orthogonal relative to another, less natural, inner
product.

2.1 Discrete inner products over polynomial spaces

We introduce the following discrete inner product on the space P,, of polyno-
mials of degree < m — 1,

() PpxP,—R
(p,q) = Z kP (0x)q(6k) (3)

0r€S

where the 7;’s are strictly positive weights and the set of knots S is a set of
approximate eigenvalues of A, with |S| > m. This does define a nondegenerate
inner product if all n;’s are different and when |S| > m. The experiments
suggest that |S| = m often works well.

The first step in the proposed procedure is to compute a basis {w;}i=1,_m
of the Krylov subspace K, = K,,(A, 7o) where rq is the initial residual. We
denote by W,, the matrix W,,, = [wy, ..., wy]. Each basis vector w; is taken

in the form w; = p,;_1(A)ro for 1 < j < m, where py, ..., pm_1 is a sequence of
orthogonal polynomials with respect to the inner product (3). Since the knots
and weights are real, it is well-known that these polynomials satisfy a 3-term
recurrence of the form

Bit1pi(t) = tpi—1(t) — aupi—1(t) — Bipi—2(t), 1=1,...,m. (4)

with the convention p_; = 0, Sy = 0 and py = 1/« such that ||pg|| = 1. This
results in a similar relation for the sequence of w;’s.

wr = pO(A)"'O (5)
Biviwitr = Aw; — ogw; — Biwi—, 1=1,...,m
with the convention that wy = 0.

When the matrix is normal, the discrete inner product (p;, p;) is a good approx-
imation of (w;1,w;41), for specific weights 7. Note that we address here the
general case of a complex spectrum since when the spectrum is real and A is
normal then A is Hermitian. When A is normal, it admits an orthonormal basis
of eigenvectors u;,¢ = 1,...,n. Expanding ry in this basis as ro = Y>_;_; Exus
we obtain

ro = Y pi(M) Erun
k=1

and it follows that

wsz] Z ‘é-k pz /\k p](Alc)

This inner product is clearly identical with the discrete inner product (3) when
S is equal to the spectrum of A and 7 = |& %

Assume that S has [distinct elements 6;, 7 = 1,...,l. Then it is well-known
that the roots of the [-th orthogonal polynomial p; are the knots 6;,,7 =1,..., 1.

For 7 > [, the orthogonal polynomials are underdetermined. Specifically, any
polynomial of the form

Pri(t) = qe()pi(t) VE >0 (6)

where g, is an arbitrary polynomial of degree k, will satisfy the orthogonality
condition.

Note that when a knot 6; is represented several times in S then clearly we can
replace all these points by a single one whose weight is the sum of the weights
of all the different instances of 6;. Since we do not want ||pg|| to be equal to
zero for k = 0,...,m, we have to take |S| > m + 1 with S having at least
m + 1 distinct 6. Nevertheless, taking |S| = m works well in practice, since
we do not explicitly use Wy, 11 = pm(A)ro.

2.2 Computation of the basis W,

Before computing the basis W, it is necessary to start by obtaining the coeffi-
cients «, (3; of the three-term recurrence with the standard Stieljes procedure
using the discrete inner product, see [4]. These coefficients can be represented
as a tridiagonal matrix Tj, of size (m + 1) x m.

a1 [
B2 ay B3
Tm _ - . * .
ﬁm—l Q1 /Bm
ﬂm 7
ﬁm—i—l

We then compute the basis W), with the 3-term recurrence (5). The following
relation is satisfied

AW,y = Wrpii T (7)
The vectors w;, 2 = 1,. .., m+1 are not normalized for the 2-norm. Introducing
the diagonal matrix D,, = Diag(||w:||,. .., ||wm]||) we can form the basis W,,, =

W D;;t whose column-vectors are of norm unity. We next form the new iterate
Z resulting from a quasi-minimization step on the space spanned by W,,. This
is obtained as follows. Write the approximation in the form

i=2+4+Wpj=1x+W,D, (8)

and express the corresponding residual as

F=r— AWmQ;fgj
=T— Wm—HTmD;zlg 9
= 7 — Wins1 D1 T DL G (9)
—_——

Sm

with r = a w; = «a||w;|| @1, and « such that po(t) = 1/a. The Galerkin
condition 7 1 AKy(A, 7o) then leads to finding 7 such that:
g = argmyin |r — AW,y

o) 10
= axgmin W1 (aljual] e — S| 1o

A similar minimization problem arises in the standard GMRES algorithm.
However, in GMRES the analogue of the matrix Wm+1 is orthonormal and
this leads to an inexpensive method for minimizing the residual norm over
K,,. In the present situation, Wm+1 is not orthonormal so an exact mini-
mizer of the residual norm may be difficult to obtain. However, we can find
a quasi-minimum solution which consists of ignoring the non-orthogonality of
the system W,,;; as is done in the QMR algorithm [3]. This corresponds to
finding y which satisfies:

g = argmyin | o [Jwi]l €1 — Swmyll (11)

It can be easily seen that the solution which would be obtained by a projection
process onto the unscaled basis W,,, is identical with the one defined above.
However, this is only true in exact arithmetic. In the presence of round-off the
use of W,, is not as viable numerically.

2.3 Update of the 0y ’s and the n’s

Once the new approximate solution is found, the next step is to update the set
S of knots 6, and the weights 7, in order to restart the process. Initially the
0’s are taken to be random numbers in the range [S\mm, S\maw], where A\, and
Amaz are approximations to the smallest and largest eigenvalues of A provided
from Gershgorin’s theorm. In subsequent steps, the 6;’s are updated from the
eigenvalues of the following Generalized Eigenvalue Problem:

WEAW,, u= X\ W W, u (12)

This is obtained from a projection method onto the Krylov subspace [1].

This operation is expensive because it requires forming the matrix WZ;Wm
which requires 7m?/2 inner products. Once this matrix is available, then the
matrix W AW,, is easily computed from

WEAW,, = WEW,, 4150 (13)

The problem (12) gives m approximate eigenvalues of A of which m' are dis-
tinct. We can update m' values of S or add some of them to S. The size of S
should not be too big since it is desirable that the discrete inner product (3)
be inexpensive to evaluate. Nevertheless, the tests we made for the different
choices of S showed that the convergence rate is not improved by taking a
larger S, and that in fact the process can even be slowed.

We need to compute the m x (m + 1) matrix W2 W,,,, which is equal to the
left hand side matrix of (12). Since the square part of size m x m of WL Wi,
is symmetric and has one on the main diagonal, we need only compute its
strict upper part, which requires (m(m + 1)/2) inner products of size n each.
This is about the same number of operations than for computing the inner
products in the Arnoldi process of GMRES(m). The main difference is that
the vectors to be orthogonalized are now available in advance and therefore
all the relevant inner product can be obtained at the same time, exploiting
parallelism.

For the computation of 7, Section 2.1 suggests that in the normal case, a good
choice would be 7; = (141, 2;), where z; is an exact eigenvector. Since exact
eigenvectors are not available we can use their approximations obtained from
the subspace, i.e., the Ritz vectors W, u; of (12). This gives 7; = (741, Wint;)?
assuming that the Ritz vectors W,,u; are normalized. Then

(o1, Wintty) = (1, — AW, Winus) (14)

= (allwill ex = 5, Wy W) (15)
Let @, be the product of Givens rotation matrices which transform al|w:|| e
into gp, = (71, Yme1)T and T, into an (m+1) xm upper triangular matrix
R.,. Then, § = R, 'g,, where R,, is the m x m part of R,, and g, is the vector
consisting of the first m components of g,,. Then we have:

(Fks1, Wontis) = (Qu (fjwr]] 1 = Ton), QW o W) (16)
= (gm - ngv QmW;{;—HWmuz) (17)
= (Ymt+1€m+1, Qng;HWmUi) (18)

We are just interested in the last components of QmWZ; HWmui. The matrix
W Wr 41 is already computed. The rest of the computation to obtain the
term (18) is inexpensive.

In the second part of the tests to be presented in Section 5 the 7;’s are taken
to be equal to one.

2.4 The Algorithm

The algorithm can be summarized as follow:

Algorithm 1 Acceleration by Discrete Orthogonal Polynomials

(1) Initialize:))
(a) Obtain the estimates of Apin and Apaz using Ger:ghg()'rin’s theorem.
(b) Randomly generate a set S of m points in [Amin, Amaz/

(c) Choose o as a starting vector, and compute ro = b — Axy.
(2) Iterate:

(a) Generate the tridiagonal matriz T,,, i.e., the a’s and (3’s from the
Stieljes procedure.

(b) Compute the basis Wy, = [po(A)To, - - - s Pm—1(A)7T0]

(c) Compute y,, = argmin ||Be; — Trayll2, Tm = To + Winym, and v, =
To — Amem

(d) If ||rml| is small enough then Stop.

(e) Else compute the set S of eigenvalues of the Generalized Figenvalue
Problem

WEAW,u = AW, W,u

(f) Set xg = Xy, 7o =T, S = S and go to 2a.
2.5 Cost Comparison with GMRES(m)

The costs of the new algorithm with GMRES(m) for the same Krylov subspace
dimension m are as follows.

Accelerated Orthogonal Polynomial Method | GMRES(m)

1- Generation of T}, and W,, 1- Generation of V,
2- Computation of ¢, with the Arnoldi process
3- Update of S 2- Computation of ¢,

Step 2 requires about the same number of operations in both cases. Steps 1
and 3 of the Accelerated Orthogonal Polynomial Method require:

(1) 2m inner products of size m for the computation of T,.
(2) for the computation of W,
(a) m matrix vector produtcs with a sparse matrix of size n
(b) multiplication of 7, by 2 diagonal matrices to form S,,
(c) 2m — 1 saxpy on vectors of size n
) m + 1 divisions of vectors of size n by a scalar

(3) for the generalized eigenvalues problem
(a) a matrix - matrix product of size mn x n(m + 1) which requires
m(m+1)/2 inner products of size n for the computation of WXW,,
(b) matrix - matrix product of size m(m + 1) x (m + 1)m for the com-
putation of W1 AW,, via (13)
(c) solve the eigenvalue problem (12)

Since it is assumed that m < n, steps 1, 2-b, 3-b and 3-c are inexpensive
relative to the rest of the computation. In a parallel environment they can be
redundantly computed on each node of the computer.

For GMRES(m), the amount of work to compute the basis V,, is as follows.

(1)

(2) m matrix vector products, with a sparse matrix of size n
(3) m(m + 1)/2 saxpy on vectors of size n

(4) m + 1 divisions of vectors of size n by a scalar

Steps 2 and 4 of GMRES(m) require exactly the same number of operations
as steps 2-a and 2-d of the ADOP algorithm.

The only steps to compare are 1 and 3 for GMRES(m), with 2-c¢ and 3-a of
ADOP. The total amount of work for the method is less than for GMRES(m).
This is due to the fact that a 3-term recurrence is used for generating the
Krylov basis W,,, because we assumed that the spectrum is real and that all
approximate eigenvalues obtained subsequently are assumed to be real.

If the spectrum is complex and the polynomials p; do not obey a three term
recurrence then these polynomials can be computed as in the Arnoldi process,
namely via a long recurrence of the form

hyesapi(9) = 9y (8) — 3 hipia () (19

The cost of this procedure then becomes comparable with that of GMRES(m).
One notable difference however, is that while the computation of the inner
products in GMRES(m) must be computed in sequence, the new procedure
only requires a matrix-matrix product with far more inherent parallelism.

3 Case of a complex spectrum

When the spectrum is complex, then in general there is no three-term recur-
rence for the orthogonal polynomials associated with the approximate spec-

trum S and the weights 7;. There are two possible alternatives. The first, which
was just mentioned is to use the full-term recurrence (19). The second is to use
indefinite (non-Hermitian) inner products in order to recover the three-term
recurrence. Each of these approaches has advantages and disadvantages.

3.1 Hermitian inner products on S

The discrete symmetric inner product (3) is replaced by the Hermitian discrete
inner product:

P, @)= mep(0k)q(0r) (20)

0, €S

Here P, is the set of all polynomials of degree strictly less than m with
coefficients in C. The coefficients 7 are real and positive weights.

The 3-term recurrence of the orthonormal polynomials (4) is now replaced
by the recurrence (19). The scalars (h;;)1<i<j+1 are computed in order for
the polynomial p; to be orthonormal to all previous ones with respect to the
inner product (20). The Krylov basis K,, can be computed similarly, with the
recurrence

J
hj+1,jwj+1 = ij — Z hi,jwi,] = 1, % (21)
1=1

with the convention that wy = 0. Apart from this difference and the fact that
the matrix 7;, is replaced by a Hessenberg matrix, the algorithm is identical
with Algorithm 1.

3.2 Indefinite Inner Products

An alternative to the previous approach is to define inner products in the form

{p,a) = Y nep(0k)q(6r) (22)

0kES

This inner product is again on the set P, of all complex polynomials of degree
strictly less than m and the coefficients 1, are real and positive weights. The
main difference with the previous case is that the above bilinear form does
not define a proper inner product. Indeed, the scalar (p, p) is not necessarily
a positive number and therefore this inner product does not yield a proper

10

norm. We will make the assumption that the points of S come in conjugate
pairs, i.e., if A € S then also A € S. This means that the set S is symmetric
with respect to the real axis which is clearly true if the elements of S are
eigenvalues of a real matrix. In this situation (p, ¢) is real for real polynomials
p and ¢ and the computation can be kept in real arithmetic provided A is real
and the initial set S satisfies the symmetry requirement discussed above.

The Stieljes procedure should be somewhat modifed to take into account the
fact that (p;, p;) can be negative. In the following algorithm, it is assumed that
p_1 =0and 5 =0.

Algorithm 2 Stieljes procedure for indefinite inner products

1 Init: Define po(t) = 1/, where a = /| < 1,1 > |.
2 Forj=1,...,m Do

3 q=1tpj_1— Bjpj2

4 a; =< ¢,pj-1>

] q:=q—q;pj—1

6 div1 =4/ <q,q>|. If 6;41 == 0 abort.

7 pj = q/6j41;

8 ﬂj+1 = 5j+1%
9

EndDo

Note that the sequence of polynomials obtained is such that (p;,p;) = +1,
so that the scalar 3;;; defined in line 8 is equal to £d,41 and requires just a
sign adjustment to d,41. We obtain a recurrence which is quite similar to that
obtained in the real spectrum case. In the particular case when S is a real set,
then (g, ¢) is always non-negative and therefore ;1 = d,41, so we recover the
case seen in Section 2.

At each step of the Stieljes procedure we have a recurrence of the form

05410 (t) = tpj-1(t) — ypj—1(t) — Bjpj-a(t) (23)

It is clear that if w; = p,;_1(A)w; then the relation (7) is still valid, but with
a tridiagonal matrix of the form

31 ,32
dy o 53
T =
Qm—1 ﬁm
Om Om
5m+1

11

in which §; = £6; and §; > 0 for 7« = 2,...,m. In a sense this technique is
comparable with the BiCG and QMR algorithms which, similarly, are based on
an indefinite inner product. At each step there is the potential for a breakdown
in Line 6 of the Stieljes procedure. If this happens it is probably best to restart
the algorithm — though look-ahead strategies similar to the ones developed for
the nonsymmetric Lanczos algorithm and QMR are also possible [3].

4 Preconditioning

It is also possible to precondition the ADOP method and the three precondi-
tioning options, left, right and split preconditioning are all available.

4.1 Left Preconditioning

When considering left preconditioning, the linear system M~'Az = M~'b
is solved by building the Krylov subspace K,,(M 'A,r;). The approximate
eigenvalues considered are those of M 1A. Usually M ! is not available and
only its action on a vector can be performed. Approximating the eigenvalues
with the Gershgorin’s theorem is no longer possible, and one iteration of an
Arnoldi-like method can be used. The steps 1-a and 1-b of the Algorithm 1 is
replaced by one iteration of the |S|-restarted Arnoldi method.

Next the tridiagonal matrix 7, is constructed, and the vectors w; satisfying
the 3-term recurrence

Biviwirr = M T Aw; — qqw; — fiwi—y, i=1,...,m (24)

are build. This yields the relation M~'AW,, = W,,11T;,. The new approxi-
mate solution takes the form & = Zy + W,y and 7 = 7y + M~ 1AW, 7.

Finally, the Generalized Eigenvalue Problem 2-e is replaced by

WIM AW, u = WiW,ii T u

— A WI W, u (25)

More generally, the difference between the left preconditioned and the non
preconditioned ADOP method lies in the initialization of the approximate
eigenvalues, and the application of M !A instead of A each time A occurs in
the non preconditioned algorithm.

12

4.2 Right Preconditioning

When using the right preconditioning, the Krylov subspace K,,(AM ™!,) is
build to find z such that Mz = v and AM~'u = b. The set S is initial-
ized with |S| approximate eigenvalues of AM ™' and the matrix W, satisfies
AM~'W,, = m+1Tm. The vector u is never computed and the solution is
T =29+ M‘1ngj and 7 = 7y + AM‘legj.

The Generalized Eigenvalue Problem 2-e is replaced by

WIAM~ Wy 1o = WEWpi1 Ty 1

(26)

which yields no further changements in the computation of the new approxi-
mate eigenvalues.

Recall that GMRES(m) gives rise to a flexible version ([5]), which enables
changing the precondioning matrix at each new building vector of the basis.
This is not possible with ADOP since it is based on the eigenvalues of the
matrix AM !, which has to be the same at each step.

4.8 Split Preconditioning

The split preconditioning takes into account the two previous forms by solving
LYAUu = U~'b with Uz = u.

5 Experiments

All tests have been performed on the CRAY T3E of LD.R.I.S. ! with matrices
taken from the Harwell-Boeing, and the SPARSKIT collection available at the
University of Minnesota. The size of the matrices studied are between 886 and
21200, and some are very sparse. The maximum number of processors used
is 8. The program was originally coded in F90, but for efficiency reasons, we
translated most of the code into F77. However, we are still using the F90
compiler. The Message Passing Library used is MPI.

The first part of the tests focus on the behavior of ADOP and compares the
use of the Hermitian and indefinite discrete inner product with the GMRES

I Institut du Développement et des Ressources en Informatique Scientifique -
CNRS, Batiment 506 - B.P. 167, 91403 ORSAY CEDEX, FRANCE

13

method by testing small and medium size matrices. From the point of view
of speed, it appears that the indefinite inner product is superior. The second
part compares the ADOP method with GMRES method through the use of
the P.SPARSLIB library (see [7]) and larger matrices.

For all the cases taken into account, the residual of the ADOP and GMRES
methods are never computed as ¥ = b — AZ, but updated as

T = Y11 @mem+1 (27)

with Q.1 = Wp,41 for the ADOP method and 2,11 = V1 for the GMRES
method, in order to avoid the matrix-vector products with the matrix A, which
are time-consuming operations.

In the next sections, the acronym ADOP stands for the ADOP method with
the indefinite discrete inner product and the weights taken to one, ADOPW
for the ADOP method with the same indefinite inner product and the weights
taken as explained in the section 2.3, and ADOPH means the ADOP method
with the Hermitian inner product.

In the following tables, m indicates the size of the Krylov subspaces. For each
test, the Iter/time data shows the number of iterations, before the algorithm
stops and the time of the method (ADOP or GMRES) to stop. This is the
time spent within the method itself, including matrix vector products, and the
preconditioning computations, but excluding the preprocessing. The second
line of each performance data shows the final residual norm reduction achieved.
The algorithm is stopped if a residual norm reduction of 107% is not achieved
after a maximum of 400 iterations is reached. The third line represents the time
spent exclusively in the accelerator. i.e., in the GMRES or ADOP method, till
the convergence or the number of maximum of iterations is reached.

5.1 Hermitian versus Indefinite Inner Product

In this section, we wish to compare the general behavior of the ADOP, ADOPW,
ADOPH and GMRES methods.

The matrix is split column-wise among the processors, in order that each parti-
tion has ncol consecutive columns of the initial matrix A and approximatively
the same number nnz of non zero elements. When preconditioning is employed,
a (left) block Jacobi preconditioner is used in which each block corresponds
to the local matrix on each processor. The solution needed in the Block Ja-
cobi Preconditioning operation is computed with an ILU factorization of these
blocks. The solution is not known in advance, and the right hand-side is the

14

Table 1

Matrix ORSIRR1, NbPE = 4, Precon = no

m | Perf. GMRES(m) | ADOP(m) | ADOPW(m) | ADOPH(m)

5 | Iter/time 400 / 3.162 | 400 / 3.121 | 400 / 3.091 | 400 / 4.906
reduction 0.674E+00 0.226E-01 0.460E+00 0.658E-02
Accel. time 1.013 0.954 0.956 1.495

7 | Iter/time 400 / 4.551 | 400 / 4.318 | 400 / 4.318 | 400 / 7.012
reduction 0.505E4-00 0.233E-05 0.160E+00 0.125E-03
Accel. time 1.570 1.319 1.315 2.243

9 | Iter/time 400 / 6.058 | 344 / 4.742 | 400 / 5.590 | 336 / 7.906
reduction 0.405E400 0.888E-06 0.219E-01 0.672E-06
Accel. time 2.234 1.496 1.782 2.632

10 | Iter/time 400 / 6.886 | 312 / 4.843 | 400 / 6.245 | 358 / 9.531
reduction 0.218E-01 0.144E-06 0.156E-01 0.927E-06
Accel. time 2.611 1.539 2.003 3.297

15 | Iter/time 276 / 7.786 | 205/ 5.106 | 400 / 9.962 | 194 / 8.387
reduction 0.880E-06 0.438E-06 0.666E-03 0.754E-06
Accel. time 3.385 1.828 3.561 3.419

20 | Iter/time 364 / 14.998 | 116 / 4.083 | 324 / 11.662 | 168 / 10.823
reduction 0.100E-05 0.781E-06 0.949E-06 0.580E-07
Accel. time 7.189 1.644 4.775 4.978

30 | Iter/time 95 /6.775 | 191 / 10.996 | 343 / 19.956 | 88 / 10.166
reduction 0.998E-06 0.663E-06 0.623E-06 0.686E-06
Accel. time 3.687 5.012 9.085 5.570

40 | Tter/time 56 / 6.009 | 161 / 14.353 | 400 / 35.181 | 102 / 18.339
reduction 0.999E-06 0.400E-06 0.564E-05 0.615E-06
Accel. time 3.636 7.490 18.253 11.324

50 | Iter/time 33 /4.851 | 236 /31.181 | 379 /49.18 | 110 / 29.393
reduction 0.999E-06 0.968E-06 0.525E-06 0.280E-07
Accel. time 3.080 18.552 28.980 19.791

unit vector. The initial vector is zero and the different restarts are 11 values in
the range [5—50]. The process is stopped whenever norm(r)/norm(b) < 1.0e—6

or the maximum number 400 of iterations is reached.

Tests were done on the matrices SHERMAN4, SHERMANS5, ORSIRR1, OR-
SIRR2, ORSREGT1. Their sizes are between 886 and 3312. The size of the set
S of the approximate eigenvalues of A is equal to m. Tests performed on se-
quential machines and not reported here seemed to indicate that that though
convergence tended to be slower with Hermitian inner products, overall the

method tended to be more realiable.

The results shown in Table 1 are with the matrix ORSIRR1 from the Harwell-
Boeing collection. It has 6858 non zero elements, and a size of 1030. We can

make the following remarks

(1) One iteration of ADOPW and ADOP take roughly the same time. This

15

is due to the fact that the ADOPW methods requires very few additional
computations compared to ADOP, and these are negligible.

(2) From a convergence and time point of view ADOPW is not competitive
compared to GMRES and ADOP.

(3) One iteration of ADOPH is more expensive than one iteration of ADOP:
the recurrence for building the vectors of the basis of K,, is longer for
ADOPH than for ADOP. The code ADOPH requires complex arithmetic.
Although most of the complex arrays have been implemented by two real
arrays the solution of the generalized eigenvalue problem is performed by
LAPACK routine in complex arithmetic.

(4) The number of iterations required for ADOPH to converge decreases as m
increases. Nevertheless, ADOPH remains uncompetitive from the point
of view of time compared with ADOP.

(5) ADOP converges faster than GMRES for small size of restarts, that are
between 5 and 30. When m is too large, the matrix W,, becomes ill-
conditionned and the method fails to converge. This is also true for
ADOPW. In contrast ADOPH is more reliable and still converges for
larger values of restart.

(6) One iteration of ADOP is always faster than one iteration of GMRES.
The time gained by ADOP compared with GMRES for one iteration
grows up to 33% as m increases to 30 — 40 and then decreases.

(7) The best overall time of computation is reached for m equal to 10 for
ADOP, and m equal to 50 for GMRES.

(8) The best overall time is reached by ADOP for all the tested considered.

When considering the same matrix preconditioned with a left block Jacobi, the
previous remarks are still valid except that the best overall time for GMRES is
reached for m = 30, whereas the best overall time for ADOP still remains with
m = 10. Furthermore, ADOP behaves better for greater restarts, especially
for m = 50.

We now turn to the test results with the second matrix shown in the ta-
ble 2. The matrix is SHERMAN4 another matrix from the Harwell-Boeing
collection. It has 3786 non zero elements, and a size of 1104. The first five
observations made above for the unpreconditioned matrix ORSIRR1 are still
valid. Otherwise:

(1) One iteration of ADOP is always faster than one iteration of GMRES.
However, now the time gained by ADOP compared with GMRES for one
iteration grows up to 30% as m increases to only 20 and then decreases.

(2) The best overall time of computation is reached for m equal to 15 for
ADOP, and m equal to 50 for GMRES.

The best overall time is still achieved by ADOP.

16

Table 2

Matrix SHERMAN4, NbPE = 4, Precon = no.

m | Perf. GMRES(m) | ADOP(m) | ADOPW(m) | ADOPH(m)
5 | Iter/Time 143 / 1.087 | 104 / 0.779 | 355 / 2.714 | 136 / 1.667
Reduction 0.663E-06 0.941E-06 0.941E-06 0.565E-06
Accel. Time 0.361 0.250 0.876 0.527
8 | Iter/Time 100 / 1.280 | 56 /0.682 | 159 /1.953 | 83 / 1.718
Reduction 0.949E-06 0.996E-06 0.907E-06 0.979E-06
Accel. Time 0.471 0.216 0.632 0.573
9 | Iter/Time 88 /1.298 | 58 /0.799 | 133 /1.854 | 56 / 1.339
Reduction 0.980E-06 0.866E-06 0.933E-06 0.132E-06
Accel. Time 0.492 0.257 0.604 0.455
10 | Tter/Time | 70/ 1.163 | 52/ 0.803 | 82/1.280 | 49/ 1.326
Reduction 0.963E-06 0.828E-06 0.868E-06 0.777E-06
Accel. Time 0.455 0.262 0.422 0.466
15 | Iter/Time 54 / 1.476 | 25 /0.609 | 44 /1.087 30 / 1.313
Reduction 0.993E-06 | 0.978E-06 0.877E-06 0.321E-06
Accel. Time 0.649 0.222 0.406 0.551
20 | Tter/Time | 28/ 1.134 | 19 /065 | 29/ 1.023 | 22/ 1.423
Reduction 0.970E-06 0.667E-06 0.860E-06 0.540E-06
Accel. Time 0.551 0.265 0.426 0.676
30 | Tter/Time | 14/0.985 | 10 /1.148 | 46 /2.750 | 14/ 1.644
Reduction 0.976E-06 | 0.705E-06 0.677E-06 0.717E-06
Accel. Time 0.546 0.556 1.330 0.926
40 | Tter/Time | 7/ 0.956 | 20 /1.805 | 41/3.702 | 12/ 2.280
Reduction 0.985E-06 0.770E-06 0.874E-06 0.109E-06
Accel. Time 0.445 0.985 2.013 1.456
50 | Iter/Time 5/ 0.736 16 / 2.162 22 / 3.088 6/1.619
Reduction 0.962E-06 0.248E-06 0.908E-06 0.107E-06
Accel. Time 0.478 1.349 1.968 1.101

When considering the preconditioned case, it appears that ADOP behaves
better than GMRES in the number of iterations for only very small sizes of
restarts (under 9) and that for the restart sizes equal to 15 and 30, ADOPW
is superior to ADOP.

ADOP is not competitive for restart sizes between 20 and 50, where the num-
ber of iterations of GMRES considerably decreases with m. For m = 50,
the number of iterations for GMRES is 2. This is also the case for ADOP,
ADOPW, ADOPH. The difference is that ADOP must finish the second iter-
ation, i.e., to build the 50 vectors of the basis even when the first few would
be sufficient to achieve convergence. The 2 iterations of GMRES are indeed 1
complete iteration plus 2 new vectors of the basis. So in overall time, GMRES
converge faster, because it has fewer matrix-vectors and preconditionings to

perform.

This case of fast convergence of the ADOP method for large restarts, is un-

17

common. The tests showed that for large m, when GMRES converge rapidly
in 1 or 2 iterations, ADOP is slow. One solution to this case could be to start
with one iteration of GMRES. Since it would also enable us to approximate
the first eigenvalues, the algorithm would be fast and reliable: When GMRES
converges very fast that is in 1 or 2 iterations, so will the general method.
When ADOP converges faster, the global method will converge at the same
speed. This requires practically not much additional computations in the pre-
conditioned case, since a method for approximating the eigenvalues has to
used anyway. This can be done within the first iteration of GMRES.

In general the tests showed that: (1) ADOPH is not attractive from the point
of view of the execution time; and (2) ADOPW is not competitive from the
point of view of the number of iterations.

5.2 ADOP versus GMRES

In this section, we compare exclusively the ADOP method with the indefi-
nite inner product and the weights taken all equal to one, with GMRES, on
larger matrices. For this, we chose the PSPARSLIB library, which already
implements GMRES with right preconditioning and flexible GMRES. Before
beeing mapped to the processors, the matrix is partitioned with the Recursive
Spectral Bisection algorithm. When using a preconditioning, we again employ
block Jacobi. The diagonal blocks are those of the reordered matrix and are
again approximated through an ILU factorization. The solution is taken to
be equal to the vector of all ones. The initial vector is zero and the different
restarts are 11 values in the range [5 — 50]. The process is stopped whenever
norm(r)/norm(b) < 1.0e — 6 or the maximum number 400 of iterations is
reached.

The matrices tested are EX11, EX19 and EX35 from the FIDAP collection,
RAEFSKY3 and INACCURA from the Simon collection, The sizes of these
matrices are between 12005 and 21000.

The matrices considered first are EX11 and EX35 shown in the tables 3 and
4 without preconditioning. EX11 has 1096948 non zero elements and its size
is 16614. EX35 has 228208 non zero elements and its size is 19716. EX35 is
highly sparse. The following remarks can be made:

(1) The ADOP method converges faster than GMRES for all the cases tested.

(2) One iteration of ADOP is faster than one iteration of GMRES. This is
not always true for m equal to 5.

(3) For EX35, GMRES never converges, while ADOP converges for m be-
tween 25 and 50. The reduction in the number of iterations decrease as
m increases for ADOP. The best execution time is achieved with ADOP

18

Table 3

Matrix EX11, NbPE = 4, Precon = no.

m | Perf. GMRES(m) ADOP(m)

5 | Iter/Time 400 / 43.747 | 400 / 43.954
Reduction 0.112E-03 0.851E-05
Accel. Time 4.773 5.035

10 | Iter/Time 400 / 90.196 | 400 / 87.792
Reduction 0.106E-04 0.664E-05
Accel. Time 12.550 10.165

15 | Iter/Time 400 / 139.688 | 400 / 131.902
Reduction 0.744E-05 0.251E-05
Accel. Time 23.315 15.655

20 | Iter/Time | 400 / 192.702 | 201 / 90.275
Reduction 0.607E-05 0.509E-06
Accel. Time 37.208 12.386

25 | Iter/Time 400 / 245.705 | 172 / 96.992
Reduction 0.469E-05 0.974E-06
Accel. Time 53.786 13.732

30 | Iter/Time 400 / 303.537 | 153 / 105.229
Reduction 0.331E-05 0.425E-06
Accel. Time 73.282 16.401

40 | Iter/Time 400 / 427.784 | 114 / 105.873
Reduction 0.133E-05 0.160E-07
Accel. Time 120.791 17.652

50 | Iter/Time 283 / 397.936 | 84 / 100.635
Reduction 0.100E-05 0.939E-06
Accel. Time 126.791 19.352

for m equal to 25. Because of the high degree of sparsity of the matrix,
the time spent in the method istelf accounts for a large part of the global
time. The gain due to ADOP is then quite high.

(4) For EX11, GMRES reduces the norm as m increases but only converges
for m equal to 50. ADOP reduces the norm as m increases but converges
for m between 20 and 50. The best time computed is for m equal to 20.

What is true for the unpreconditioned case, is not true for the right precon-
ditioned Block Jacobi case. Table 5 shows the behavior of EX11 when it is
preconditioned. In this case, the number of iterations to reach converge is bet-
ter for ADOP only for m = 5, 7 and 20. The overall best time is reached by
GMRES for m = 10. The best time for ADOP is reached for m = 20, but it
is no longer ompetitive with the best GMRES time.

In general all the experiments performed show the following points. First, with-
out preconditioning, ADOP converges much faster than GMRES for all the
tests performed, and the gain can be high. Second, when Block-Jacobi precon-
ditioning is used, the behavior of ADOP either remains the same, or changes in
an unpredictable manner. Furthermore, its associated residual has an erratic

19

Table 4

Matrix EX35, NbPE = 4, Precon = no

m | Perf. GMRES(m) ADOP(m)

5 | Time/Iter 400 / 23.711 400 / 23.636
Reduction 0.222E-03 0.551E-04
Accel. Time 7.534 7.516

10 | Time/Tter 400 / 51.218 400 / 47.068
Reduction 0.724E-04 0.255E-04
Accel. Time 19.115 15.057

20 | Time/Iter 400 / 119.687 400 / 99.792
Reduction 0.254E-04 0.154E-05
Accel. Time 55.768 35.859

25 | Time/Iter | 400 / 160.722 | 386 / 121.621
Reduction 0.194E-04 0.100E-05
Accel. Time 80.897 44.598

30 | Time/Iter 400 / 206.388 | 341 / 133.234
Reduction 0.140E-04 341 / 0.993E-06
Accel. Time 110.632 51.624

40 | Time/Tter | 400 / 311.198 | 289 / 155.591
Reduction 0.618E-05 0.994E-06
Accel. Time 183.622 63.434

50 | Time/Iter 400 / 434.195 | 199 / 142.275
Reduction 0.171E-05 0.913E-06
Accel. Time 274.790 62.999

behavior. A better adapted preconditioner should be tested; possibly a poly-
nomial one with the polynomial taken to be the Chebyshev or least-squares
polynomial, which could take advantage of the approximate eigenvalues com-
puted.

6 Conclusion

The method proposed is attractive, for the following reasons. First, for ma-
trices not requiring any preconditioning, the gain obtained in time by ADOP
compared with GMRES is not negligible. This is particularly true for highly
sparse matrices. Second, the method is amenable to efficient combinations
with other techniques. We can for example use GMRES for the first iterations
and then switch to ADOP to take advantage of its speed in later steps. We
can also use it as a preconditioner in flexible GMRES ([5]).

Better adapted preconditioners should be sought when ADOP is used as the
numerical experiments seem to indicate that ADOP is much more sensitive to
poor preconditioners than GMRES. In particular, preconditioners that pro-
duce indefinite matrices may be ineffective when used with ADOP, though
this remains to be studied more carefully. Preconditioners which could take

20

Table 5

Matrix EX11, NbPE = 4, Precon = Block Jacobi

m | Perf. GMRES(m) | ADOP(m)

5 | Iter/Time 134 / 19.554 | 122 / 17.821
Reduction 0.982E-06 0.462E-06
Accel. Time 2.071 1.909

7 | Iter/Time 80 / 16.438 | 75/ 15.182
Reduction 0.890E-06 0.985E-06
Accel. Time 1.896 1.562

9 | Iter/Time 55 / 14.415 | 63 / 16.474
Reduction 0.100E-05 0.974E-06
Accel. Time 1.811 1.811

10 | Iter/Time 30 / 8.667 52 / 15.075
Reduction 0.991E-06 0.821E-06
Accel. Time 1.133 1.627

15 | Iter/Time 29 /12,925 | 38 / 16.517
Reduction 0.996E-06 0.617E-06
Accel. Time 2.009 1.811

25 | Iter/Time 22 /17.666 | 30 / 22.099
Reduction 0.999E-06 0.855E-06
Accel. Time 3.578 2.812

30 | Iter/Time 18 / 17.030 | 46 / 41.038
Reduction 0.999E-06 0.352E-06
Accel. Time 3.822 5.619

40 | Tter/Time 9 / 11.966 33 / 39.596
Reduction 0.961E-06 0.240E-06
Accel. Time 3.118 5.739

50 | Iter/Time 6 / 10.012 62 / 94.958
Reduction 0.982E-06 0.159E-05
Accel. Time 2.936 15.507

advantage of the eigenvalues approximated in the method can be effective.

References

[11 Y. Saad. Numerical Methods for Large FEigenvalue Problem. Halstead Press,

New York, 1992.

[2] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS publishing, New

York, 1996.

[3] R. W. Freund and N. M. Nachtigal. QMR: a quasi-minimal residual method for
non-Hermitian linear systems. Numerische Mathematik, 60:315-339, 1991.

[4] W. Gautschi.

On generating orthogonal polynomials.

Scientific and Statistical Computing, 3:289-317, 1982.

21

SIAM Journal on

[5] Y. Saad A flexible inner-outer preconditioned GMRES algorithm. SIAM Journal
on Scientific and Statistical Computing, 14:461-469, 1993.

[6] Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual algorithm
for solving nonsymmetric linear systems. SIAM Journal on Scientific and
Statistical Computing, 7:856-869, 1986.

[7Y. Saad and A. Malevsky PSPARSLIB: A portable library of distributed
memory sparse iterative solvers. In V. E. Malyshkin et al., editor, Proceedings of
Parallel Computing Technologies (PaCT-95), 3-rd international conference, St.
Petersburg, Sept. 1995, 1995.

22

