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Abstract

This paper presents a few preconditioning techniques for solving general sparse linear sys-
tems on distributed memory environments. These techniques utilize the Schur complement
system for deriving the preconditioning matrix in a number of ways. Two of these pre-
conditioners consist of an approximate solution process for the global system, which exploit
approximate LU factorizations for diagonal blocks of the Schur complement. Another precon-
ditioner uses a sparse approximate-inverse technique to obtain certain local approximations
of the Schur complement. Comparisons are reported for systems of varying difficulty.

1 Introduction

The successful solution of many “Grand-Challenge” problems in scientific computing depends
largely on the availability of adequate large sparse linear system solvers. In this context, iter-
ative solution techniques are becoming a mandatory replacement to direct solvers due to their
more moderate computational and storage demands. A typical “Grand-Challenge” application
requires the use of powerful parallel computing platforms as well as parallel solution algorithms
to run on these platforms. In distributed-memory environments, iterative methods are relatively
easy to implement compared with direct solvers, and so they are often preferred in spite of their
unpredictable performance for certain types of problems.

However, users of iterative methods do face a number of issues that do not arise in direct
solution methods. In particular, it is not easy to predict how fast a linear system can be solved
to a certain accuracy and whether it can be solved at all by certain types of iterative solvers.
This depends on the algebraic properties of the matrix, such as the condition number and the
clustering of the spectrum.

With a good preconditioner, the total number of steps required for convergence can be re-
duced dramatically, at the cost of a slight increase in the number of operations per step, resulting

*This work was supported in part by ARPA under grant number NIST 60NANB2D1272, in part by NSF under
grant CCR-~9618827, and in part by the Minnesota Supercomputer Institute.

tDepartment of Computer Science and Engineering, University of Minnesota, 200 Union Street S.E., Min-
neapolis, MN 55455, e-mail:saad@cs.umn.edu.

¥Department of Computer Science, 320 Heller Hall, 10 University Drive, Duluth, Minnesota 55812-2496.
masha@d.umn.edu.



in much more efficient algorithms in general. In distributed environments, an additional benefit
of preconditioning is that it reduces the parallel overhead, and therefore it decreases the total
parallel execution time. The parallel overhead is the time spent by a parallel algorithm in per-
forming communication tasks or in idling due to synchronization requirements. The algorithm
will be efficient if the construction and the application of the preconditioning operation both
have a small parallel overhead. A parallel preconditioner may be developed in two distinct
ways: extracting parallelism from efficient sequential techniques or designing a preconditioner
from the start specifically for parallel platforms. Each of these two approaches has its advantages
and disadvantages. In the first approach, the preconditioners yield the same good convergence
properties as those of a sequential method but often have a low degree of parallelism, leading
to inefficient parallel implementations. In contrast, the second approach usually yields pre-
conditioners that enjoy a higher degree of parallelism, but that may have inferior convergence
properties.

This paper addresses mainly the issue of developing preconditioners for distributed sparse
linear systems by regarding these systems as distributed objects. This viewpoint is common in
the framework of parallel iterative solution techniques [15, 14, 18, 20, 10, 1, 2, 8] and borrows
ideas from domain decomposition methods that are prevalent in the PDE literature. The key
issue is to develop preconditioners for the global linear system by exploiting its distributed
data structure. Recently, a number of methods have been developed which exploit the Schur
complement system related to interface variables, see for example, [12, 2, 8]. In particular,
several distributed preconditioners included in the ParPre package [8] employ variants of Schur
complement techniques. One difference between our work and [2] is that our approach does not
construct a matrix to approximate the global Schur complement. Instead, the preconditioners
constructed are entirely local. However, they also have a global nature in that they do attempt
to solve the global Schur complement system approximately by an iterative technique.

The paper is organized as follows. Section 2 gives a background regarding distributed rep-
resentations of sparse linear systems. Section 3 starts with a general description of the class
of domain decomposition methods known as Schur complement techniques. This section also
presents several distributed preconditioners that are defined via various approximations to the
Schur complement. The numerical experiment section (Section 4) contains a comparison of these
preconditioners for solving various distributed linear systems. Finally, a few concluding remarks
are made in Section 5.

2 Distributed sparse linear systems

Consider a linear system of the form
Az =b, (1)

where A is a large sparse nonsymmetric real matrix of size n. Often, to solve such a system on
a distributed memory computer, a graph partitioner is first invoked to partition the adjacency
graph of A. Based on the resulting partitioning, the data is distributed to processors such that
pairs of equations-unknowns are assigned to the same processor. Thus, each processor holds a
set of equations (rows of the linear system) and vector components associated with these rows.



A good distributed data structure is crucial for the development of effective sparse iterative
solvers. It is important, for example, to have a convenient representation of the local equations
as well as the dependencies between the local and external vector components. A preprocessing
phase is thus required to determine these dependencies and any other information needed during
the iteration phase. The approach described here follows that used in the PSPARSLIB package,
see [20, 22, 14] for additional details.

Figure 1 shows a “physical domain” viewpoint of a sparse linear system. This representation
borrows from the domain decomposition literature — so the term “subdomain” is often used
instead of the more proper term “subgraph”. Each point (node) belonging to a subdomain is
actually a pair representing an equation and an associated unknown. It is common to distin-
guish between three types of unknowns: (1) Interior unknowns that are coupled only with local
equations; (2) Local interface unknowns that are coupled with both non-local (external) and
local equations; and (3) External interface unknowns that belong to other subdomains and are
coupled with local equations. The matrix in Figure 2 can be viewed as a reordered version of
the equations associated with a local numbering of the equation-unknown pairs. Note that local
equations do not necessarily correspond to contiguous equations in the original system.

External
/ interface points

Figure 1: A local view of a distributed sparse matrix.

In Figure 2, the rows of the matrix assigned to a certain processor have been split into
two parts: the local matrix A;, which acts on the local vector components, and the rectangular
interface matriz X;, which acts on the external vector components. Accordingly, the local
equations can be written as follows:

Aizi + XiYiext = bi- (2)

where z; represents the vector of local unknowns, y; .;+ are the external interface variables, and
b; is the local part of the right-hand side vector. Similarly, a (global) matrix-vector product Az
can be performed in three steps. First, multiply the local vector components x; by A;, then
receive the external interface vector components y; ¢z from other processors, and finally multiply
the received data by X; and add the result to that already obtained with A;.



Figure 2: A partitioned sparse matrix.

An important feature of the data structure used is the separation of the interface points
from the interior points. In each processor, local points are ordered such that the interface
points are listed last after the interior points. Such ordering of the local data presents several
advantages, including more efficient interprocessor communication, and reduced local indirect
addressing during matrix-vector multiplication.

With this local ordering, each local vector of unknowns z; is split into two parts: the sub-
vector u; of internal vector components followed by the subvector y; of local interface vector
components. The right-hand side b; is conformally split into the subvectors f; and g;, i.e.,

e (3)s e(2)

When block partitioned according to this splitting, the local matrix A; residing in processor i
has the form:

so the local equations (2) can be written as follows:

(g: g) CZ) ' (ZjeN?Ez‘jyj> - (@ )

Here, N; is the set of indices for subdomains that are neighbors to the subdomain 7. The term
E;;y; is a part of the product X;y; ¢;+ which reflects the contribution to the local equation from
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the neighboring subdomain j. The sum of these contributions is the result of multiplying X; by
the external interface unknowns:

> Eijyj = XiYiear-

JEN;
It is clear that the result of this multiplication affects only the local interface unknowns, which
is indicated by zero in the top part of the second term of the left-hand side of (4).

The preprocessing phase should construct the data-structure for representing the matrices A;,
and X;. It should also form any additional data structures required to prepare for the intensive
communication that takes place during the iteration phase. In particular, each processor needs
to know (1) the processors with which it must communicate, (2) the list of interface points,
and (3) a break-up of this list into sublists that must be communicated among neighboring
processors. For further details see [20, 22, 14].

3 Derivation of Schur complement techniques

Schur complement techniques refer to methods which iterate on the interface unknowns only,
implicitly using internal unknowns as intermediate variables. A few strategies for deriving Schur
complement techniques will now be described. First, the Schur complement system is derived.

3.1 Schur complement system

Consider equation (2) and its block form (4). Schur complement systems are derived by eliminat-
ing the variable u; from the system (4). Extracting from the first equation u; = By '(f; — Fyy;)
yields, upon substitution in the second equation,

Sii+ Y Eyy; =g — BB fi = g, (5)
JEN;

where S; is the “local” Schur complement
S; = C; — E;B]'F;. (6)

The equations (5) for all subdomains i (i = 1,...,p) constitute a system of equations involv-
ing only the interface unknown vectors y;. This reduced system has a natural block structure
related to the interface points in each subdomain:

S1 Ein ... Ey Y1 91
Ex So .. Egp Y2 gé

. _ . Sl =1 (7)
Epl Ep,1,2 . Sp Yp g;,

The diagonal blocks in this system, the matrices S;, are dense in general. The off-diagonal blocks
E;j, which are identical with those involved in the global system (4), are sparse.
The system (7) can be written as



where y = (y1,...,9)7 is the vector of all the interface variables and ¢' = (gi,...,9,)%
the right-hand side vector. Throughout the paper, we will abuse the notation slightly for the
transpose operation, by defining

n
Y2
T _
(yla"'ayp) == .
Yp
rather than the actual transpose of the matrix with column vectors y;,7 = 1,...,p. The matrix

S is the “global” Schur complement matrix, which will be exploited in Section 3.3.

3.2 Schur complement iterations

One of the simplest ideas that comes to mind for solving the Schur complement system (7) is
to use a block relaxation method associated with the blocking of the system. Once the Schur
complement system is solved the interface variables are available and the other variables are
obtained by solving local systems. As is known, with a consistent choice of the initial guess, a
block-Jacobi (or SOR) iteration with the reduced system is equivalent to a block-Jacobi iteration
(resp. SOR) on the global system (see, e.g., [11], [19]). The k-th step of a block-Jacobi iteration
on the global system takes the following local form:

xz(kﬂ) = xz(k) + Ai_lrz(k)

(k) ]_1 A (k) 0
( < JEN; i]'yj('k)))

Y \gi — Xjen; Bijy;

- (Csmm 5) (oo ) ®
~S ' BBt 87 ) \gi— Sen, Byl )

Here, an asterisk denotes a nonzero block whose actual expression is unimportant. A worthwhile
observation is that the iterates with interface unknowns y satisfy an independent relation

k+1 — _ k
g = 571 gi — BBV i~ Y. Eiyl 9)
JEN;
or equivalently
k k
yz( +1) ( )+ S zyz Z Ez (k) , (10)
JEN;
which is nothing but a Jacobi iteration on the Schur complement system (7).
From a global viewpoint, a primary iteration for the global unknowns is
gD = M) 4. (11)

As was explained above, the vectors of interface unknowns y associated with the primary itera-
tion satisfy an iteration (called Schur complement iteration)

y* ) = Gy® + b, (12)



The matrix G is not known explicitly, but it is easy to advance the above iteration by one step
from an arbitrary (starting) vector v, meaning that it is easy to compute Gv + h for any v. This
viewpoint was taken in [13, 12].

The sequence y¥) can be accelerated with a Krylov subspace algorithm, such as GMRES
[21]. One way to look at this acceleration procedure is to consider the solution of the system

(I-G)y=h. (13)

The right-hand side h can be obtained from one step of the iteration (12) computed for the
initial vector 0, i.e.,
h=(Gx0+h).

Civen the initial guess y(©) the initial residual s(%) = h — (I — G)y?) can be obtained from
sO© = b — (y© — Gy®) =y _ 4O

Matrix-vector products with I — G can be obtained from one step of the primary iteration. To

compute w = (I — G)y, proceed are as follows:

0
Y

1. Perform one step of the primary iteration (Z,’) =M ( ) + ¢
2. Set w:=1;
3. Compute w:=y —w + h.

The presented global viewpoint shows that a Schur complement technique can be derived for
any primary fixed-point iteration on the global unknowns. Among the possible choices of the
primary iteration there are Jacobi and SOR iterations as well as iterations derived (somewhat
artificially) from ILU preconditioning techniques.

The main disadvantage of solving the Schur complement system is that the solve for the
system B;d = v (needed to operate with the matrix S;) should be accurate. We can compute
the dense matrix S; explicitly or solve system (5) by using a computation of the matrix-vector
product S;y, which can be carried out with three sparse matrix-vector multiplies and one ac-
curate linear system solve. As is known (see [23]), because of the large computational expense
of these accurate solves, the resulting decrease in iteration counts is not sufficient to make the

Schur complement iteration competitive. Numerical experiments will confirm this.

3.3 Induced Preconditioners

A key idea in domain decomposition methods is to develop preconditioners for the global sys-
tem (1) by exploiting methods that approzimately solve the reduced system (7). These tech-
niques, termed “induced preconditioners” (see, e.g., [19]), can be best explained by consider-
ing a reordered version of the global system (1) in which all the internal vector components
u = (u1,...uy)T are labeled first followed by all the interface vector components y. Such re-
ordering leads to a block system

B F uy f
By Fy Ug f2
: = S IS (14)
By | Fp Up fp
E, Ey -+ E,|C Y g



which also can be rewritten as
(£ c)(5)-(3) 0
E C)\y g
Note that the B block acts on the interior unknowns. Eliminating these unknowns from the
system leads to the Schur complement system (7).

Induced preconditioners for the global system are obtained by exploiting a block LU factor-
ization for A. Consider the factorization

(2 &)= 96" a9

where S is the global Schur complement
S=C-EB'F.

This Schur complement matrix is identical to the coefficient matrix of system (7) (see, e.g., [19]).
The global system (15) can be preconditioned by an approximate LU factorization con-

structed such that B 0 I B-lF
L= = 1
( E Ms ) and U ( 0 7 ) (17)

with Mg being some approximation to S.

Two techniques of this type are discussed in the rest of this section. The first one exploits
the relation between an LU factorization and the Schur complement matrix, and the second
uses approximate-inverse techniques to obtain approximations to the local Schur complements.
The preconditioners presented next are based on the global system of equations for the Schur
unknowns (system (5) or the equivalent form (7)) and on the global block LU factorization (16),
or rather its approximated version (17).

3.4 Approximate Schur LU preconditioner

The idea outlined in the previous subsection is that, if an approximation S to the Schur com-
plement S is available, then an approximate solve with the whole matrix A, for all the global
unknowns can be obtained which will require (approximate or exact) solves with S and B. Tt is
also possible to think locally in order to act globally. Consider (4) and (5). As is readily seen
from (4), once approximations to all the components of the interface unknowns y; are available,
corresponding approximations to the internal components u; can be immediately obtained from
solving
Biu; = fi — Fiy;

with the matrix B; in each processor. In practice, it is often simpler to solve a slightly larger

system obtained from (2) or
Aizi = b — XiYi eat (18)

because of the availability of the specific local data structure.
Now return to the problem of finding approximate solutions to the Schur unknowns. For
convenience, (5) is rewritten as a preconditioned system with the diagonal blocks:

yi+ St Y By =87 [0 - BB (19)
JEN;



Note that this is simply a block-Jacobi preconditioned Schur complement system. System (19)
may be solved by a GMRES-like accelerator, requiring a solve with S; at each step. There are
at least three options for carrying out this solve with S;:

1. Compute each S; exactly in the form of an LU factorization. As will be seen shortly, this
representation can be obtained directly from an LU factorization of A;.

2. Use an approximate LU factorization for S;, which is obtained from an approximate LU
factorization for A;.

3. Obtain an approximation to S; using approximate-inverse techniques (see the next sub-
section) and then factor it using an ILU technique.

The methods in options (1) and (2) are based on the following observation (see [19]). Let A;
have the form (3) and be factored as A; = L;U;, where

Lp. 0 Us, L‘.1Fi>
Li= ’ d Up=|( " "Bt
’ (Ez-UBf Lsi) me T <0 Us,

Then, a rather useful result is that Lg,Ug, is equal to the Schur complement S; associated with
the partitioning (3). This result can be easily established by “transferring” the matrices Up,
and Ug; from the U-matrix to the L-matrix in the factorization:

1 ( Lp, 0) (UBi Lg,jFi)

" \EUG' Lg 0 Us,
LgUpg, 0 I Ug'Lg'F,
( E; LsiUs) (0 I )

B (Bi 0 ) (I BZ-_IFZ)
~ \E LgUs, 0 I ’

from which the result S; = Lg,Usg, follows by comparison with (16).

When an approximate factorization to A; is available, an approximate LU factorization to S;
can be obtained canonically by extracting the related parts from the L; and U; matrices. In other
words, an ILU factorization for the Schur complement is the trace of the global ILU factorization
on the unknowns associated with the Schur complement. For a local Schur complement, the
ILU factorization obtained in this manner leads to an approximation S; of the local Schur
complement S;. Instead of the exact Schur complement system (5), or equivalently (19), the
following approximate (local) Schur complement system derived from (19) can be considered on
each processor i:

yi+ 57 Eijy; =577 [gz' - EiBi_lfi] : (20)
JEN;
The global system related to equations (20) can be solved by a Krylov subspace method, e.g.,
GMRES. The matrix-vector operation associated with this solve involves a certain matrix Mg
(cf. equation (17)). The global preconditioner (17) can then be defined from Mg.
Given a local ILU factorization
A; = LiU; + R;,



with which the factorization
Si = LSiUsi + RSi

is associated, the following algorithm applies in each processor the global approximate Schur LU
preconditioner to a block vector (f;,g;)? to obtain the solution (u;,1;)?. The algorithm uses m
iterations of GMRES without restarting to solve the local part of the Schur complement system
(20). Then, the interior vector components are calculated using equation (18) (Lines 21-25). In
the description of Algorithm 3.1, P represents the projector that maps the whole block vector
(fi,9:)T into the subvector vector g; associated with the interface variables.

ALGORITHM 3.1 Approximate Schur-LU solution step with GMRES
1. Given: local right-hand side rhs = (!J;Z)

2. Define an (m + 1) x m matrix H,, and set H,, := 0.
3. Arnoldi process:

4. y; - =0

5. r:= (L;U;) " ‘rhs

6. v1 = Pr/||Pr||2

7. For j =1,...,m do

8. Exchange interface vector components y;
9. t:=(Ls,Us,) ' Xiyieat

10. w:i=uvj+1

11. Forl=1,...,5 Do:

12. hij == (w,v;)

13. w = w — hy vy

14. EndDo

15. hjt1,j = llwllz and vj1 := w/hji1

16. EndDo

17.  Define Vi, := [1,.cc, U]

18. Form the approximate solution for interface variables:
19. Compute y; := y; + Vin2zm, where

20.  z, = argmin,||Be; — Hyz||2 and e; = [1,0,...,0]T.
21. Find other local unknowns:

22. Exchange interface vector components y;

23. t:= Xiyi,ecct

24. rhs := rhs — (g)

25. (;j;) .= (L;U;)"Lrhs.

A few explanations are in order. Lines 46 compute the initial residual for the GMRES iteration
with initial guess of zero and normalize this residual to obtain the initial vector of the Arnoldi
basis. According to the expression for the inverse of A; in (8), we have

47 (;c:) N (Si_l(gz' —*Ez'Bz'_lfi)> ’
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which is identical to the expression in Line 5 with A; replaced by its approximation L;U;.
Comparing the bottom part of the right-hand side of the above expression with that on the
right-hand side of (20), it is seen that the vector Pr obtained in Line 6 of the algorithm is
indeed an approximation to the local right-hand side of the Schur complement system. Lines 8—
10 correspond to the matrix-vector product with the preconditioned Schur complement matrix,
i.e., with the computation of the left-hand side of (20).

3.5 Schur complements via approximate inverses

Equation (17) describes in general terms an approximate block LU factorization for the global
system (15). A particular factorization stems from approximating the Schur complement matrix
S using one of several approximate-inverse techniques described next.

Given an arbitrary matrix A, approximate-inverse preconditioners consist of finding an ap-
proximation @ to its inverse, by solving approximately the optimization problem [3]:

in|[T — AQ||?
glelgll Qll%,

in which S is a certain set of n X n sparse matrices. This minimization problem can be decoupled
into n minimization problems of the form

I¥1n1n||€] - Am]”%’ .7 = 1525 ey 1,
J

where e; and m; are the jth columns of the identity matrix and a matrix ) € S, respectively.
Note that each of the n columns can be computed independently. Different strategies for selecting
a nonzero structure of the approximate-inverse are proposed in [4] and [9]. In [9] the initial
sparsity pattern is taken to be diagonal with further fill-in allowed depending on the improvement
in the minimization. The work [4] suggests controlling the sparsity of the approximate inverse
by dropping certain nonzero entries in the solution or search directions of a suitable iterative
method (e.g., GMRES). This iterative method solves the system Am; = e; such that min,; [e;—
Am;||3, for j =1,2,...,n. In this paper, the approximate-inverse technique proposed in [4] and
[5] is used.
Consider the local matrix A; blocked as

and its block LU factorization similar to the one given by (16). The sparse approximate-inverse
technique can be applied to approximate B; 'F; with a certain matrix ¥; (as it is done in [5]).
The resulting matrix Y; is sparse and therefore

Ms, = C; — E;Y; (21)

is a sparse approximation to S;. A further approximation can be constructed using an ILU
factorization for the matrix Mg, .

As in the previous subsection, an approximation Mg to the global Schur complement S can
be obtained by approximately solving the reduced system (7), i.e., by solving its approximated

11



version
Swi+ Y. Eijy; = gi — E:B; ' f;, (22)
JEN;

the right-hand side of which can be also computed approximately. System (22) requires an
approximation S; to the local Schur complement S; = C; — E;B;” LF;. The matrix Mg, defined
from the approximate-inverse technique outlined above can be used for S;. Now that an approx-
imation to the Schur complement matrix is available, an induced global preconditioner M to
the matrix A can be defined from considering the global system (14), also written as (15). The
Schur variables correspond to the bottom part of the linear system. The global preconditioner
M is given by the block factorization (17) in which Mg is the approximation to S obtained by
iteratively solving system (22).

Thus, the block forward-backward solves with the factors (17) will amount to the following
three-step procedure.

1. Solve Bu = f;
2. Solve (iteratively) the system (22) to obtain y;
3. Compute u := u — B71Fy.
This three-step procedure translates into the following algorithm executed by Processor 3.

ALGORITHM 3.2 Approximate-inverse Schur complement solution step with GMRES
1. Given: local right-hand side rhs = (!j;z)

Solve B;u; = f; approximately

Calculate the local right-hand side g; := g; — E;u;

Use GMRES to solve the distributed system Mg,y; + X;Yi ext = G

Compute an approximation to t := B, LBy,

S v N

Compute u; := u; — t.

Note that the steps in Lines 2, 5 and 6 do not require any communication among processors,
since matrix-vector operations in these steps are performed with the local vector components
only. In contrast, the solution of the global Schur system invoked in Line 4, involves global
matrix-vector multiplications with the “interface exchange matrix” consisting of all the interface
matrices X;. The approximate solution of B;u; = f; (Line 2) can be carried out by several steps
of GMRES or by the forward-backward solves with incomplete L and U factors of B; (assuming
that a factorization B; &~ Lpg,Up, is available). Then an approximation g; (Line 3) to the local
right-hand side of system (22) is calculated. In Line 5, there are several choices for approximating
t := B~ F;y;. It is possible to solve the linear system B;t = F;y; using GMRES as in Line 2. An
alternative is to exploit the matrix Y; that approximates B, LF; in construction of Ms, (equation

(21)).

12



4 Numerical experiments

In the experiments, we compared the performance of the described preconditioners and the
distributed Additive Schwarz preconditioning (see, e.g., [19]) on 2-D elliptic PDE problems and
on several problems with the matrices from the Harwell-Boeing and Davis collections [7]. A
flexible variant of restarted GMRES (FGMRES) [16] has been used to solve the original system
since this accelerator permits a change in the preconditioning operation at each step. This is
useful when, for example, an iterative process is used to precondition the input system. Thus,
it is possible to use ILUT-preconditioned GMRES with 1fil fill-in elements. Recall that ILUT
[17] is a form of incomplete LU factorization with a dual threshold strategy for dropping fill-in
elements.

For convenience, the following abbreviations will denote preconditioners and solution tech-
niques used in the numerical experiments:

SAPINV Distributed approximate block LU factorization: Mg, and B; LF; are ap-

proximated using the matrix Y;, constructed using the approximate-inverse
technique described in [4];

SAPINVS Distributed approximate block LU factorization: Mg, is approximated using
the approximate-inverse technique in [4], but B; LF; is applied using one
matrix-vector multiplication followed by a solve with B;;

SLU Distributed global system preconditioning defined via an approximate solve
with Mg, in which S; = Lg,Ug;;
BJ Approximate Additive Schwarz, where ILUT-preconditioned GMRES(k) is

used to precondition each submatrix assigned to a processor;

SI “pure” Schur complement iteration as described in Section 3.2.

4.1 Elliptic problems

Consider the elliptic partial differential equation

Lu= % (aa%u) + % (b%u) + 83:1: (du) + (_%(eu) =u (23)
on rectangular regions with Dirichlet boundary conditions.

If there are n, points in the z direction and ny points in the y direction, then the mesh
is mapped to a virtual p, % p, grid of processors, such that a subrectangle of n,/p, points in
the z direction and n,/p, points in the y direction belongs to a processor. In fact, each of the
subproblems associated with these subrectangles are generated in parallel. Figure 3 shows a
domain decomposition of a mesh and its mapping onto a virtual processor grid.

A comparison of timing results and iteration numbers for a global 360 x 360 mesh mapped to
(virtual) square processor grids of increasing size is given in Figure 4. (In Figure 4, we omit the
solution time for the BJ preconditioning, which is 95.43 seconds). The residual norm reduction
by 10~¢ was achieved by flexible GMRES(10). In preconditioning, ILUT with [fil = 15 and the
dropping tolerance 10~% was used as a choice of an incomplete LU factorization. Five iterations
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Figure 3: Domain decomposition and assignment of a 12 X 9 mesh to a 3 x 3 virtual processor
grid.

of GMRES with the relative tolerance 10~2 were used in the application of BJ and SLU. For
SAPINV, forward-backward solves with B; ~ Lpg,Up, were performed in Line 2 of Algorithm
3.2.

Since the problem (mesh) size is fixed, with increase in number of processors the subproblems
become smaller and the overall time decreases. Both preconditioners based on Schur complement
techniques are less expensive than the Additive Schwarz preconditioning. This is especially
noticeable for small numbers of processors.

Keeping subproblem sizes fixed while increasing the number of processors increases the over-
all size of the problem making it harder to solve and thus increasing the solution time. In
ideal situations of perfectly scalable algorithms, the execution time should remain constant.
Timing results for fixed local subproblem sizes of 15 x 15, 30 x 30, 50 x 50, and 70 x 70 are
presented in Figure 5. (Premature termination of the curves for SI indicates nonconvergence
in 300 iterations). The growth in the solution time as the number of processors increases is
rather pronounced for the “pure” Schur complement iteration and Additive Schwarz, whereas it
is rather moderate for the Schur complement-based preconditioners.

4.2 General problems

Table 1 describes three test problems from the Harwell-Boeing and Davis collections. The
column Pattern specifies whether a given problem has a structurally symmetric matrix. In all
three test problems, the matrix rows followed by the columns were scaled by 2-norm. Also, in
the partitioning of a problem one level of overlapping with data exchanging was used following
[13].

Tables 2-4 show iteration numbers required by FGMRES(20) with SAPINV, SAPINVS, SLU,
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Figure 4: Times and iteration counts for solving a 360 x 360 discretized Laplacean problem with
3 different preconditioners using flexible GMRES(10).

Name n Ny Pattern | Discipline
af23560 23560 | 484256 | Symm Airfoil, eigenvalue
calculation

raefskyl | 3242 | 22316 | Unsymm | Incompressible flow
in pressure driven pipe

sherman3 | 5005 | 20033 | Symm Oil reservoir modeling

Table 1: Description of test problems

and BJ till convergence on different numbers of processors. An asterisk indicates nonconvergence.
In the preconditioning phase, approximate solves in each processor were carried out by GMRES
to reduce the residual norm by 102 but no more than for five steps were allowed. As a choice of
ILU factorization, ILUT with 1fil fill-in elements (shown in the column 1fil) was used in the
experiments here. 1fil corresponds also to the number of elements in a matrix column created
by the approximate-inverse technique. In general, it is hard to compare the methods since the
number of fill-in elements in each of the resulting preconditioners is different. In other words, for
SAPINV and SAPINVS, 1fil specifies the number of nonzeros in the blocks of preconditioning;
for SLU, 1fil is the total number of nonzeros in the preconditioning, therefore, the number of
nonzeros in a given approximation S is not known exactly.

For a given problem, iteration counts for the SAPINV and SAPINVS suggest a clear trend
of achieving convergence in fewer iterations with increasing number of processors, which means
that a high degree of parallelism of these preconditioners does not impede convergence, and
may even enhance it significantly (cf. rows 1-4 of Table 2). The main explanation for this
is the fact that the approximations to the local and global Schur complement matrices from
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Figure 5: Solution times for a Laplacean problem with various local subproblem sizes using
FGMRES(10) with 3 different preconditioners (BJ, SAPINV, SLU) and the Schur complement

iteration (SI).
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Name Precon 1fil | 4 8 16 (24 |36 |40
raefskyl | SAPINV | 10 14 (13 |10 |11 |8 8
20 12 |11 |9 9 8 8
SAPINVS | 10 16 |13 |10 |11 |8 8
20 13 (11 |9 9 8 8

SLU 10 215 | 197 | 198 | 194 | 166 | 171
20 48 |50 |40 |42 |41 |41
BJ 10 85 | 171 | 173 | 273 | 252 | 263

20 82 | 170 | 173 | 271 | 259 | 259

Table 2: Number of FGMRES(20) iterations for the RAEFSKY1 problem.

Name Precon 1fi1 | 16 |24 | 32 | 40 | 56 | 64 | 80 | 96
af23560 | SAPINV | 20 32136 | 2729|7335 71|61
30 32135 | 23|29 |46 |60 | 33|52
SAPINVS | 20 32135 | 24|29 |55|35|37 |59
30 32 134 | 23|28 (43|45 (23|35

SLU 20 81 105 |94 88|90 |76 |8 |71
30 3834 |37(139|38 (39|38 35
BJ 20 37 | 153 |53 | 60 | 77 |80 |95 | *

30 36 | 41 | 53 | 57 | 81 | 87 | 97 | 115

Table 3: Number of FGMRES(20) iterations for the AF23560 problem.

Name Precon 1fi1 |16 |24 | 32|40 |48 |56 | 60
sherman3 | SAPINV | 10 52 |42 |21 |17 |31 |21 |20
20 54 |40 |18 |17 |29 |20 |19
SAPINVS | 10 54 |48 |21 |18 |33 |21 |21
20 55 |51 |19 16 [30 |19 |19

SLU 10 34 |32 |16 20 |20 |23 |17
20 21 |23 |12 |16 |15 |18 |13
BJ 10 158 | 155 | 72 | 208 | 110 | 122 | 84

20 163 | 155 | 72 | 206 | 111 | 120 | 85

Table 4: Number of FGMRES(20) iterations for the SHERMAN3 problem.
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which the global preconditioner M is derived actually improve as the processor numbers become
larger since these matrices become smaller. Furthermore, SAPINV, SAPINVS, and SLU do not
suffer from the information loss as happens with BJ (since BJ disregards the local matrix entries
corresponding to the external interface vector components). Note that the effectiveness of BJ
degrades with increasing number of processors (cf. Subsection 4.1). Comparison of SAPINV
and SAPINVS (for RAEFSKY1 and SHERMANS3) confirms the conclusions of [5] that using Y;
to approximate B, 'R, (Line 5 in Algorithm 3.2) is more efficient than applying B, LF; directly,
which is also computationally expensive. For general distributed matrices, this is especially true,
since iterative solves with B; may be very inaccurate.

In the experiments, sparse approximations of ¥; appear to be quite accurate (usually reducing
the Frobenius norm to 10~2), which could be attributed to the small dimensions of the matrices
used in approximations. This reduction in the Frobenius norm was attained in 10 iterations of
the MR method. Smaller numbers of iterations were also tested. Their effect on the overall
solution process amounted to on average one extra iteration of FGMRES(20) for the problems
considered here.

5 Conclusions

In this paper, several preconditioning techniques for distributed linear systems are derived from
approximate solutions with the related Schur complement system. The preconditioners are built
upon the already available distributed data structure for the original matrix, and an approx-
imation to the global Schur complement is never formed explicitly. Thus, no communication
overheard is incurred to construct a preconditioner, making the preprocessing phase simple and
highly parallel. The preconditioning operations utilize the communication structure precom-
puted for the original matrix.

The preconditioning to the global matrix A is defined in terms of a block LU factoriza-
tion which involves a solve with the global Schur complement system at each preconditioning
step. This system is in turn solved approximately with a few steps of GMRES exploiting
approximations to the local Schur complement for preconditioning. Two different techniques,
incomplete LU factorization and approximate-inverse, are used to approximate these local Schur
complements. Distributed preconditioners constructed and applied in this manner allow much
flexibility in specifying approximations to the local Schur complements and local system solves
and in defining the global induced Block-LU preconditioner to the original matrix.

With an increasing number of processors, a Krylov subspace method, such as FGMRES [16],
preconditioned by the proposed techniques exhibits a very moderate growth in the execution
time for scaled problem sizes. Experiments show that the proposed distributed preconditioners
based on Schur complement techniques are superior to the commonly used Additive Schwarz
preconditioning. In addition, this advantage comes at no additional cost in code-complexity or
memory usage, since the same data structures as those for additive Schwarz preconditioners can
be used.
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