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Abstract. This paper discusses a few algorithms and their implementations for solving
distributed general sparse linear systems. The preconditioners used are all variations
of techniques originating from domain decomposition ideas. In particular we compare a
number of variants of Schwarz procedures with Schur complement techniques. Numerical
experiments on a few parallel platforms are reported.

1 Introduction
We consider a linear system of the form

(1) Az = b,

where A is a large sparse nonsymmetric real matrix of size n. Such a system can arise, for
example, from a finite element discretization of a partial differential equation on a certain
domain. To solve this system on a distributed memory computer, it is common to partition
the finite element mesh by a graph partitioner and assign a cluster of elements which
represent a physical subdomain to each processor. Each processor then assembles only the
local equations associated with the elements assigned to it. In case the system is already in
assembled form, it is natural to assign pairs of equations-unknowns to the same processor,
using again some graph partitioner. In either case, each processor will wind up holding a
set of equations (rows of the linear system) and a vector of the variables associated with
these rows. This natural way of distributing a sparse linear system is fairly general (see
[18], [14]) and is closely related to the physical viewpoint.

This paper addresses mainly the issue of defining preconditioners for distributed sparse
linear systems. Such systems are regarded a distributed objects and methods are developed
for solving the global system by using the distributed data structure. A good distributed
data structure is crucial for the development of effective sparse iterative solvers. It is
important for example to have a convenient representation of the local equations as well as
the dependencies between the local variables and external variables. A preprocessing phase
is thus required to determine this and any other information needed during the iteration
phase.

Figure 1 shows a ‘physical domain’ viewpoint of a sparse linear system. This
representation borrows from the domain decomposition literature — so the term ‘subdomain’
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is often used instead of the more proper term ‘subgraph’. Each point (node) belonging to
a ‘subdomain’ is actually a pair representing an equation and an associated unknown. As
is often done, we will distinguish between three types of unknowns: (1) Interior variables
are those that are coupled only with local variables by the equations; (2) Local interface
variables are those coupled with non-local (external) variables as well as local variables; and
(3) External interface variables are those variables in other processors which are coupled
with local variables.

Along with this figure, we can represent the local equations as shown in Figure 2. The
local equations do not correspond to contiguous equations in the original system. The
matrix represented in the figure can be viewed as a reordered version of the equations
associated with a local numbering of the equations/unknowns pairs.
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Fi1c. 2. A partitioned sparse matriz.

As can be seen in Figure 2, the rows of the matrix assigned to a certain processor
have been split into two parts: a local matrix A; which acts on the local variables and
an interface matrix X; which acts on remote variables. These remote variables must be
first received from other processor(s) before the matrix-vector product can be completed
in these processors. A key feature of the data structure is the separation of the boundary
points from the interior points. The interface nodes are always listed last after the interior
nodes. This ‘local ordering’ of the data presents several advantages, including more efficient
interprocessor communication, and reduced local indirect addressing during matrix-vector
products. Tt should be noted that the using of block sparse row format can also give a
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sufficient reduction in indirect addressing. The zero blocks shown are due to the fact that
local internal nodes are not coupled with external nodes.

Thus, each local vector of unknowns z; is split in two parts: the subvector u; of internal
nodes followed by the subvector y; of local interface variables. The right-hand side b; is
conformally split in the subvectors f; and g;,

- (2) w0

The local matrix A; residing in processor ¢ as defined above is block-partitioned according
to this splitting, leading to

(2) A=

With this, the local equations can be written as follows.

(3) (1;; g:) (Zi) - (EjeN?Eijyj) - (£Z>

The term FEjjy; is the contribution to the local equation from the neighboring subdomain
number j and N; is the set of subdomains that are neighbors to subdomain 7. The sum
of these contributions, seen on the left side of of (3) is the result of multiplying a certain
matrix by the external interface variables. It is clear that the result of this product will
affect only the local interface variables as is indicated by the zero in the upper part of the
second term in the left-hand side of (3). For practical implementations, the subvectors of
external interface variables are grouped into one vector called y; ¢;+ and the notation

Z Eijy; = Xilient
JEN;

will be used to denote the contributions from external variables to the local system (3). In
effect this represents a local ordering of external variables to write these contributions in a
compact matrix form. With this notation, the left-hand side of the (3) becomes

(4) w; = Az + Xi,ecctyi,ezt

Note that w; is also the local part the matrix-by vector product Az in which z is a vector
which has the local vector components z;, 1 =1,...,s.

To facilitate matrix operations and communication, an important task is to gather the
data structure representing the local part of the linear matrix as was just described. In this
preprocessing phase it is also important to form any additional data structures required to
prepare for the intensive communication that will take place during the solution phase. In
particular, each processor needs to know (1) the processors with which it must communicate,
(2) the list of interface points and (3) a break-up of this list into pieces of data that must
be sent and received to/from the “neighboring processors”.

The complete description of the data structure associated with this boundary informa-
tion is given in [33] along with additional implementation details.
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Fi1g. 3. An example of splitting eight domains on the plane into two groups

2 Distributed Krylov Subspace Solvers

The primary accelerator which we use is a flexible variant of GMRES called FGMRES
[29]. This is a right-preconditioned variant of GMRES which allows variations in the
preconditioner at each step. Details on the implementations of parallel Krylov accelerators
are given in [33, 35, 28]. In particular, a reverse communication protocol is used to avoid
passing data structures related to the coefficient matrix or the preconditioner. With this
implementation, the FGMRES code itself contains no communication calls. All such calls
are relegated to either matrix-vector operations which are performed outside the main body
of the acceleration code, or dot-product operations which usually rely on special library
calls.

In this paper we discuss mostly preconditioning techniques based on domain decompo-
sition ideas. These include the block-Jacobi method (additive Schwarz), multi-color block
SOR (multiplicative Schwarz), and Schur complement techniques. Each of the precondi-
tioners can use overlapping of the subdomains.

2.1 Additive Schwarz

The simplest preconditioner is the so-called additive Schwarz procedure. This form of
block Jacobi iteration, in which the blocks refer to systems associated with entire domains,
is sketched next.

ALGORITHM 2.1. Additive Schwarz

1. Obtain external data y; g

2. Compute (update) local residual r; = (b — Az); = b — Aizi — XiYi ext
3. Solve A;0; = r;

4. Update solution z; = x; + 9;

To solve the systems which arise in line 3 of the above algorithm, a standard (sequential)
ILUT preconditioner [31] combined with GMRES or one step of an ILU preconditioner is
used. Of particular interest in this context are the overlapping additive Schwarz methods.
In the domain decomposition literature [1, 3, 37, 19] it is known that overlapping is a
good strategy to reduce the number of steps. There are however several different ways of
implementing overlapping block Jacobi iterations, for example, we can replace the data in
the overlapping subregions by its external version or use some average of the data.

It is sometimes possible to reduce the number of outer iterations for block Jacobi
iteration by a 2-level clustering of the subdomains. The subdomains can be been split
into groups S1, 59, ..., Sp. The assignment of the subdomains to groups can be determined
from knowledge of neighboring subdomains. Figure 3 gives an example of splitting eight
domains into two groups. Consider a certain group of subdomains, say Sk, and the set
of equations-unknowns corresponding to all the subdomains belonging to Si. The local



system for subdomain i € Sj can be rewritten in the form:
Az + Zi,ewtzi,ezt + (Xz',ewtyi,ewt - Zz',ewtzi,e;vt) = Wy

where z; ¢zt is a part of the vector y; ¢, corresponding to remote variables in the same
group as subdomain 4, Z; ¢, is a part of the interface matrix Xj.;; which acts on the
remote variables z; ¢¢. Thus solving the system

AiTi + Z et i eat = Wi

in the same manner as an initial system can be considered as a preconditioner for block
Jacobi iteration. This form of block Jacobi iteration, referred to as two-level Jacobi
iteration, is sketched next.

ALGORITHM 2.2. Hierarchical Block Jacobi Iteration

1. Obtain external data 1; ezt

2. Compute (update) local residual r; = (b — Az); = b; — Aizi — XiVi eat
3. Doi=1,...,i

4 Obtain external data 2; ¢4y

5. Compute (update) local residual s; = r; — Z;2j eqt

6. Solve A;6; = s;

7. End
8. Update solution x; = z; + J;

The number of inner iteration 7; in the algorithm given above depends on the problem.
Often, 41 = 2 is optimal because this choice achieves a good compromise between accuracy
for the local block solver and overall performance.

The hierarchical block Jacobi iteration presents several advantages over the traditional
block Jacobi iteration. One of these advantages is that it allows us to reduce the number
of outer iterations due to increased accuracy in the preconditioning step. On the other
hand, this approach increases communication but the cost of communication is small if the
processors form small groups.

2.2 Multiplicative Schwarz

The multiplicative Schwarz preconditioner (block SOR) uses the same extended domains
as the additive Schwarz method, but it has a sequential component in the solve: every
processor uses interface variables defined by preceding local solves. The simplest form of the
multiplicative Schwarz is the block Gauss-Seidel algorithm used in domain decomposition
techniques [2, 19, 37, 5].

The global ordering can be based on an arbitrary labeling of the processors provided
two neighboring domains have a different label. The most common global ordering is a
multi-coloring of the domains, which maximizes parallelism [4, 30, 36, 37].

Thus, if the domains are colored, the multiplicative Schwarz as executed in each
processor would be as follows.

ALGORITHM 2.3. Multicolor Multiplicative Schwarz procedure
1. Do col = 1,...,numcols
2. If (col.eq.mycol) then



Obtain external data y; ezt
Update local residual r; = (b — Az);
Solve Az(sz =T;
Update solution z; = z; + §;
EndIf

NS ok w

Many variations of the above algorithm are possible, including the overlapping of the
domains, inaccurate solves in step 5, inclusion of a relaxation parameter w, etc.

Algorithm 2.3 is executed on each processor and a convergence test on the global residual
or some measure of the error must be included. It is known that multicoloring can reduce
communication times at the expense of a more complicated code. Another problem with
multicoloring is that as the domain associated with the given color is active, all other colors
will be inactive. As a result it is typical to obtain only 1/numcol efficiency where numcol
is the number of colors. To this end, one can further block the local variables into two
blocks: interior and interface variables. Then the global SOR iteration is performed with
this additional blocking.

In effect, each local matrix A; is split as

B E;\_( B 0 0 E;
® we(ma)- (0 a) (s %)

where the B; part corresponds to internal nodes.
The segregated multiplicative Schwarz looks as follows,

ALGORITHM 2.4. Segregated multiplicative Schwarz
1. Solve Biéi,m =Tix
2.2 =xi+ iy
3. Do col=1,...,numcols
If (col.eq.mycol) then

Obtain external data y; ezt

Update y-part of residual r; 4

Solve Ciéz-,y =Tiy

Update interface unknowns y; = y; + ;4
EndIf

© NS o

The advantages of this procedure is that the bulk of the computational work in each
domain is done in parallel. Loss of parallelism comes from the color loop which involves
only solves with interfaces, which are of lower complexity.

2.3 Schur complement techniques

Schur complement techniques refer to methods which iterate on the interface unknowns
only, implicitly using internal unknowns as intermediate variables. A general strategy
for deriving Schur complement techniques will now be described associated with arbitrary
global fixed point iterations.

Consider the simplest case of a block-Jacobi iteration described earlier. The Schur
complement system is derived by eliminating the variable u; from the system (3) extracting
from the first equation u; = B, 1(f i+ — E;y;) which yields, upon substitution in the second
equation,

(6) Sivi+ Y Eijy; = gi — FiB; ' f;
JEN;



in which §; is the ‘local’ Schur complement:
(M) S;=C; — F;B'E;

The equations (6) for all subdomains i altogether constitute a system of equations which
involves only the interface points y;, j = 1,2,..., s and which has a natural block structure
associated with these vector variables. The diagonal blocks in this system, namely the
matrices S;, are dense in general but the off-diagonal blocks E;; are sparse. As is known,
with a consistent choice of the initial guess, a block-Jacobi (or SOR) iteration with the
reduced system is equivalent with a block Jacobi iteration on the global system, see, e.g.,
[22], [32]. A block Jacobi iteration on the global system takes the following local form:

2R xz(k) + Ai_lr(k)

% %

() -1 o) 0
( (ZjeN,- Eijyj('k)>>

)
9i — 2jen; Eijy]('k)

(srmmr s0) (g o pntt)

= -1 -1 g-1 k

—5; FiB; " 5, 9i — 2jen; Ezgyj( )

Here a * denotes a nonzero block whose actual expression is unimportant. The important
observation is that the y iterates satisfy an independent relation of the form,

(8) yZ(kH-l) — S~_1

2

_ k
9i—FB'fi— > Ez]y]( )
JEN;

If we call g} the right-hand side of the reduced system (6) then (8) can be rewritten as

9) g+ =y 571 gt — Sy - > Eijy]('k)

JEN;

which is nothing but a Jacobi iteration on the Schur complement system.

In summary, the sequence of the y-part of the Jacobi vectors on the global system can
be viewed as a sequence of Jacobi iterates for the Schur complement system. A similar
result holds for the multiplicative Schwarz as well. From a global viewpoint, we have a
primary iteration for the global variable of the form,

(10) ) = Mz®) 4 ¢

and the vectors of interface variables y associated with these iterates satisfy an iteration of
the form,
(11) y " =Gy® 4 h

The matrix G is not known explicitly but it is easy to advance the above iteration by one
step from an arbitrary (starting) vector v, meaning that it is easy to compute Gv + h for
any v.

Now the idea is to accelerate the sequence y*) with a Krylov subspace algorithm such
as GMRES. One way to look at this acceleration procedure is that we are attempting to
solve the system
(12) I-Gy=h
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To solve the above system with a Krylov-type method an initial guess and corresponding
residual are needed. Also, the Krylov iteration requires a number of matrix-vector product
operations. The right-hand side h can be obtained from one step of the iteration (11)
computed for the initial vector 0, i.e.,

h=(Gx0+h)
Given the initial guess y(*) the initial residual s(¥) = h — (I — G)y(® can be obtained from
SO = — (O — Gy®) = ) _ O

Matrix-vector products with I — G can be obtained from one step of the original iteration.
To compute w = (I — G)y proceed are as follows,

0

1. Perform one step of the primary iteration (z,’) =M ( y) + ¢
2. set w:=1y;

3. Compute w:=y—w-+h

This strategy allows to derive a Schur complement technique for any primary fixed-point
iteration on the global unknown. Among the possible choices are the Jacobi and SOR
iterations as well as iterations derived (somewhat artificially) from ILU preconditioning
techniques. The main advantages of this viewpoint are the generality and flexibility of the
formulation.

It should be mentioned that the diagonal blocks B; in representation (3) for local
matrices, are sparse and often banded. In these cases, the system

(13) (Ci — F;B;'Ey)yi + Y Eijy; = gi — FiB; ' fi
JEN;

can be solved by a Krylov subspace method using the LU decomposition for banded block
B; or the Cholesky decomposition if B; is symmetric positive definite. Thus we can easily
compute the matrix-vector product B, Ly using one step of the LU solve. Note that the solve
for the system B;d = v must be accurate. We can compute the dense matrix S; explicitly
or solve the above system by using a computation of the matrix-vector product S;z which
can be carried out with three sparse matrix vector multiplies and one linear system solve.
As is known (see [37]), because of the large computational expense of these accurate solves,
the resulting decrease in iteration counts does not, in itself, make the Schur complement
attractive. Therefore, we need to use efficient preconditioners for the Schur complement.
From the preconditioning side, using the explicit calculation of Schur complements is more
efficient but it requires a large amount of memory and is quite expensive. However, we can
use a block Jacobi iteration in the form

k+1 - - k k
(14) W =t g+ BB By - Y Byyl”
JEN;
as a preconditioner.

3 Numerical Experiments

In this section, we report on some results obtained for solving distributed sparse linear
systems on an IBM SP2 with 14 nodes, an IBM cluster of 8 workstations, and an SGI
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Challenge cluster and a 64 processor CRAY-T3E. The SGI challenge workstation cluster
consists of three 4-processor Challenge L servers and one 8-processor Challenge XL server.
The processors on the Challenge L and XL are the same (R10,000) but the memory sizes
are different. Communication between different SGI cluster workstations (respectively,
IBM RS/6000 workstations) can be performed via a HiPPI (High Performance Parallel
Interface) switch or a Fibre-Channel switch. On the IBM cluster, an ATM switch is used.
The MPI communication library is used for all communication calls. The ATM and HiPPI
are high speed interfaces and can transfer data at 155 Mbps and 800 Mbps, respectively.
The IBM RS/6000 Model 590 workstations are based on the Power2 architecture. The
SP2 nodes communicate with an internal switch which achieves a bandwidth of 320 Mbps
bandwidth and has a latency of about 40 microseconds. The CRAY-T3E has 64 nodes and
128 Megabytes of memory per node. The processors are connected in a 3-D torus by a
network capable of 480 Mbps in each direction for each link.

The main Krylov accelerator used in the examples is the flexible variant of GMRES
known as FGMRES. This is a right-preconditioned variant which allows the preconditioning
to vary at each step. For further details on the algorithm, see [29]. Reverse communication
(see e.g. [8],[27], [11]) allows to have exactly the same codes work on parallel and sequential
platforms.

3.1 Experiments with block Jacobi preconditioning

The execution time depends on the time spent in the local solver. If GMRES is used as
a inner solver, factors which can affect convergence are the tolerance, the level of fill for
the ILUT preconditioner and the number of inner iterations. There exists a unique set of
the parameters mentioned above that minimize the execution time for the fixed number
of processors. Figure 4 shows the execution time in seconds as a function of the level of
fill for a ILUT preconditioner, using a relative tolerance of ¢ = 1076, a Krylov subspace
dimension of m = 30, and a number of inner iterations of 10. The numerical experiments
are done for the RAEFSKY3 matrix from the SIMON collection on the SGI cluster for
three processors (using the HiPPI switch). This matrix of dimension 21,200 has 1,448,768
non-zero entries. There were no convergence in 250 FGMRES steps through level of fill
from 0 to 15. It can be seen from this figure that an increase in the level of fill from 26
does not minimize the execution time. We observed the same behavior for the execution
time as a function of the number of inner iterations and for other types of the block Jacobi
iteration. The optimal choice of a level of fill and a number of inner iterations depends on
the number of processors. As in the sequential case, using the best level of fill can give
significant reduction in the total time.

We now compare the results obtained with the distributed block Jacobi iteration
using the three different overlapping options as described in Section 4. These results are
summarized in Figures 5 and 6. In the figures, jacno stands for block Jacobi with no
overlapping, jaco_av for block Jacobi with overlapping and averaging of the overlapping
data, jac for block Jacobi with overlapping and exchange of overlapped data.

A standard ILUT preconditioner combined with GMRES was used as a local solver
and the number of inner iterations was equal to its = 11. We select its = 11 because it
minimizes the execution time for a small number of processors if preconditioned GMRES is
used as a local solver. Note that the optimal set of parameters depends on the number of
processors and the problem considered. It is sometimes reasonable to use a smaller number
for the level of fill or a smaller number of inner iterations if the number of processors is
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Fic. 4. Total time in seconds as a function of level of fill for the local ILUT preconditioner
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Fic. 5. Comparison of FGMRES with distributed block Jacobi preconditioner for three different
overlapping strategies on the CRAY-T3E

large. The results are for the matrix VENKATO01 of dimension 62,424 with 1,717,792 non-
zero entries on the CRAY-T3E, using a relative tolerance of ¢ = 1076, a Krylov subspace
dimension of m = 50 and a level of fill 25 for the ILUT preconditioner. The comparison
shows that overlapping can reduce the number of outer iterations and jac usually requires
the smaller number of iterations.

Our numerical tests show that using one step of an ILU solve with an accurate ILUT
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Fia. 6. Iteration count for block Jacobi on the CRAY-T3E

factorization is usually more economical. Table 1 gives timing results, speed-ups and
iteration count for the block Jacobi preconditioner with overlapping for two different local
solvers. In the table its is the number of FGMRES iterations. These results are given
for the VENKATO01 matrix on the CRAY-T3E, using a relative tolerance of ¢ = 1076, a
Krylov subspace dimension of m = 50 and a level of fill of 25 for the ILUT preconditioner.
A comparison of the results shows that using an ILU solves as a local solver is more efficient
than preconditioned GMRES with the ILUT preconditioner.

Number of processors 1 3 5 10 16 24
preconditioned GMRES time 16.34 | 9.64 | 5.59 | 2.96 | 2.35 1.66
speed-up 1.69 | 292 | 5.52 | 6.95 9.84

its 13 16 17 18 19 19

ILU solver time 8.85 | 3.78 | 2.49 | 1.39 | 1.04 0.77
speed-up 2.34 | 3.5 | 6.37 | 8.51 | 11.49

its 15 18 20 21 21 21

TABLE 1

Ezxecution times in seconds, speed-up and number of outer iterations for the block Jacobi
preconditioner with two different local solvers

The block Jacobi iteration considered in this paper is a synchronous algorithm.
Synchronization among processors take place in the orthogonalization step in FGMRES
and during the computation of matrix-vector product. As a rule, we compute matrix-vector
product after the preconditioning step and processors must wait until the communication
network delivers all messages issued by the processors to their destinations.

There are several approaches that can be used to improve load balanced among
processors for the block Jacobi preconditioned GMRES. An approach is to change the
number of inner iterations for each processor starting from a certain iteration of FGMRES,
say k, based on the time in the preconditioning step for a few first iterations. This "forced



12

load balancing’ approach allows to increase the accuracy in the preconditioning step and,
as a result, reduce the number of outer iterations. For example, the number n' of inner
iteration for processor ¢ can be defined by

tma.X]
thax

where n:)l d is the initial number of inner iterations, tmayx is the maximum time in the

preconditioner step for all processors, ¢ . is the maximum time in the preconditioner step
for processor 3.

In our numerical tests on the sp2 and on the ibm rs6000 cluster we found that the
approach mentioned above can give a 10% to 25 % reduction in the execution time when the
number of processors is small. Table 2 gives timing results and iteration counts for the block
Jacobi preconditioner with overlapping when two local solver is based on preconditioned
GMRES. In the table its is the number of FGMRES iteration, the last two lines in the
table correspond to the block Jacobi iteration with preconditioned GMRES as a local solver
where the number of inner iterations was fixed. The first two lines correspond to the Jacobi
preconditioner iteration with GMRES where the number of inner iteration were defined by
(15) starting from the third iteration. These results are given the VENKATO01 matrix on
the IBM RS6000 cluster with an ATM switch, using a relative tolerance of ¢ = 1076, a
Krylov subspace dimension of m = 20 and a level of fill of 15 for the ILUT preconditioner.
The initial number of inner steps is 10.

Number of processors 2 3 4 6 7
MODIFIED time | 16.07 | 11.74 9.19 8.50 | 7.17
its 9 9 9 10 11
STANDARD time | 26.96 | 15.29 | 13.21 | 10.63 | 9.64
its 11 10 11 11 13

TABLE 2

Execution times in seconds, number of outer iterations for the block Jacobi preconditioner with
two different local solvers on on the IBM RS6000 cluster with an ATM switch.

The next matrix, referred to as BARTH1S, was supplied by T. Barth of NASA Ames
[7]. It is for a 2D high Reynolds number airfoli problem, with a turbulence model and this
matrix has a 5x5 block structure. Two rows in each block are for the momentum equations,
and one row each is for mass balance, energy balance, and turbulence balance. The matrix
is of order 189,370 with 6,260,236 nonzero entries. The condition number of this matrix
is very high (see [7]). The system with BARTHIS is solved with the deflated GMRES [6].
The local systems are solved using one step an ILU solve, where the LU factors are obtained
from a block ILU(k) preconditioner (see [7]) where k denotes a level of fill. Table 2 gives
the timing results, and the number of matrix-vector multiplications. The number in the
first column indicates the number of processors involved.

The following parameters have been used: the level of fill was 4, the number of deflated
eigenvectors was 8, the Krylov subspace dimension was 50, and the tolerance threshold was
1.E-5.

It should be noted that this problem could not be solved for 8 or fewer processors due
to limitation in memory space. It was also impossible to find the solution for a level of fill
less than 3 and using fewer than 12 deflated eigenvectors. On the other hand, an increase
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PEs Seconds | Matvecs

8 | 308.2158 399

10 | 254.3837 493

16 | 170.8574 589

20 | 165.6654 727
TABLE 3

Ezecution times (seconds) and number of matriz-vector multiplications for the BARTHIS matriz

in the number of processors leads to worse convergence. We partitioned this matrix block
by block so that each processor has its own part of the physical domain.

3.2 Experiments with hierarchical block Jacobi

We now present a comparison between the Jacobi overlapping with the forward-backward
LU solver and the hierarchical Jacobi preconditioner for elliptic problems on the plane.
It was assumed that all processors have been split into groups by means of the following
function f,(j) defined by:

fHoG) =1 -1)/b] +1

where b is a blocking factor for processors. Table 4 gives timing results and iteration
count for the hierarchical block Jacobi preconditioner using four different numbers of inner
iterations. The results are given for the Laplace operator on the unit square. A standard
forward-backward local ILU solver has been applied in these numerical tests. The blocking
factor for processors was 2, the number of processors of 8, a tolerance of 10~%, the level of
fill of 5, the Krylov subspace dimension of 30.

Inner its | Preconditioner | Seconds | Matvecs
1 hierarchical | 15.2319 238
2 hierarchical 9.8849 108
3 hierarchical | 15.0807 127
5 hierarchical | 18.0245 106
ILU solve | 15.1467 238
TABLE 4

Ezecution times in seconds, number of matriz-vector multiplications for the hierarchical Jacobi
preconditioner as a function of number of inner iterations. The number of processors is 8, the
problem size is 90,000.

Table 4 shows that an increase in the number of inner iterations leads to a significant
reduction in the number of outer iterations. On the other hand, the execution time increases
as the number of inner iterations increases from 2 to 5 due to an increase in computational
costs. The number of inner iterations of 2 seems to give the best compromise in this case.
Table 5 gives some other timing results and iteration counts. Here the number of inner
iterations is fixed to 2, the blocking factor is two subdomains, the tolerance is 1076, the
level of fill is 5, and the Krylov subspace dimension is 30.

3.3 Experiments with Multiplicative Schwarz

Figure 7 shows a comparison of multiplicative Schwarz for different types of local solver on
the CRAY-T3E for the VENKAT01 matrix.



14

Problem size | Preconditioner | PEs | Seconds | Matvecs
25,600 hierarchical 4 2.5507 39
25,600 ILU solve 4 2.9977 70
51,200 hierarchical 8 4.3356 61
51,200 ILU solve 8 5.2002 114

102,400 hierarchical 16 5.2211 73

102,400 ILU solve 16 5.8928 126

158,000 hierarchical 20 5.0396 81

158,000 ILU solve 20 5.8001 135
TABLE 5

Comparison of the hierarchical Jacobi preconditioner and standard Jacobi preconditioner with
ILU solve.

In the figure the “multicolor segregated SOR, ILU solver” refers to the segregated
multicolor multiplicative Schwarz in which the interface data is solved for after the
interior data. The “multicolor SOR with ILU solver” refers to the segregated multicolor
multiplicative Schwarz in which the interface data is only solved for. On each subdomain
the systems for both options mentioned above are solved using one step an ILU solve, with
LU factors obtained from an ILUTP factorization (incomplete LU factorization with dual
truncation mechanism) for the first option and an ILUT factorizations for the second one.
The “multicolor SOR” refers to the multicolor multiplicative Schwarz in which a standard
GMRES with the ILUT preconditioner is used for finding the interior unknowns as well as
the interface unknowns. The “multicolor segregated SOR, ILU solver and GMRES” refers
to the segregated multicolor multiplicative Schwarz procedure as described by Algorithm
2.4 in which a standard GMRES with the ILUT preconditioner is used for finding the
interior unknowns but the systems for the interface unknowns are solved using a single
forward-backward ILU solve, with LU factors obtained from the ILUT factorization. The
set of parameters (level of fill of 15, number of inner iterations of 3, and Krylov subspace
dimension of 50) was fixed for all the options listed above. As was already explained, the
Multicolor SOR scheme used here involves substantial idle time for each processor since
only one color is active at any given time. The figure shows once again that requiring more
accuracy for ILU local solves leads to a reduction in the total time. Also the use of a single
ILU solve leads to good savings in computational time.

3.4 Experiments with Schur complement techniques

Before discussing the results obtained with the Schur complement technique, it is worth
pointing out that these techniques are often implemented in conjunction with direct solvers.
These solvers are invoked either to compute the actual Schur complement matrix, in forming
the Schur complement system, or for solving the successive linear systems which arise during
the iterative process. If an iterative process is to be used instead of a direct solver, it is
important to note that the solves involved with the Schur complement iteration process
must be accurate. This represents the main weakness of Schur complement techniques.

Table 6 gives the timing results, the number of matrix-vector multiplications for solving
the systems for the interface data using a relative tolerance of € = 1072, a Krylov subspace
dimension of m = 50, a level of fill of 25, and a number of inner iteration of 10. All of
the computation were done according to the description of Section 2.3. A preconditioned
GMRES using the ILUT preconditioner has been used as the local solves.
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Multicolor SOR preconditioning. Matrix VENKATO1.
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Fic. 7. Comparison of the multiplicative Schwarz with four different options.

PEs | Seconds | Matvecs

2 30.80 9

3 20.51 9

6 14.35 11

8 10.58 10

16 5.75 11
TABLE 6

Ezecution times in seconds, number of matriz-vector multiplications, number of processors for
the Schur complement technique
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The table 7 gives the comparison between a block Jacobi iteration with overlapping
and a Schur complement for the SHERMAN3 matrix on the CRAY-T3E, using a relative
tolerance of ¢ = 1079, a Krylov subspace dimension of m = 50 and a level of fill of 25, a
number of iteration for the preconditioning step of 10. This matrix is of order 5,005 with
20,033 non-zero entries. For the block Jacobi iteration we used exchange of overlapped data
and a preconditioned GMRES with the ILUT preconditioner as a local solver. The Schur
complement solved by a preconditioned Krylov method where the preconditioner defined
by equation (14) has been used. We used one step of an ILU solve associated with an ILUT
factorization of C; instead of the exact C{l. The matrices B, L are factored exactly by an
LU factorization. The numerical tests show that the Schur complement technique can be
competitive with standard preconditioners if the subdomains assigned to each processor are
relatively small, i.e., they become competitive for larger number of processors. It should
be noted that in fact, most of the time is spent in computing the LU decomposition. It is
observed that there are significant savings in the orthogonalization time (FGMRES) due to
the shorter vectors involved in the FGMRES iteration. The explicit calculations of Schur
complements are usually more expensive for this matrix than the approach described above.

Number of processors 2 3 6 8 12
Jacobi preconditioning  time | 1.37 | 0.94 | 0.89 | 0.71 | 0.50
its 15 15 28 33 30

Schur complement time | 6.11 | 3.19 | 1.35 | 0.56 | 0.39
its 1 10 33 33 29
TABLE 7

Ezecution times in seconds, number of outer iterations for the block Jacobi preconditioner and
the Schur complement technique on on the CRAY-T3E for the SHERMANS matriz.

3.5 Where is the time spent?

Figure 8 presents a breakdown of the times spent in a typical solution on the CRAY-T3E.
Times are given in seconds. The results are for the matrix VENKATO01, using a relative
tolerance of ¢ = 1079, a Krylov subspace dimension of m = 50 and a level of fill of 25
for the ILUT preconditioner. The solution was obtained by a block Jacobi preconditioner
using one step of an ILU solve. The figure shows that all contributions decrease as the
number of processors increases. A contribution of each part can vary depending on network
characteristics and the type of preconditioner used. For example, we observed that the
FGMRES time on the SGI cluster with a Fibre-Channel switch can increase slightly as the
number of processors increases due to the high latency.

4 Conclusion

Our main conclusion is that an iterative method can be effectively used to solve very large
sparse linear systems on computers with distributed memory architectures. Small systems
can be handled more efficiently on a small number of processors or a single processor.
The break-even point depends on many factors and is a function of the dimension of the
matrix, the architecture parameters and iterative solution techniques used. For example,
any improvements in latency and bandwidth will allow to solve smaller problems more
efficiently. For very large problems, communication is small relative to computation, and
the issues of avoiding idle time and achieving more effective utilization of the memory
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Jacobi overlap with LU solver. Matrix VENKATO1. CRAY-T3E
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Fia. 8. Contributions to total execution time for a distributed block Jacobi preconditioner with

overlapping

become more important.
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