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Abstract

This paper describes a domain-based multi-level block ILU preconditioner (BILUTM) for solving
general sparse linear systems. This preconditioner combines a high accuracy incomplete LU factoriza-
tion with an algebraic multi-level recursive reduction. Thus, in the first level the matrix is permuted
into a block form using (block) independent set ordering and an ILUT factorization for the reordered
matrix is performed. The reduced system is the approximate Schur complement associated with
the partitioning and it is obtained implicitly as a by-product of the partial ILUT factorization with
respect to the complement of the independent set. The incomplete factorization process is repeated
with the reduced systems recursively. The last reduced system is factored approximately using ILUT
again. The successive reduced systems are not stored. This implementation is efficient in controlling
the fill-in elements during the multi-level block ILU factorization, especially when large size blocks
are used in domain decomposition type implementations. Numerical experiments are used to show
the robustness and efficiency of the proposed technique for solving some difficult problems.
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1 Introduction

The preconditioning technique proposed in this paper is based on multi-level block incomplete LU fac-
torization. It is intended for solving general sparse linear systems of the form

Az = b, (1)

where A is an unstructured matrix of order n. Such linear systems are often solved by Krylov subspace
methods coupled with a suitable preconditioner [50]. The research and design of preconditioners with
inherent parallelism have received much attention recently, spurred by the popularity of distributed
memory architectures. The main trade-offs when comparing preconditioners are their intrinsic efficiency,
generality, parallelism, and robustness. An experimental study on robustness of a few general purpose
preconditioners has been conducted in [21] and a number of ILU-type preconditioners have been tested
for solving some difficult problems from computational fluid dynamics in [18, 19].
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The Incomplete LU factorization without fill-ins (ILU(0)) is probably the best known general pur-
pose preconditioner [38]. However, this preconditioner is not robust and inefficient and fails for many
real-life problems. Many extensions of ILU(0), which increase its accuracy and robustness, have been
designed and we refer to [50] for a partial account of the literature and to [24, 25, 32, 42, 58, 59] for just
a few ideas described.

The moderate parallelism which can be extracted from the triangular solves in standard ILU factor-
ization [1, 50] is limited, and becomes inadequate for the more accurate ILU factorizations. Alternatives
have been considered in the past to develop preconditioners with inherently more parallelism than stan-
dard ILU, see for example [46, 50, 56] for references. A standard technique used for this purpose is to
exploit “multicolor orderings” or “independent sets” [47]. A well-known drawback of using a multicolor
ordering prior to building an ILU factorization is that the quality of the preconditioning on the reordered
system is generally worse than that on the original system [28, 29, 31]. However, numerical results in
[48] show that some high accuracy ILU type preconditioners with red-black ordering may eventually out-
perform their counterparts with natural ordering, if enough fill-ins are allowed. On the other hand, the
higher amount of fill-ins usually reduces the parallelism that is available in ILU(0). Therefore, a desirable
goal would be to achieve high accuracy while retaining parallelism achieved from using multicoloring or
independent sets. Other alternatives for developing parallel preconditioners have been proposed based on
sparse approximate inverse techniques, see e.g., [8, 15, 20, 22, 35]. These preconditioners afford maximum
parallelism both in their construction stage (except [8]) and in the application stage which requires only
matrix-vector operations. However, these methods tend to become inefficient for handling very large
matrices, because of their local nature.

The ‘multi-elimination ILU preconditioner’ (ILUM), introduced in [49], is based on exploiting the
idea of successive independent set orderings. It has a multi-level structure and offers a good degree of
parallelism without sacrificing overall effectiveness. Similar preconditioners developed in [11, 53] show
near grid-independent convergence for certain types of problems. In a recent report, some of these
multi-level preconditioners have been tested and compared favorably with other preconditioned iterative
methods and direct methods at least for the Laplace equation [9].

The idea of combining multi-level techniques with ILU is not new. Alternative multi-level ap-
proaches that require grid information have been developed. Examples of such approaches include the
nested recursive two-level factorization, repeated red-black orderings, and generalized cyclic reduction
[2, 4, 10, 30, 41] (see also the survey paper by Axelsson and Vassilevski [3]). Some recently developed
methods require only the adjacency graph of the coefficient matrices [11, 44, 49, 53]. For the repeated
red-black ordering approach, a near-optimal bound for the condition number of the preconditioned matrix
has been reported [40]. Other methods which bear some similarity with ILUM-type techniques are the
algebraic multigrid methods [12, 17, 44, 45, 57] and certain types of multigrid methods which consider
matrix entries [27, 26, 43]. Equally interesting are the multi-level preconditioning techniques based on
hierarchical basis or ILU decomposition associated with the finite difference or finite element analysis
[7, 6, 14].

A block version of ILUM called BILUM was recently defined by using small dense matrices as
pivots instead of scalars [53, 55]. For some hard-to-solve problems, block ILUM may perform much
better than ILUM. Tests with large blocks indicate that the larger the block the more robust the resulting
preconditioner. The solution with the independent blocks in BILUM uses the exact inverse or a regularized
inverse based on the Singular Value Decomposition (SVD) [53, 55]. These strategies are efficient for blocks
of small size but the cost of such inversion strategies grows cubically as the size of the blocks increases.

In this paper we focus on “domain decomposition based” Block ILUM. In this case the blocks
can be very large and are associated with a subdomain, as in domain decomposition methods. For
these large size blocks, the computational and memory costs of constructing the ILU factors for BILUM
become prohibitive. The dropping strategies that have been proposed [55] are not able to deal with both
problems (computation and memory costs) simultaneously. It is therefore vital to exploit sparsity for
“domain decomposition based” Block ILUM. This paper introduces an efficient approach to constructing
multi-level block ILU preconditioners based on this principle. The construction of such a preconditioner
is based on a restricted ILU factorization with a dual dropping strategy (ILUT), see [48]. This multi-level
block ILUT preconditioner (BILUTM) retains the efficiency and flexibility of ILUT and offers inherent



parallelism that can be exploited on parallel or distributed architectures.

This paper is organized as following. Section 2 gives an overview and background on multigrid
and multi-level preconditioning techniques. Section 3 provides some details on the construction of the
reduced system by partial Gaussian elimination. Section 4 discusses the proposed multi-level block ILUT
preconditioner (BILUTM). Section 5 describes some numerical experiments and Section 6 gives a few
concluding remarks.

2 Multi-Level Preconditioning Techniques

Multi-level preconditioners exploit explicitly or implicitly the property that a set of unknowns that are
not coupled to each other can be eliminated simultaneously in a Gaussian elimination type process. Such
a set is usually called an ‘independent set’ [33]. This concept of independent set can easily be generalized
to blocks. Thus a block independent set is a set of groups (blocks) of unknowns such that there is no
coupling between unknowns of any two different groups (blocks) [53]. Unknowns within the same group
(block) may be coupled. This is illustrated in Figure 1.

N
‘ ‘ “_ No Coupling

Figure 1: Independent groups or blocks.

Thus, point (scalar) independent sets are a particular case which use blocks of uniform size of
1. Various heuristic strategies may be used to find a block independent set with different properties
[49, 53]. A simple and usually efficient strategy is a greedy algorithm, which groups the nearest nodes
together. Since the focus of this paper is not on finding block independent sets, we assume that this
greedy algorithm is used throughout to find block independent sets.

A maximal independent set is an independent set that cannot be augmented by other nodes and
still remain independent. Independent sets are often constructed with some other conditions such as to
guarantee certain diagonal dominance for the nodes of the independent set or the vertex cover, which is
defined as the complement of the independent set. Thus, in practice, the maximality of an independent
set is rarely guaranteed, especially when some dropping strategies are applied [55].

Algebraic and ‘black box’ multigrid methods try to mimic geometric multigrid methods by defining
a prolongation operator Iy, , based on some heuristic arguments, here 0 < a < £ is an integer used
to label the level. For convenience and for satisfying certain conservation laws, the projection operator,
IC"'“1 is traditionally defined as the adjoint of the prolongation operator (possibly scaled by a constant),
I"‘Jrl =13, T [45]. With Ap = A, the recursive coarse grid operators are then generated by using
the Galerkln technique as

Aa+1 1A Ia+1 (2)

Note that, in order for the grid transfer operators to be defined efficiently, a logically rectangular grid
is explicitly or implicitly assumed for the black box or matrix-dependent approaches [27]. Most such
multigrid methods are designed for two dimensional problems and their extensions to higher dimensions
is not straightforward [5]. For algebraic multigrid methods, improvements have recently been reported
by defining more accurate grid transfer operators [16, 17].

In independent set orderings, the unknowns may be permuted such that those associated with the
independent set are listed first, followed by the other unknowns. The permutation matrix P,, associated



with such an ordering, transforms the original matrix into a matrix which has the following block structure

Ao~ matarl = (90 B, ®
where D, is a block diagonal matrix of dimension m,, and C, is a square matrix of dimension n, —m4.
In the sequel, the notation is slightly abused by not distinguishing the original system from the permuted
system, so both permuted and unpermuted matrices will be denoted by A,,.

To improve load balancing on parallel computers, it is desirable to have uniformly sized independent
blocks. However, this is not a necessary requirement for the techniques described in this paper.

In algebraic multi-level preconditioning techniques, the reduced systems are recursively constructed
as the Schur complement with respect to either D, or C,. In the case of BILUM [49, 53], such a
construction amounts to performing a block LU factorization of the form

D, F, )\ _ I, 0 D, F, A

Ea Co ) \EBD' I, )"\ 0 A )7 @
where A, is the Schur complement with respect to C, and I, is the generic identity matrix on level
a. Note that ny4+1 = m,. The solution process with the above factorization consists of level-by-level
forward elimination, followed by an exact solution on the last reduced system A,. The solution of the
original system is obtained by level-by-level backward substitution (with suitable permutation).

The procedure described above is a direct solution method and the reduced systems become denser
and denser as the level number increases, as a consequence of the fill-ins caused by the elimination
process. In BILUM, some dropping strategies are used to control the amount of fill-ins by discarding
certain elements of small magnitude or by limiting the number of elements allowed in each row of the L
and U factors [49, 52, 53]. The resulting incomplete multi-level block LU factorization is then used as a
preconditioner in a Krylov subspace method based iterative solver.

In the implementation of BILUM in [53], the block diagonals D, consist of small size blocks. These
small blocks are usually dense and an exact inverse technique is used to compute D! by inverting each
small block independently (in parallel). In [55], some pseudo-inverse technique based on singular value
decomposition is used to invert the (potentially near-singular) blocks approximately. As we noted in the
introduction, such direct inversion strategies usually produce dense inverse matrices even if the original
blocks are highly sparse with large sizes. Thus some heuristic approaches have been proposed to drop
small elements from the exactly or approximately inverted blocks to recover sparsity. Obviously this
approach cannot reduce the cost of inverting these blocks.

The link between the algebraic multigrid methods and BILUM has been discussed briefly in [55].
If we define the grid transfer operators naturally based on the matrix, the reduced system based on the
Schur complement technique as in (4) also satisfies the Galerkin condition (2). In other words, BILUM
can be viewed as a naturally defined algebraic multigrid technique.

3 Gaussian Elimination and ILUT

ILUT is a high-order (high accuracy) preconditioner based on Incomplete LU factorization. It uses a dual
dropping strategy to control the storage cost (the amount of fill-ins) [48]. Its implementation is based on
the IKJ variant of Gaussian elimination, which we recall next.

ALGORITHM 3.1 Gaussian elimination — IKJ variant.
1. Fori=2,n, Do
2. Fork=1,i—1, Do

3 Qig = ik /K k

4 For j =k+1,n, Do

5. Q5 = Q4,5 — Q4 * ag,j
6 End Do

7 End Do

8. End Do



The ILUT(7, p) preconditioner attempts to control fill-in elements by applying a dual dropping strategy
in Algorithm 3.1. The accuracy of ILUT(r,p) is controlled by two dropping parameters, 7 and p. In
Algorithm 3.2, w is a work array, a; g and uy g denote the ith and kth rows of A and U, respectively.

ALGORITHM 3.2 Standard ILUT(7,p) factorization [48, 50].
1. Fori=2,n, Do:
2 w = a8
3 For k =1,i — 1 and when wy, # 0, Do:
4. Wg = wk/ak’k
5. Set wy, := 0 if |wg| < 7 * nzavg(a; )
6 If wy, # 0, then
7 W= W — W * Up,g
8

. End If
10. End Do
11. Apply a dropping strategy to row w
12. Set l;j :=wj for j =1,...,i—1 whenever w; # 0
13. Set u;; :==w; for j =4,...,n whenever w; #0
14. Set w :=0
15 End Do

In Line 5, the function nzavg(a; g) returns the average magnitude of the nonzero elements of a given
sparse row. Elements with relatively small magnitude are dropped. In Line 11, a different dropping
strategy is applied. First, small elements are dropped according to the relative magnitude similar to
the criterion used in Line 5. Then a sorting operation is performed and only the largest p elements in
absolute value of the L and U factors are kept. After the dual dropping strategy, there are at most p
elements kept in each rows of the L and U factors.

Accessed, not modified

Not accessed, ,/ D | F
not modified Accessed, not modified
Processed, not accessed
E | C - |
Not processed, not accessed

Figure 2: Illustration of restricted IKJ version of Gaussian elimination.

We now consider a slightly different elimination procedure. Assume that the first m equations are
associated with the independent set as in the left-hand side of (6). If we perform the LU factorization
(Gaussian elimination) to the upper part (the first m rows) of the matrix, i.e., to the submatrix (D F).
We have

(D F)= (LU L7'F). (5)

We then continue the Gaussian elimination to the lower part, but the elimination is only performed with
respect to the submatrix E, i.e., we only eliminate those elements a;j for which m <i <n,1 <k <m.
Appropriate linear combinations are also performed with respect to the C' submatrix, in connection with



the eliminations in the E submatrix, as in the usual Gaussian elimination. Note that, when doing these
operations on the lower part, the upper part of the matrix is only accessed, but not modified, see Figure 2.
The processed rows of the lower part are never accessed again. This gives the following ‘restricted’ version
of Algorithm 3.1

ALGORITHM 3.3 Restricted IKJ version of Gaussian elimination.
1. Fori=2,n, Do
2. For k = 1,min(i — 1,m), Do

3 Qi = Qi g/ Ak

4 For j =k+1,n, Do

5. Q3,5 = Q4,5 — Q,k * Q5
6. End Do

7 End Do

8. End Do

Here m is a parameter which defines the size of the matrix D. Algorithm 3.3 performs a block factorization

of the form .
D F L 0 U L'F
(E C)_(EU11>X(O A )_LU' ©)

In other words, the a;;’s (of the lower part) for k < m are the elements in EU~" and the other elements
are those in A;.

Proposition 3.1 The matriz Ay computed by Algorithm 3.3 is the Schur complement of A with respect
to C.

Proof. The part of the matrix after the upper part Gaussian elimination (with respect to the independent
set, see (5)) that is accessed is (U L~ 1F), the L part is never accessed again. So we may write the active
part of the (partially processed) matrix A as

U F\ (U L'F
E C) \E (C '
In order to eliminate an element in E, say e; j(= a;;) with m < i <n,1 < j < m, we perform a linear
combination of the ith row of A and jth row of the U-part (U L 1F). Hence, the elements in C is
modified according to the operations
. €ij 7
Gk =cir— —Lfik
Uj, j
After eliminating all e; ;’s in E, the elements of the C' matrix is changed to

m

_ €ij &
Cik = Cik — E = fik-

=1 Y

It follows that ~ ~
Ai=C=C-EU'F=C-EU'L'F=C-ED'F.

* x k
Note that D = LU is factored. However, even in exact factorization, LU is usually sparser than
D~1. The submatrices DU ! and L™!F are formed automatically, and the Schur complement is formed
implicitly, during the partial Gaussian elimination with respect to the lower part of A.
Dropping strategies similar to those used in Algorithm 3.2 can be applied to Algorithm 3.3, resulting
in an incomplete LU factorization with an approximate Schur complement A;. We formally describe the
restricted ILUT factorization as in Algorithm 3.4.

ALGORITHM 3.4 Restricted ILUT(7,p) factorization.



1. Fori=2,n, Do:

2 w = a8

3 For k = 1,min(i — 1,m) and when wy, # 0, Do:

4. W = wk/ak,k

5 Set wy, := 0 if wy, < T *x nzavg(a; g)

6 If wy, # 0, then

7. Wi= W — W * Upg

8. End If

10. End Do

11. Apply a dropping strategy to row w

12. Set l;; :==w;j for j =1,...,min(i — 1,m) whenever w; # 0
13. Set w; ; := w; for j = min(i,m),...,n whenever w; # 0
14. Set w:=10

15 End Do

Algorithm 3.4 yields an ILU factorization of the form
A=LU+R, (7)

where R is the residual matrix representing the difference between A and LU. The ILUT implementation
gives an easy representation of the residual matrix.

Proposition 3.2 The elements of the residual matriz R as in Equation (7) are those elements dropped
in Algorithm 3.4.

Proof. The proof can be formulated from the arguments in [50, p. 274] and [54].
* % %

Clearly, Algorithm 3.4 will fail when any individual ILUT fails on at least one of the blocks due to
zero pivots. There are at least three strategies to deal with this situation. First, one can use pivoting as
in ILUTP [50], a variant of ILUT which incorporates column pivoting. Second, we may use a diagonal
threshold strategy as was done in ILUM [54]. In this technique nodes with small absolute diagonal values
are put in the vertex cover. This strategy may reduce the size of the independent set. Third, we may
replace a small (absolute) diagonal value by a larger one and proceed with the normal ILUT. The third
strategy is suitable and almost free of cost since ILUT is not an exact factorization any way. We have
chosen the third strategy in our implementation.

We mention that in Algorithm 3.4 the diagonals of the approximate Schur complement (A;) are
not dropped regardless of their values. From Figure 2 the accuracy of the EU ™! part is related to that
of the LU part, the accuracy of the A; part is related to that of the L='F part. It may be profitable
to use different dropping parameters (7,p) for the upper and lower parts of the ILU factorizations in
Algorithm 3.4. We did some numerical experiments and did not find overwhelming evidence for supporting
the use of different dropping parameter set for most test problems. However, even if other problems may
be tested to show certain advantages, the increased difficulty of determining more parameters for a general
purpose preconditioner may offset the gain in convergence. Thus, the numerical results reported in this
paper all use uniform dropping parameters during the construction phase. We even kept the parameters
the same between different levels.

We point out that the inherent parallelism in the construction phase is excellent. The construction
of the upper part factorization is parallelizable with respect to individual blocks. The construction of the
lower part factorization is fully parallelizable relative to individual rows, as processing each row only needs
information from (access to) the upper part. In addition, parallel algorithms for finding independent sets
are available [36, 37].

4 Multi-Level Block ILUT

The multi-level block ILUT preconditioner (BILUTM) is based on the restricted ILUT Algorithm 3.4.
On each level a, an incomplete LU factorization is performed and an approximate reduced system A, 1



is formed as in Algorithm 3.4. Formally, we have

D, F, \ _ L, 0 U, LJ'F,\ _
( E. Ca ) = ( B U7 1o )%\ 0 Ay )T TeUe ®)
The whole process of finding block independent sets, permuting the matrix, and performing the restricted
ILUT factorization, is recursively repeated on the matrix A,41. The recursion is stopped when the last
reduced system A, is small enough. Then a standard ILUT factorization L.U, is performed on Ap

(Algorithm 3.2). However, we do not store any reduced systems on any level, including the last one.
Instead, we store two sparse matrices on each level

( Lo O _( Ua L3'F, _
La—(Ean71 Ia)7 Ua—( 0 0 ), for 0<a< /-1,

along with the factors L, and Ug.

The approximate solution on the last level is obtained by applying one sweep of ILUT of the last
reduced system using the factors L U. This is different from the implementation of BILUM [53], where
the last reduced system is solved to certain accuracy by a Krylov subspace method preconditioned by
ILUT. The advantage of BILUTM includes the added flexibility in controlling the amount of fill-ins (and
the computation costs during the construction), especially when large size blocks are used.

Suppose the right-hand side b and the solution vector z are partitioned according to the independent
set ordering as in (3), we would have, on each level,

_ Ta,1 _ ba,l
we(in) wm(in)

The forward elimination is performed by solving for a temporary vector yq, i.e., for a = 0,1,...,£ — 1,
by solving

La 0 Ya,1 — ba,l with (Fl) D Yal = Lglba,la
EanTl I, Ya,2 ba,2 ’ (FQ) Y Ya2 = ba,2 - Eanjlya,l-

We then solve the last reduced system as

LcUcze =yc.
A backward substitution is performed to obtain the solution by solving, for a = £ —1,...,1,0,
Ua LglFa ZTa,1 — Ya,1 with (B].) D Zal = Ya,1 — L;lFaxa’g,
0 0 Ta,2 Ya,2 ’ (B2) D Tl = Uojll'a,l.

The backward substitution will work since 24,2 = Z441,1 and zz_1,2 = 2. The preconditioned iteration
process is reminiscent of a multigrid V-cycle algorithm [13], see Figure 3. A Krylov subspace iteration
is performed on the finest level acting as a smoother, the residual is then transfered level-by-level to the
coarsest level, where one sweep of ILUT is used to yield an approximate solution. In the current situation,
the coarsest level ILUT is actually a direct solver with limited accuracy comparable to the accuracy of
the whole preconditioning process.

Let us rewrite (8) as

I, 0 y LU, 0 y I, UJ'L,'F, )
E, UYL I, 0 Apir 0 I, ’
and examine a few interesting properties. It is clear that the central part of (9) is an operator acting on
the full vector, say, £o (LqUy On 24,1 and Agtq On 42). In a two-level analysis, we may define

~U;'LJ'F, )

2t = (-E UL, IL,) and I, = ( I

as the projection and interpolation operators, respectively. Then the following results linking BILUTM
with the algebraic multigrid methods can be verified directly, see [55].



Proposition 4.1 Suppose the factorization (9) exists and exact, then
1. The reduced system Aqy1 = I8P AT | satisfying the Galerkin condition (2);

2. If, in addition, A, is symmetric, then 1o+ = Ig_HT.

The above discussion of the solution procedure, omitted the permutation and inverse permutation
that must be performed before and after each operations on each level. This is also the approach that
we used in our current implementation (and that of BILUM [53]). On the other hand, we may permute
the matrices on each level in the construction phase. In this case, only the global permutation is needed
before and after the application of the preconditioner [49].

Krylov subspace iteration

forward sweep backward solution

coarsest level solution

Figure 3: The multilevel structure of the BILUTM preconditioned Krylov subspace solver.

All of the steps of the procedure, including the construction of the preconditioner, are fully par-
allelizable, except potentially the solution of the last reduced system. ! For example, the step (F1)
of forward solve with L7! can be performed in parallel because only the unknowns within each block
are coupled. The same is true for the backward solve with U;! in step (B2). All other parts are just
matrix-vector operations and vector updates.

Finally, the sparsity of BILUTM depends primarily on the parameter p used to control the amount
of fill-ins allowed and the size of the block independent sets.

Proposition 4.2 Let m, be the size of the block independent set on level a. The number of nonzeros of
BILUTM with L levels of reductions is bounded by p(2n + 25:1 amg,).

Proof. On each level 0 < o < £ — 1, the L and U factors of the upper part have at most p elements in
each row. The left-hand side of the lower part also has at most p elements in each row, the right-hand side
(the reduced system) is not stored. Suppose the sizes of the block independent set and the vortex cover
are m,, and r,, respectively. On level «, the total number of nonzeros is bounded by 2pm, + pr,. Since
the last reduced system is factored by ILUT(7, p), the amount of nonzeros is bounded by 2pn, = 2pm,
and 7, = 0. Summing all levels yields the bound

L£L-1 L L—-1
> (@pma +pra) + 2ome =p(2 D> Mo+ Y Ta). (10)
a=0 a=0 a=0

Since the nodes of all independent sets and the last reduced system constitute the order of the matrix,
we have

c
Z My = N. (11)
a=0

LFor this, we may employ a sparse approximate inverse technique [20] or a multicoloring strategy [50] to solve the last
reduced system.




Note that 7o = mqy1 +7ra41 for 0 < a < L —1, and vz = 0. It is easy to verify

£—1 L
Z o = Z amg. (12)
a=0 a=1

Substituting (11) and (12) into (10) gives the bound for the number of nonzeros of BILUTM as

c c
2pn +p Z amq = p(2n + Z amgy). (13)

a=1 a=1

* % %

We remark that in (13), the term 2pn is the bound for the number of nonzeros of the standard
ILUT. Due to the block structure of BILUTM, the first few rows of each block of the upper L factors
have less than p elements and the overall nonzero number of BILUTM is actually smaller. The term
pZ§=1 am, represents the extra nonzeros for the multi-level implementation. Note that mg is not in
the second term and the factor o grows as the level increases. It is therefore advantageous to have large
block independent sets in the first few levels.

5 Numerical Experiments

Implementations of ILUM and BILUM have been described in detail in [49, 53]. One significant difference
between BILUTM and BILUM and ILUM, is that we do not use an inner iteration to solve the last reduced
system. Instead, a backward and forward solution steps are performed with the incomplete LU factors
LU, of the last reduced system, Unless otherwise explicitly indicated, we used the following default
parameters for our preconditioned iterative solver: GMRES with a restart value of 50 was used as the
accelerator; the maximum number of reductions (levels) allowed was 10, i.e., £ = 10; the threshold
dropping tolerance was set to be 7 = 10™%, and the block sizes were chosen to be equal to the parameter
p used to control the number of fill-in elements.

All matrices were considered general sparse and any available structures were not exploited. The
right-hand side was generated by assuming that the solution is a vector of all ones and the initial guess was
a vector of some random numbers. The computations were terminated when the 2-norm of the residual
was reduced by a factor of 107. We also set an upper bound of 100 for the GMRES iteration. The
numerical experiments were conducted on a Power-Challenge XL Silicon Graphics workstation equipped
with 512 MB of main memory, two 190 MHZ R10000 processors, and 1 MB secondary cache.

In all tables with numerical results, “bsize” is the size of the uniform blocks (only used when
bsize # p), “iter.” shows the number of GMRES iterations, “total” shows the CPU time in seconds for
the preprocessing and solution phases, “solu.” shows the CPU time for the solution phase only, “spar.”
shows the sparsity ratio which is the ratio between the number of nonzeros of the preconditioner to that
of the original matrix. The symbol “—” indicates lack of convergence. We mainly compare BILUTM with
(single-level) ILUT and sometimes BILUTM with different parameters.

Convection-Diffusion Problem. We first consider a convection-diffusion problem
Ugg + Uyy + Re(exp(zy — 1)u, — exp(—zy)uy) = 0, (14)

defined on the unit square. Here Re is the so-called Reynolds number. Dirichlet boundary condition was
assumed, but boundary values were not prescribed and the right-hand side was generated as stated above.
We used the standard 5-point central difference discretization scheme with a uniform mesh h = 1/201.
The resulting matrices with different values of Re have 40,000 unknowns and 199, 200 nonzeros. The
percentage of the diagonal dominance of the matrices becomes smaller as Re increases.

Table 1 gives some performance data of BILUTM and ILUT for solving Equation (14) with different
Re. Here p was varied so that BILUTM and ILUT used approximately the same storage space. There
was an exception for Re = 10° when ILUT did not converge for p < 180 while BILUTM converged for
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p = 100. It can be seen that for simple problems (small Re), ILUT was more efficient than BILUTM.
They performed similarly for Re = 10%. For Re > 10°, ILUT failed to converge unless it used very large
storage space. In the other hand, BILUTM did very well for this difficult problem.

BILUTM ILUT

Re p | iter. | total | solu. | spar. p | iter. | total | solu. | spar.
1 10 56 | 30.8 | 16.1 | 3.53 8 58 15.0 | 14.2 | 3.21
10 10 63 | 32.2 | 176 | 3.53 8 42 13.1 | 11.9 | 3.21
100 10 39 | 254 | 10.6 | 3.55 9 21 6.83 | 5.30 | 3.60
1000 10 13 | 17.5 | 2.80 | 3.39 9 5 2.09 | 1.08 | 3.32
10000 20 22 | 24.1 | 6.40 | 5.76 17 22 104 | 7.18 | 5.82
100000 | 100 | 43 | 43.8 | 22.5 | 15.2 || 180 | 25 | 192.5 | 44.7 | 71.5

Table 1: Comparison of BILUTM and ILUT for solving the convection-diffusion problem with different
Re.

Note that BILUTM took more steps to converge for small Re problems. However, note the inherent
parallelism in BILUTM is far superior to that in ILUT. Table 2 gives another set of tests with larger
values for p. We see that BILUTM performed better than ILUT (solution time) with high accuracy. This

improvement comes without sacrificing potential for parallelism but the cost of preprocessing increased
somewhat.

BILUTM ILUT
Re | p | iter. | total | solu. | spar. | p | iter. | total | solu. | spar.
1 50| 10 | 14.1 | 3.29 | 9.30 || 24 | 13 | 9.63 | 5.27 | 9.47

10 50 | 11 | 143 | 3.64 | 929 || 24 | 14 | 10.1 | 5.71 | 9.46
100 50 7 125 | 2.21 | 883 | 22 7 6.54 | 2.62 | 8.57
1000 | 50 3 791 | 0.76 | 5.93 || 15 3 1.76 | 0.71 | 3.78
10000 | 50 6 142 | 2.04 | 9.95 | 43 6 8.47 | 238 | 9.81

Table 2: Comparison of high accuracy BILUTM and ILUT for solving the convection-diffusion problem
with different Re.

The next test is to show how the performance of BILUTM is affected by the block sizes. Here we
chose p = 10 and Re = 103. The size of the uniform blocks varied from 1 to 400. Note that for the large
block sizes, we actually had only three levels of reductions. The results are given in Table 3.

bsize | 1 ) 10 | 30 | 50 | 90 | 130 | 170 | 200 | 250 | 290 | 350 | 380 | 400
iter. | 17 14 13 |12 | 11 | 11 | 11 | 11 | 11 | 11 | 12 11 12 12
total | 112 | 289 | 176 | 93 | 75| 66| 64 | 69 | 74 | 88 | 85 | 10.2 | 14.3 | 11.5
solu. | 3.8 | 3.1 | 28 |24 22|22 |22 |22 |22 |22 |24 22 | 24 | 24
spar. | 25 | 3.2 | 34 (3232|3333 |34 |34 |34 |34 | 34| 35| 35

Table 3: Performance of BILUTM(10 %, 10) as a function of the block size. Convection-diffusion problem
with Re = 103.

We note that for most values of the block size, the performance of BILUTM has no significant
difference. This property is desirable since it implies that, for this test problem and with current test
conditions, the convergence rate of BILUTM would not be very sensitive to the number of processors had
our test been implemented on a parallel computer.
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TOKAMAK Matrices. The TOKAMAK matrices are real unsymmetric which arise from nuclear
fusion plasma simulations in a tokamak reactor 2. These are part of the SPARSKIT collections and have
been provided by P. Brown of Lawrence Livermore National Laboratory. Table 4 shows some data on
these matrices.

Name unknowns | nonzeros | condition number | diagonal dominance
UTM300 300 3 155 1.50(+06) no
UTM1700a 1700 21 313 6.24(406) no
UTM1700b 1700 21 509 1.16(+07) no
UTM3060 3 060 42 211 3.94(407) no
UTM5940 5940 83 842 1.91(+09) no

Table 4: Description of the TOKAMAK matrices.

The solution details for the first four TOKAMAK matrices are listed in Table 5 and those for
UTM5940 are listed in Table 6. We note that, for the first three matrices of small sizes, ILUT seemed to
outperform BILUTM, given a similar memory consumption. They were almost tied for UTM3060. For
the largest TOKAMAK matrix, BILUTM performed much better than ILUT virtually by all measures
(Table 6). In fact, ILUT could not converge for p < 70, while BILUTM still converged with p = 20. It
can be seen that BILUTM needed less than half the storage required for ILUT to converge. With more
storage space made available for ILUT, BILUTM still outperformed ILUT with a faster convergence rate
(and less memory consumption.)

BILUTM ILUT

Matrices | p | iter. | total | solu. | spar. | p | iter. | total | solu. | spar.
UTM300 20| 26 | 0.11 | 0.045 | 4.25 || 20 | 17 | 0.039 | 0.021 | 2.38
UTM1700a | 20 | 36 | 1.09 | 0.63 | 3.98 || 30 | 30 | 0.82 | 0.42 | 3.64
UTM1700b | 20 | 27 | 0.86 | 0.44 | 3.82 || 30 | 29 | 0.77 | 0.40 | 3.56
UTM3060 | 30| 26 | 218 | 0.99 | 4.70 || 38 | 25 1.90 | 0.99 | 4.63

Table 5: Comparison of BILUTM and ILUT for solving the first four TOKAMAK matrices.

BILUTM ILUT

p T iter. | total | solu. | spar. p T iter. | total | solu. | spar.
100 1074 | 19 | 104 [ 229 | 993 [ 130 | 107%| 25 | 14.5 | 4.04 | 13.5
90 | 10~* | 21 | 9.05 | 238 | 9.13 || 120 | 10=* | 28 | 13.8 | 4.32 | 12.7
80 [ 107*] 23 | 867 | 2.56 | 878 | 110 | 107* | 31 13.4 | 4.57 | 11.8
70 [ 107*] 26 | 882 | 279 | 821 [[ 100 | 10=* | 35 | 12.8 | 4.90 | 10.9
60 | 107* | 26 | 6.64 | 2.52 | 7.13 90 | 10~* | 37 | 11.8 | 4.90 | 9.96
50 | 107* ] 27 | 6.62 | 2.49 | 6.45 80 | 107* | 46 | 12.1 | 5.78 | 8.94
40 | 107*] 36 | 6.58 | 3.14 | 5.64 70 | 107 - - - -

30 | 107*] 75 | 865 | 6.05 | 4.72 70 | 10~*
20 [ 107* | 96 | 8.64 | 6.82 | 3.44 70 | 1073

Table 6: Solving the UTM5940 matrix by BILUTM and ILUT with different parameters.

2The TOKAMAK matrices available online from matrix market of the National Institute of Standards Technology at
http://math.nist.gov/MatrixMarket.

12



RAEFSKY4 Matrix. The RAEFSKY4 matrix 2 has 19,779 unknowns and 1,328,611 nonzeros. It
is from buckling problem for container model and was supplied by H. Simon from Lawrence Berkeley
National Laboratory (originally created by A. Raefsky from Centric Engineering). This is probably the
hardest one in the total of 6 RAEFSKY matrices. (BILUM with diagonal threshold techniques was able
to solve the other 5 but this one RAEFSKY matrices [54].) In order for BILUTM to converge fast,
we found it necessary to use a larger restart value (100) for GMRES. Figure 4 shows the convergence
history of BILUTM and ILUT with p = 150 and 200, respectively. In both tests, the block size was
200 for BILUTM. We note that with p = 150, both preconditioners had similar lack of full convergence.

However, with p = 200, BILUTM converged in 43 iterations while ILUT was still not fully converged in
100 iterations.

Sloid line: BILUTM 3 Sloid line: BILUTM
Dashdot line: ILUT ] 10 Dashdot line: ILUT

2-norm residual
2-norm residual

n n n n n n n n
o 20 40 60 80 100 o 20 40 60 80

100
iterations (p = 150) iterations (p = 200)

Figure 4: Convergence history of BILUTM and ILUT for solving the RAEFSKY4 matrix.
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10°
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10"
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Figure 5: Convergence history of BILUTM with different parameters for solving the RAEFSKY4 matrix.
Left: different block size. Right: different dropping threshold 7.

Figure 5 depicts performance comparisons when BILUTM was used with different parameters. The
left part of Figure 5 shows that BILUTM with block size 100 gave best results. Larger and smaller block

3The RAEFSKY matrices are available online from the University of Florida sparse matrix collection [23] at
http://www.cise.ufl.edu/"davis/sparse.
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sizes resulted in deterioration of convergence. The right part of Figure 5 shows that 7 = 10~ was the
best among the three values tested for this parameter. It is interesting to note that higher accuracy
(r = 1075) did not yield faster convergence.

WIGTO0966 Matrix. The WIGT0966 matrix * has 3,864 unknowns and 238, 252 nonzeros. It comes
from an Euler equation model and was supplied by L. Wigton from Boeing. It is solvable by ILUT with
large values of p [18]. This matrix was also used to compare BILUM with ILUT in [52] and to test point
and block preconditioning techniques in [19, 21]. BILUM (with GMRES(10)) was shown to be 6 times
faster than ILUT with only one-third of the memory required by ILUT [52]. In our current tests, we
chose several values for 7 and p for BILUTM and ILUT, and the size of the blocks in case of BILUTM.
We tabulate the results in Table 7. Amazingly BILUTM converged for this problem with a sparsity
ratio of 1.60. The smallest sparsity ratio that yields convergence for ILUT is 7.90. In addition, BILUTM
converged almost 5 times faster (total CPU time) than ILUT and used just about one-fifth of the memory
that was required by ILUT.

BILUTM ILUT
bsize | p T iter. | total | solu. | spar. p T iter. | total | solu. | spar.
200 | 200 | 1073 7 29.6 | 1.39 | 6.21 || 400 | 107*| 16 | 72.0 | 5.05 | 9.65
100 | 200 | 107° 8 278 | 1.70 | 6.69 || 400 | 1072 | 18 | 52.8 | 5.14 | 857
100 [ 150 | 107° | 11 [ 21.3 | 2.10 | 587 [[ 360 | 107 ° | 18 | 76.8 | 5.21 | 9.48
100 [ 100 | 10=° | 33 | 185 | 5.17 | 4.45 [ 360 | 10=* | 20 | 68.7 | 5.64 | 9.17
100 [ 100 | 10~* | 44 | 19.7 | 6.96 | 4.43 [ 360 | 103 | 33 | 61.4 | 8.97 | 871
70 70 [107° ] 25 | 11.0 | 320 | 3.17 [ 340 [ 10°° | 28 | 76.6 | 7.91 | 9.14
30 60 | 107 | 43 | 114 | 527 | 2.80 || 340 | 10~* | 44 | 76.2 | 13.2 | 8.92
30 60 | 10°* ] 41 | 11.0 | 494 | 2.74 | 340 | 10=° | 42 | 59.5 | 10.9 | 8.14
30 | 40 [107*| 8 | 12.3 | 852 | 2.02 [[320 | 107° | - - - -
20 40 [ 1075 ] 93 [ 12.7 | 896 | 1.89 | 320 | 10=* | 41 | 71.3 | 11.9 | 8.59
20 40 [ 107*] 86 | 11.8 [ 816 | 1.86 || 320 | 103 | 39 | 54.2 | 10.5 | 7.90
20 35 [107*] 89 | 11.3 | 8.04 | 1.70 | 300 | 10~* - - - -
20 35 [ 1073 | 95 | 11.4 | 833 | 1.60 || 300 | 10~3 - - -

Table 7: Solving the WIGT0966 matrix by BILUTM and ILUT with different parameters.

OLAFU Matrix. The OLAFU matrix ® has 16, 146 unknowns and 1,015, 156 nonzeros. It is a structure
modeling problem from NASA Langley. The tests with OLAFU also used GMRES(100) as the accelerator.
Figure 6 shows the comparison between BILUM and ILUT with two different values of p. We point out
that with p = 150, ILUT did not show any signs of convergence (left part of Figure 6), while BILUTM
converged within 61 iterations. The right part of Figure 6 shows that ILUT did converge with more
fill-ins (p = 200), but BILUTM was still faster. These results indicate that the OLAFU matrix cannot
be solved by ILUT without sufficient accuracy. We remark that for the comparison shown in Figure 6,
both BILUTM and ILUT used approximately the same memory space for the same value of p.

In Figure 7, we show test results of using BILUTM with different parameters to solve OLAFU. The
parameter p = 150 was fixed. The left part of Figure 7 shows that the size of the blocks did affect the
convergence of BILUTM for this large problem. It seems that taking the block size to be equal to the
fill-in parameter p yielded the best results. The right part of Figure 7 indicate that the number of levels
(reductions) did not have significant effect on the convergence of BILUTM. This is probably because the
largest independent set had been factored out in the first level and the use of ILUT on the coarsest level
gave comparable accuracy. Recall that there is a big difference between one level of reduction and no

4The WIGTQ966 matrix is available from the authors.
5The OLAFU matrix is available online from the University of Florida sparse matrix collection [23] at
http://www.cise.ufl.edu/"davis/sparse.
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Figure 6: Convergence history of BILUTM and ILUT with different amount of fill-ins (p) for solving the
OLAFU matrix.

reduction at all, since Figure 6 shows that BILUTM without reduction, (actually equivalent to ILUT)
failed to converge.
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Figure 7: Convergence history of BILUTM with different parameters and p = 150 for solving the OLAFU
matrix. Left: different block size. Right: different level of reductions.

BARTH Matrices. The BARTH matrices ¢ were supplied by T. Barth of NASA Ames. They are for a
2D high Reynolds number airfoil problem, with one equation turbulence model. The S and T matrices are
results of using different grids. The grid of the T matrices has a concentration of elements unrealistically
close to the airfoil. The four BARTH matrices are described in Table 8. Note that in order for ILUT
and BILUTM to work properly, zero diagonals are added. The BARTH matrices have been used as test
matrices for other ILU type techniques in [18], but none of them have been solved by enhanced BILUM
techniques [55], partly because of the prohibitive computation and memory costs associated with the use
of very large size blocks (on the given computer).

We only present in Figure 8 one set of comparisons of BILUTM and ILUT by solving the BARTH
matrices using large size blocks and GMRES(100). We remark that for this set of test parameters, ILUT

6The BARTH matrices are available from the authors.
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Name unknowns | nonzeros descriptions
BARTHT1A 14 075 481 125 | Small airfoil 2D Navier-Stokes, distance 1
BARTHS1A 15 735 539 225 | Small airfoil 2D Navier-Stokes, distance 1
BARTHT2A 14 075 1 311 725 | Small airfoil 2D Navier-Stokes, distance 2
BARTHS2A 15 735 1 510 325 | Small airfoil 2D Navier-Stokes, distance 2

Table 8: Description of the BARTH matrices.

took about 3 times more CPU time (BARTHT1A) and used about 20% more memory than BILUTM
did. We found that BILUTM converged much faster than ILUT for these indefinite matrixes with small
and zero diagonals. For the two largest BARTH matrices, ILUT almost completely failed to reduce the
residual norm within 100 iterations, while BILUTM converged satisfactorily.

6 Concluding Remarks

We have presented a multi-level block ILU preconditioning technique (BILUTM) with a dual dropping
strategy for solving general sparse matrices. The method offers flexibility in controlling the amount of
fill-ins during the ILU factorization when large size blocks are used for domain decomposition based
implementation of multi-level ILU preconditioning method. A particular merit of BILUTM is that both
the construction and application phases of the preconditioner have high level of inherent parallelism.

We gave an upper bound for the number of nonzeros of the preconditioner. We showed that the
extra storage costs of multi-level implementation are not substantial if large block independent sets can
be found in the first few reductions. It may also be beneficial not to have too many levels, especially
when the size of the block independent sets becomes small.

Our numerical experiments with several matrices show that the proposed technique indeed demon-
strates the anticipated flexibility and effectiveness. As a parallelizable high accuracy preconditioner,
BILUTM is comparable with sequential ILUT for solving easy problems. For some difficult problems,
where high accuracy preconditioning is a must, BILUMT is more robust and efficient than ILUT and
usually requires less memory. In other words, this preconditioner does not sacrifice convergence in order
to improve parallelism. This is in sharp contrast with lower order preconditioner such as ILU(0) or the
high order single-level preconditioner such as ILUT.

Although we did not directly compare BILUTM with other multi-level preconditioning techniques,
we did remark that BILUTM solved several difficult matrices that might not be solved by BILUM
efficiently on the given computer because of the computation and memory costs associated with the use
of very large size blocks.

Implementations of grid-based multi-level methods on parallel and vector computers can be found
in [39] (for structured matrices), those of domain-based (two-level) methods in [51, 52]. Those and other
implementations on shared-memory machines [10] demonstrate the advantage of the inherent parallelism
of the multi-level preconditioning methods. On the other hand, implementing multi-level preconditioning
methods on distributed-memory machines requires the consideration of cost trade-off between commu-
nications and computations. It is obviously not advantageous to have too small blocks and too many
levels. The parallel solution of the last reduced system is also desirable.
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