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Abstract

The convergence behavior of a number of algorithms based on minimizing
residual norms over Krylov subspaces, is not well understood. Residual or error
bounds currently available are either too loose or depend on unknown constants
which can be very large. In this paper we take another look at traditional as well
as alternative ways of obtaining upper bounds on residual norms. In particular, we
derive new inequalities which utilize Chebyshev polynomials and compare them
with standard inequalities.

1 Introduction

A number of successful algorithms for solving large sparse nonsymmetric linear systems
are based on minimizing the residual norm ||b — Az|| over trial solutions belonging to
small dimensional subspaces. Under mild conditions on the coefficient matrix A, the
approximations provided by these Minimal Residual (Min-Res) methods is guaranteed
to make some progress toward the solution but convergence can be quite slow.

Two types of results have been developed to analyze convergence of Min-Res methods.
First, there are inequalities, such as those established by Eisenstat, Elman, and Schultz
[2], which do not attempt to be sharp but to establish global convergence of the method.
Another category of error or residual bounds attempt to imitate the asymptotic behavior
of the method, specifically for Min-Res methods on Krylov subspaces. The most common
analysis of this type assumes that A is diagonalizable, A = XDX™! and that its
spectrum is enclosed in an ellipse E(c, d, a) of center ¢, focal distance d and major semi
axis a. The following inequality is then easily shown:

Tim(a/d)

lrmll < @(X)Wllroll (1)

in which T}, represents the Chebyshev polynomial of degree & of the first kind and ko (X)
is the spectral condition number of X. The main drawbacks of this estimate are that
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(1) ko(X) is not practically computable in general and (2) that it may be extremely
large. The rationale here is that this is an asymptotic result and the actual residual
norm should behave like the right-hand side — apart from the multiplicative constant
ko(X). However, the process is finite, being optimum on a finite dimensional space, and
the above inequality though correct may become meaningless in practice.

The standard inequality (1) is derived by using the spectral decomposition of A and
exploiting polynomials that are small on the spectrum. There are situations where the
spectrum does not give a good indication of the convergence behavior. For example,

when
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where an z represents a nonzero element, the spectrum of A is reduced to the value one.
If the nonzero values x are large, it is not easy to find a residual polynomial (I —As(A))ry
that is small, so this presumably ideal spectrum does not help. This type of analysis
does not lead to an understanding of situations which involve highly nonnormal matrices
such as the one above. For this reason, several researchers argued that the spectrum is
not a good indicator of convergence, meaning that in some situations such as the one
above convergence analysis based on the spectrum of A will fail completely. On the other
hand, experience shows that the spectrum does help understand convergence behavior in
general, or to be more accurate, for average case situations, though this could be hard to
quantify. For example, the main argument used in explaining the improved convergence
of preconditioned iterations is that the eigenvalues of the preconditioned matrix tend
to be clustered around one. In such situations, Krylov methods will converge faster in
general. Another example, is the success of deflation methods for solving linear systems
[1, 9], as well as eigenvalue problems [16, 17]|. For linear systems, the objective of these
techniques is to remove the eigenvalues closest to zero from the spectrum of A, yielding
faster convergence in later steps of the iteration.

A number of alternative theories have been proposed to analyze Minimum Residual
methods. The spectra of A, A+ AT, A— AT, AT A, can all be invoked to try to explain
the convergence behavior differently [10]. However, none of them is sufficient by itself
and several discussions to this effect exist in the literature, see e.g., [7, 6, 11]. As an
alternative to the spectrum of A, the use of the e-spectrum or pseudo-spectrum [4, 18]
has also been advocated. The pseudo-spectrum does not provide a quantative analysis
of actual behavior. In this paper we will not attempt to propose a new theory but rather
to re-examine the standard ones. We start with a review of the common approaches that
have been taken in the past and provide a few additional results.



2 Basic residual bounds

We begin with a background on minimum residual methods. Consider the nonsingular
linear system

Az =b. (2)

Given a subspace S and an initial guess xy to the solution, Minimum Residual methods
compute the (unique) approximate solution of the form z = xy+s where s € S minimizes
the 2-norm of the residual vector

r(s) =b— Az =19 — As.

Here, the common notation 7o = b — Az is used. This optimal approximation will be
denoted by z and the corresponding residual by 7. Hence,

7l = min_ b~ Az = min |l — As]| = b — AZ] (3)

If P denotes the orthogonal projector onto the subspace AS then the optimal As is
simply the orthogonal projection of ry into AS. In particular, we can state,

[I7]] = sin Z(ro, AS) |[rol| (4)

<
(=]

(SR

Y
=

/{4 (ro, AS)

AS

Thus, the sine of the angle between the initial residual ry and the subspace AS gives
the reduction factor in the residual norm achieved in the projection process. In this
section this viewpoint will often be preferred over the common strategy of minimizing
residual norms to derive residual bounds [15].

2.1 Use of a Kantorovitch-like inequality

In order to obtain a bound for ||7||, it is sufficient to find an upper bound for the angle
/(rg, AS). This angle represents the smallest possible angle between ry and arbitrary
vectors in AS and is found by maximizing the normalized inner product

|(ro, As)|
[IrollllAs|
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which represents the cosine of the angle between the vectors ry and As. In other words,

|(ro, As)|

cos /(rg, AS) max ol As] (5)
In the remainder of the paper it is assumed that S contains the initial residual vector
ro. For example, in the simplest case of the Minimum Residual (MR) method, S is pre-
cisely the one-dimensional space spanned by 7y. To prove convergence of the MR and the
restarted Generalized Conjugate Residual (GCR) methods when A is positive definite,
Eisenstat, Elman, and Schultz [2] used the lower bound for cos /(ry, AS) provided by

simply taking s = ry, yielding,

| (o, Aro)|
cos /(rg, AS) > ————— (6)
’ 7ol Arol|
Define,
. |(z, Az)|
¢(A) = min ———— (7)
=20 ||zl Az|
so that when rq € S, then
cos L(rg, AS) > cos(rg, Arg) > ¢(A) . (8)

When A is indefinite (not positive definite or negative definite) then ¢(A) = 0 so the
above inequality is not useful. If A is either positive definite or negative definite, then
®»(A) > 0 and we can use the inequality,

17l < [1 = 642" Iroll - (9)

Consider the particular case when A is positive definite and define

w(A) = min (Az, 2)

mjn (10)

This is the smallest eigenvalue of (A + AT)/2, a positive number when A is SPD. From

the relation,
(z,Az) _ (z,Az) |l=|

= X
el Az fl=l> (| A=]]
it is immediately seen that
u(A)
¢(A) > Tt
1Al
This results in the following inequality which has been established in [2]:
9 1/2
s 1 (A)
7l < {1 =7 | lIroll: (11)
1Al




An alternative inequality can be obtained by using the same vector s and the following
argument, see, e.g., [2, 3, 13]. Write

(z, Ax)? (Az,z) (Az,x)

X .
el Al lef® [ A=]?

and note that the first term in the right-hand side can again be bounded from below by
1(A). For the second term, set z = Az and write,

(Az,z)  (2,A7'2)

= > p(A™).
| Az|]? [12]1?

Since A is positive definite then u(A~')>0 and this gives the relation

|(w, Az)|* i
LA 2 A #A™). (12)

¢(A) = \/u(A) p(A™). (13)

The resulting residual bound similar to (11) is given by

Therefore,

1/2

171 < [1 = w(A)u(A™)] " iroll- (14)

It is useful to compare the bounds (11) and (14) in the case when A is Symmetric
Positive Definite. Inequality (11) gives

N 112
Il < [1 - T»] ol (15)

In the SPD case, we have u(A)u(A™') = 1/k2(A) and (14) becomes

17} <

1 e
L (19)

which is much sharper than (15) in general.

It is interesting to point out that sometimes additional information can be exploited
and the above inequalities can be improved. For example, the minima in (7) and (10)
can be restricted to z in the subspace S. If ¢g(A) and us(A) are the corresponding
mininima, then the scalar ¢(A) in inequalities (8), and (9) can be replaced by ¢g(A).
Similarly, in (11) and (14) we can replace u(A) by ps(A). In (11) the norm ||A| can
also be replaced accordingly by the norm of the restriction of A to S.

When A is not indefinite, an improvement to the above inequalities can be obtained
by exploiting an inequality similar to a result due to Kantorovitch [13]. The following
Lemma is needed.



Lemma 2.1 Assume that there exist two nonzero real scalars o and 3 of the same sign
such that,
(A—al)z,(A—-pDz) <0, Vz € R". (17)

Then, A is either positive definite or negative definite and,

(Az,x)? daf3

TP ol = @rpp 70 (18)

Proof. Consider an arbitrary unit vector x and expand (17) into
[Az|” + aB < (o + B)(Az, 2). (19)

When a and § are both positive then the above inequality shows that A is positive
definite. When they are both negative then it shows that A is negative definite. This
establishes the first part of the lemma.

Define A\ = (Az,z) when A is positive definite and A = —(Ax,z) when A is definite
negative. Then use (19) to show that

(Aaaf _ PP AP
[Az[[*  [|Az]* ~ |a+ ] A - af’
The right-hand side is a function of |A| which takes its minimum for |\, = @i%'.

Evaluating the right-hand side of the above equation for this value yields the desired
inequality (18). |

When A is symmetric, then a simple choice for the two parameters «, 8 is a = Ay,
B = An, where it is assumed that eigenvalues are labeled from the smallest \; to the
largest \,. Indeed, the relation

(A= XMDz, (A= \D)z) <0, Vz

follows immediately from the fact that the eigenvalues of (A — A\ I)(A — A1) are all
non-positive, so (4 — Az, (A= M 1)z) = (A= M)A - A\ I)z,z) < 0 for any z.
This results in the following inequality which is valid for any SPD matrix A

(Az, z)? S AN\

. 20
TP TA2lE = G + 202 (20)

The following proposition which follows immediately from the above discussion, sum-
marizes the situation.

Proposition 2.1 Let A be a matrixz which satisfies the assumptions of Lemma 2.1 and
S a subspace containing the initial residual vector ro. Then the residual 7 obtained from
a minimal residual projection method onto S is such that,

16— o

6

17l <



In particular, when A is SPD, then the assumptions of Lemma 2.1 are satisfied with
B=A,a=\,, and we have
K9 (A) -

1
rl < —~F—— : 22
Il < 2 Il (22

Proof. Inequality (21) follows immediately by using inequalities (9), (7), and (18).
Inequality (22) is a trivial consequence for the SPD case. [
In the SPD case, a simpler proof (22) which does not exploit the lemma, is based on
minimizing || — aAl| over a.

Inequality (22) resembles a similar result obtained for the steepest descent algorithm
and the proofs of these results are very similar. In the SPD case, it can be easily seen
that (22) is sharper than (16). Indeed, this follows from the inequality

11—t
J— 2 -
1=f*= 141t
which is valid for 0 < ¢ < 1, when we set ¢t = i—;

We now provide two examples which show how the previous results can be exploited.

It is assumed in both cases that the matrix is positive definite.

Example 1. The condition (17) can be rewritten as

+ 0

Assume that A is positive definite and select the shift 6 = a3/(a+ () such that A — 61
is positive semi-definite, for example:
af 1

a+ﬂ:6:§M(A)

Qﬂ?h;x)ﬁ(a—%ﬁ)((A——aaﬂ I)a;x) V. (23)

where p defined in (10) is the smallest eigenvalue of the symmetric part of A. Then (23)
can be rewritten as

(AT Az, x)
((A—0dI)z,x)

and is satisfied when a+ (3 is the largest eigenvalue of the generalized eigenvalue problem

T
Mnx:A<A2A —M)m (24)

<a+p, Vx

The largest eigenvalue of this problem is positive since the two matrices of the pair
are both positive definite. Let o(d) be this eigenvalue. Then the condition is that
a+ = 0(d). The two conditions

af
a+

=5, a+pB=o0c(d)



yield the solution,

[ ) +/7(0)” — 460(0 ] 8= % [0(5) — \/o(0) = 4d0(9)| .

For these values the result (21) becomes
7 < /1= 4=0 ol (29
7 —4—— ||ro]|-

Note that the above result depends on a parameter §. Later we will provide an inequality
in which the best ¢ is selected.

Example 2. An alternative to the previous approach consists of rewriting (17) as
((ATA+ aB D)z, z) < (o + B)(Az, 2).

Similarly to the previous case we impose the condition af = ¢ with § > 0. Then the
above inequality is satisfied when

a+ f=o0(9)
where o(d) is the largest eigenvalue of the generalized problem

A+ AT

(ATA+6I)z =)\ z, Vz. (26)

The largest eigenvalue of this problem is again positive. The two conditions
af=06, a+p=o0(d)

yield the solution,

a= % [0(5) +/0(0)? —45] , B=

And now the result (21) becomes

[\DlP—‘

[ (8) — 0(5)2—45].

J
17l < 4/1 R [I7oll- (27)
It is interesting to observe that an eigenvalue A(J) of (26) is also an eigenvalue of (24)
for a different § namely for &' = A(§) x 6. In addition the corresponding ratios 6/c(d)
and §/0(8)? involved in the bounds (25) and (27) respectively are identical. Therefore,
the best bounds achieved in both cases are also the same, so we need only consider one
of the approaches, e.g., the second one.



Theorem 2.1 Let A be a positive definite matriz and for any w > 0, let y(w) be the

largest generalized eigenvalue of the pair

<ATA A+AT>
+ wl, 5 .

Define Ymin to be the minimum of y(w) over w > 0. Then,

- 4
17l < 4 /1= —— lIroll-

min

(28)

(29)

Proof. The proof is essentially based on a change of notation. Dividing both sides of

(26) by w = /4 yields the eigenvalue problem,

(ATA A+ AT

2

+wl> T =" x

with v = A/w. With this new notation (27) becomes,

- 4
17l < 4/1- ME I7oll-

The best convergence factor is provided when y(w) is minimized.

The form of the first matrix in the pair (28) suggests that y(w) is a function which
will decrease from oo as w = 0 then reaches a minimum associated with 7,,;, and then

increases again to infinity. This has been confirmed experimentally.
We illustrate the above results with two 15 x 15 matrices defined as

1 7
1

with n = 1 for the first test and n = 0.9 for the second. Figure 1 shows the results for
the first matrix and Figure 2 shows the results for the second matrix. In the figures,
the y-coordinates show the various estimates for the reduction factors ||7||/||rol|. EES1
and EES2 refer to (11) and (14) respectively. The curves labeled EX1 and EX2 refer to
the factors obtained from (25) and (27) respectively, as § varies. It can be seen that the

minima of the two curves are indeed the same.

2.2 Restarted Min-Res algorithms

A ‘restarted’ Min-Res iterative process is any iteration which has the following form,

ALGORITHM 2.1 Restarted Min-Res projection procedure
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Figure 1: Upper bounds for residual norm reductions obtained from inequalities (11)
(labeled EES1), (14) (labeled EES2), (25) (labeled EX1), and (27) (labeled EX2), for
first test matrix.
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Figure 2: Upper bounds for residual norm reductions obtained from inequalities (11)
(labeled EES1), (14) (labeled EES2), (25) (labeled EX1), and (27) (labeled EX2), for

second test matrix.
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Select xq and compute ry = b — Axy.
Until convergence Do:
Select a subspace S (S must contain r)
Compute I the minimizer of ||b — Az|| over o + S
If satisfied Stop.
Else set xg := T and compute 1o = b — Axg
EndDo

NS Gk b=

We begin by observing that by (6) and (4) the condition

|(Az, z)|
(z, )

guarantees convergence of any restarted iteration since the successive subspaces S are
assumed to contain the initial residual r,. In particular, a well-known convergence
result [2] is that if A is positive definite then a restarted Min-Res iterative process in
which each subspace S contains ry, converges for any intial guess xy. The set of
all Rayleigh quotients (Az,z)/(z,z) constitutes the field of values of A. The above
condition therefore states that if the field of values (a compact set) excludes the origin,
then the method converges. A weakened form of the converse is also true. Consider
the MR method which, at each restart, takes S = {r} where r now denotes the current
residual at restart. Assume that for this case each step of the projection process reduces
the initial residual by a constant 0 < 7 < 1, and this for an arbitrary initial residual.
This means that

>c>0, Vz

sin/(r,Ar) <71, Vr

or
cos/(r,Ar) >V1—72, Vr

which implies that

(Ar,r)| _ [(Ar,7)] 7]
= X >V1-172.
[A7{[ll=l ]2 | Ar]]

A result is that the Rayleigh quotients must be bounded from below because

[(Ar,7)| S ||A7°||m > o1 — 12

[

where 0,,i, is the smallest singular value of A. This establishes the following result.

Theorem 2.2 Assume that the field of values of A excludes the origin. Then, each step
of a restarted Min-Res projection procedure (in which the subspaces S contain the initial
residuals), reduces the residual norm by a factor < 7 < 1. Conversely, if each step of
the MR (i.e., GMRES(1)) algorithm reduces the residual norm by a factor < 1 < 1, for
any initial residual, then the field of values of A excludes the origin.

12



Sufficient conditions to guarantee that the field of values excludes the origin are
difficult to obtain. One such condition is given by Lemma 2.1. Another case of interest
is provided by the following corollary.

Corollary 2.1 Assume that there is a scalar o for which,
|A—ol||=9§ (30)

with
§ < |ol. (31)

Then the assumptions of Lemma 2.1 are satisfied with
a=0c+4+6, [B=0c-—0.

Proof. Consider the inner product in the left-hand side of (17) for «, f as defined
above. For any unit vector x,

(A= ol) = 61)z, (A — oI) + 61)z) = ||(A — oD)a||? — 62 < 8% — 5% = 0.

The assumption ¢ < |o|, implies that the scalars a, 3 have the same sign. [ |
The assumptions (30)-(31) imply that, for any unit vector z,

|(A—oDz|*> -0 <0

This gives, (Azx, Az) — 20(Az,x) <0, Vz, or, setting z = Az,

(2,2) —20(A7'2,2) <0, Vz, (32)
which yields,
-1
JATz2) S
(2, 2) 2

In particular, when o is positive then A~! must be positive definite and the smallest
eigenvalue of (A~! + A=) /2 should be larger than 1/(20). Similarly when o is negative,
A must be negative definite and the largest eigenvalue of (A~ + A=) /2 must be less
than 1/(20).

It was proved in Lemma (2.1) that the condition (17) implies that A is positive
definite or negative definite. As is now shown it is actually mathematically equivalent,
and it is also equivalent to the conditions of the previous corollary.

Proposition 2.2 The following three conditions are mathematically equivalent:
(i) There exists a scalar o such that (30) and (31) are satisfied;
(ii) There exist two scalars o and [ of the same sign such that (17) is satisfied;

(iii) The matriz A is either positive definite or negative definite.

13



Proof. The result will be proved in the form (i) — (ii) — (iii) — (i) The part (i)—
(ii) has been proved as Corollary 2.1. The part (ii)— (iii) is part of Lemma 2.1.
It remains to show (iii)— (i). Assume first that A is positive definite. Then (32) is

satisfied when . )
> = .
7= 2min,4o(A12,2)/(2,2)  2u(A1)
Setting z = Az, (32) becomes (Azx, Az) — 20(Az,z) < 0 for all z and this shows that
(A — ol)z||*> — 0?(x,z) < 0 for all z, or equivalently that 6 = ||[A — oI|| < o. This
establishes (30) and (31) in the positive definite case. The negative definite case can be
established similarly (or by using the result just proved for the matrix —A).

[ |
Therorem 2.2 suggests that residual bounds that show convergence must make the as-
sumption that A is not indefinite. It is not known whether residual bounds which estab-
lish convergence for any initial residual can bypass the positive (or negative) definiteness
assumption.

In summary, the simplest convergence bounds based on the angle relation (4) can
be obtained by selecting s to be the residual vector. In the SPD case, these bounds are
similar to those obtained for the steepest descent algorithm, and one of them is identical.
They are not sharp in general but they do establish the convergence of restarted minimal
residual methods under the condition that A is positive definite.

3 Krylov subspaces

We now return to the general situation of (4) and consider the case when S is the Krylov
subspace K,, of dimension m,

K,, = span{ry, Arg, ..., A" 'ry}.
Thus, a generic vector of K,, is of the form
q(A)ro

where ¢ is a polynomial of degree m — 1. For any such polynomial, we have

|(ro, Aq(A)ro)|
cos /(ro, AKy,) > .
" ol Ag(A)roll
In the ideal situation when g(A)ro = A='rq then Ag(A)ry = ro which gives a zero angle
and a zero residual. However, obtaining residual bounds by using this relationship is
rather complex. A few instances are considered starting with the case when the subspace
S contains a nearly invariant subspace.

(33)

3.1 Nearly invariant subspaces

A subspace W is e—invariant if there exists an orthonormal basis U = [u4, ..., up] of W
such that
AU = (U + E)G

14



with ||E|| < e. It is not difficult to see that ¢ does not depend on the basis used in
the definition. Krylov subspaces of large enough dimension m will generally contain
e-invariant subspaces, with a small e.

Theorem 3.1 Assume that K contains an e-invariant subspace W and let ¢ = cos /(ro, W).
Then,

CcC—¢€

cos /(ro, AKy,) >

“1+e€ (34)

Proof. Consider any u in W and write it in the form v = Uy where U is an orthonormal
basis of W. Note that AUy = (U + E)Gy giving,

(Au, 7o) = (AUy,10) = (U + E)Gy,r0) = (Gy,U"ro) + (EGy, 70)-

Since A is nonsingular and U is of full rank, then G is nonsingular. We can therefore
select y so that Gy = U"ry, and for the associated vector u = Uy we get

(Au,ro) — |lUProl> + (EU"ro,70)
[Aul[ [[roll (U + E)Gyl| |7l
NUHro||? + (UHry, E¥ry)
|UUHrg + EUHro|| ||rol|
JU ro||* = U rol| [|E™ 7ol
— (lUUHEr|| + [|[EUHr|[) 7ol

Since U is unitary we have |[UUHry|| = |[UHrq||. Also, observe that ||[UHrq||/||ro| = c.
Dividing numerator and denominator by ||ro||? we obtain,

(Au, 1) > —ce c—e
lAul| [|rol] = c+ce  1+e€

This yields the desired result since cos / (19, AK) is the maximum of | (Au, ro)|/[|| Au||||70]|]
over vectors u in K. [ |

Thus, when K contains a subspace W which is exactly invariant (e = 0) then the
reduction in residual norm is at least sin(ry, W), regardless of the properties of A (such
as indefiniteness). This is to be expected. Another consequence of interest is that it
is possible to guarantee global convergence by requiring the existence of an e-invariant
subspace which makes a sufficiently small angle with r. Specifically, if there is a constant
7 such that K, always contains an e-invariant subspace such that

c=cos(ro, W) > e+ 1 +er (35)

then (34) yields,
cos /(ro, AK,,) > .

This interesting ‘global convergence’ result does not assume definiteness. However, the
assumption that there is an invariant subspace in K, which makes a sufficiently small
angle with rq is difficult to verify in practice.
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Recently, a number of researchers have considered methods in which a Krylov sub-
space is augmented by a nearly invariant subspace W, in order to enhance convergence,
see e.g., [1, 14, 9] and the references therein. The above result shows that one should
seek to include at each restart an e-invariant subspace which has sufficient accuracy
and whose angle with r¢ is small enough that the relation (35) is satisfied. In methods
proposed so far, the nearly invariant subspaces added are simply those related to eigen-
values close to zero as approximated by subspaces obtained in earlier steps. There are
indeed reasons to believe that this is the part of the spectrum where Min-Res methods
have difficulties in reducing eigen-components.

3.2 Bounds derived from Chebyshev polynomials

The usual error bounds used to analyze the GMRES algorithm in the nonsymmetric
case, depend on the condition number of the matrix of eigenvectors. In establishing
these results A is assumed to be diagonalizable (A = XDX '). By the optimality of
the approximate solution, it can be said that z,, = zq + $,,(A)ry where s minimizes the
residual norm ||b— Az|| = ||b— A(zo+ s(A)ro)|| over all polynomials s of degree < m —1.
The residual vector for each polynomial s is

r=7Ty— AS(A)T() = [I - AS(A)]TO = p(A)T()

and by the optimality property, the polynomial p minimizes ||p(A)r|| over all polyno-
mials of degree < m which are ‘consistent’ polynomials, i.e. such that p(0) = 1. Then,
a certain consistent polynomial p is selected to be small on the spectrum of A, and the
following argument is used,

Il < llp(A)roll = [[P(X DX )rol| = | Xp(D)X ro]| < £2(X) [Ip(D)]] |I7oll-

Except when A is normal, the condition number of X can be very large and the above
bound can become poor. The alternative discussed next uses information that is com-
putable, and it avoids the condition number of X, leading to a tighter inequality. It
is based on a comparison result with a matrix-vector power sequence of the form B*v
where B is a matrix whose spectral radius is known and small. The growth of ||B*v||
as k tends to infinity is (generally) of the form (p(B) + €;)*, where p(B) is the spectral
radius of B and ¢, is a sequence which converges to zero as k — oo.
Assume that we can find two scalars o and [ > 1 such that the eigenvalues of the
shifted and scaled matrix
A=pI—aA (36)

are contained in the ellipse centered at the origin and with focal distance one. Then a
good polynomial to use is

tm(A) = Tn(BI — @A) /Trn(B) = Trn(A) /T (B)]

and the usual bound derived from using this polynomial is

17l < lltm (A)rol|-
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Note that the polynomials ¢,, satisfy the consistency condition ¢,,(0) = 1. A consequence
of the three-term recurrence relation of Chebyshev polynomials

m+1(A) m(A) - Tm—l(A)am > 1, TI(A) = Aa TO(A) =1,

is that

Then, we have the relations,

<0m+1tm+1(A)7'0) _ (T +1( 2T0> _ B( TmEAZT()O) - ...:Bm+1( o )

Omtm(A)ro To1(A)r Arg
As a result, letting
w= ()
0= A’I"()
we obtain
VOZsllrme |2 + 02 lrml2 < 1B | (38)

We can now state the following result.

Theorem 3.2 Assume that an ellipse E(c, d, a) with center ¢, focal distance d and major
semi-azis a can be found which includes the spectrum of A with at least one eigenvalue
on the boundary. Let A = BI — aA with o = 1/d and f = ¢/d, and B defined by (37).
Then the residual vector r,,11 obtained from a Minimal Residual method using a Krylov
subspace of dimension m + 1 satisfies the inequality,

1B™ g |

||Tm+1|| = \/IEH_1 /d I T2 (C/d) (39)

where wqy 1s the 2n vector consisting of the subvectors ry and Ary. The spectral radius
of the matrix B is given by
a

2
B) =2 (—) ~1 40
o) =2 +/(5 (40)

and in particular when a = d (real spectrum) then p(B) = 1.

Proof. Inequality (39) follows immediately from (38) and the inequality ||rm,.1] <
||rm||- The scalars «, 8 as given above transform the ellipse F(c, d, a) into an ellipse cen-
tered at the origin and with focal distance unity. The major semi-axis of the transformed

ellipse is then given by
. a
a = —

7
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The eigenvalues of B are
1 /. -
e = 5 ()\i +y/hz - 1)

where each \; = § — .\, is an eigenvalue of A. It is well-known [13] that the \’s are
transformed from the #’s by means of the Joukowsky transform

“ 1
)\ == 5(0+ 9_1)

which maps a circle of radius r centered at the origin into an ellipse centered at the origin,
with focal distance 1, and major semi-axis @ = (r + r~')/2. Each point on the ellipse
is mapped from a point of the circle, so an eigenvalue on the ellipse is transformed into
an eigenvalue of equal modulus 7. All eigenvalues inside the ellipse will be transformed
into points inside the circle. Therefore the spectral radius of B is the radius of the
circle associated with the eigenvalue (s) on the ellipse. This radius can be obtained from
transforming the major semi-axis a with the inverse function z + /22 — 1 and this gives

a a\?
p(B):CAL-FV&Q—l:a-F (E) — 1.
This completes the proof. [ |
The scalars d and c are typically selected in a certain optimal way, to make the ratio

c/d as large as possible. A weakened version of this inequality is obtained by exploiting
the inequality ||B™wyl|| < ||B™||||wo|| and the well-known result [8, 13, 5]:

lim [|B*]|"/* = p(B)

k—00

from which it follows immediately that
IB*|| = (p(B) + )"

where €, = || B¥||'/* — p(B), converges to zero as k converges to infinity. This gives,

B ||lw o(B) + €)™

T2,(8) + T2(8) /T2 (B) + T2(B)

However, there are disadvantages in using the upper bound given above since the norm
of Bfwy can be very poorly estimated by ||B¥||||w|| when B is highly non-normal.

The main difference between the inequality of the above theorem and the classical
ones, such as the inequality (1), is that it does not involve the condition number of
the matrix of eigenvectors. In contrast, it provides only a comparison result with a
sequence which captures the effects of nonnormality without trying to model them. As
is shown by the experiments, attempts to model these effects, e.g. as in (1) or (41)
may lead to bounds that are too loose to be of any interest. The rationale of the above
theorem is that the usual tools provided by norms and spectral analysis are insufficient
for analyzing the behavior of certain iterative processes. The condition number of X in
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(1) is not only unavailable in practice (for large matrices) but it may also lead to results
that are too pessimistic. The bound (39) involves a sequence which is also unavailable a-
priori, but which is more easily computable than the constant xo(X). All that is required
is to get some understanding on the predicted behavior of this sequence in particular
situations. Though the spectral norm of B which is given by (40) gives an idea of the
asymptotic behavior of this sequence, the transient behavior is not easily modeled in the
case of highly non-normal matrices and it is better not to attempt to capture it with an
estimate based on norms.

In the case when all eigenvalues of A are real then a = d and the term in brackets
in the numerator of (41) becomes 1+ €,,41. In addition, ¢; = 0 when B is normal. As it
turns out B is normal if and only if the matrix A is skew-Hermitian:

BEB _ R — <2AH I) (221 _1)_(2;1 _I)( o AH I)

-1 0)\T1 0 0\ -1 0

_ (4AHAA+1 —2AH> (4AAH+I 2A>
—24

_(ATA—AAT LA+ A

- (-%(AJFAH) 0 >

Unfortunately, when A (or A) is normal but not skew-Hermitian, B is not normal
in general. Because the non-Hermitian matrix B is used to derive the bounds (39) and
(41), a natural question is whether or not the resulting estimates will be weaker than
those provided by the classical inequality (1). The answer is that the two inequality are
very close to one another in this case, as one should expect. Recall that

B _( m+2()7)n )

We have R X
| T (A)rol| < | T (A)]] 7ol

and when A is normal then,
ITn(A) = max [T,(0)] = max U — 7, a/d).

Hence,

1B™wo|| < \/T2.11(a/d) + T2 (a/d)[ro-
leading to the inequality,

VT2 (a/d) + T2(a/d)
VT2 (c/d) + T2(c/d)

which, for large m, is indeed very close to (1) with ko(X) = 1.

[I7o]l-

1Pmall <
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3.3 Bounds from the Arnoldi matrix H,,

It is possible to also analyze the behavior of Min-Res methods from some a-posteriori
information extracted from the process, such as the eigenvalue or singular value estimates
obtained from the projection matrix. We distinguish again between basic bounds and
bounds that attempt to mimic the optimality of the residual polynomials.

3.3.1 Basic results

The basic relation which arises from the Arnoldi algorithm is the following

Here, the column-vectors of V,,, are the Arnoldi vectors obtained from a Gram-Schmidt
orthogonalization starting with v; = r9/8 in which each new vector is the product of
the current basis vector v; by A.

Therefore,

|(AViny, v1)|

cos /(rg, AK,,) = max —————
o Akn) = AV,

R (LA AR

Y |Vins1 Hiy |

|(Hmya VH+1U1)‘

= max UL
Y Vi1 Hmy|
|([:[myael)|
= max ———— (43)
v [[Huyll

Thus, the cosine of the angle between rq and AK,, is equal to the maximum cosine
of angles spanned between an arbitrary linear combinations of columns of H,, and the
vector e;. By selecting various test vectors y we can get bounds on the cosine. For
example, taking y = e; gives the simple bound,

b1
Vhs + hi

We have already seen this lower bound in a different form. Indeed,

cos /(ro, AKy) >

\h11| |(AU1,U1)|

Jha R (A

and since vy = ro/||ro||, this gives

|(ro, Aro)|
cos /(ro, AKy,) > ———=-
7ol Aroll

which is identical with (6).
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This can be extended by taking, similarly, y = e; to obtain:
|7
\/h R

Note that the right-hand side is also equal to |(Av;, v1)|/||Av;|| which represents the
cosine of the angle between Av; and ry. A consequence of the above inequality is that

cos /(ro, AK )

B
cos /(rg, AK ;) > jInax [Py

= (44)
b \/h -+ hi

which is a readily computable quantity.
Another natural way to select a test vector y is to rewrite (43) as

(y, Hlte)
12

and attempt to make the numerator as large as possible modulo a scaling of y. This
gives the choice y = H,f{ e1 which results in

cos /(ro, AK,,) = max

(Hyey, Hije)| _ [Hgeil?

cos /(ro, AK,,) > LA =M
(ro, AKw) 2 g e~ [ HoHler]

(45)

If we denote the elements of the matrix H,, HZ by s;;, then the right-hand side is equal

to
S11

2 2 ’
811+ - T Smp1n

The above inequality can be extended using other columns y = H/7e; and then sharpened
by taking the maximum over j to yield a bound similar to (44) but based on the s;;’s.
Let now 0,,;, and 0,,,; be the smallest and largest singular values of H,,. Then,
relation (45) yields,
o2 (Hpy) 1

05 £(ro, ARm) > 5 S = (46)

max

A rather interesting consequence of this is the following corollary.

Proposition 3.1 Assume that GMRES(m), the restarted GMRES algorithm using Krylov
subspaces of dimension m, is used to solve a nonsingular system and that at each restart
the condition number ko( H,y,) is bounded from below by a constant 7. Then the algorithm
will converge.

Note that the proposition utilizes information on the projected problem which is not
available beforehand.

We now show how to adapt the results of Section 2.1 to Krylov subspaces. The result
of Proposition 2.1 would still be valid if we replace the condition (17) on «, # of Lemma
2.1 by a similar condition which must be satisfied for all  in K, instead of all  in R".

21



The reason is that ry belongs to K,,. Then, writing an arbitrary vector z in K,, in the
form V,,y where the columns of V,, form the Arnoldi orthonormal basis of K,, we get
the condition that

(A—al)Vpy, (A= BI)Vyy) <0, Vy € R™

Denote by I,,, the (m + 1) X m identity matrix whose entries are equal to §;; and notice
that by (42) we have

((A - O!])me, (A - ﬁ])vmy) = (Vm+1Hmy - avmya Vm-l—lﬁmy - /vay)
= (Vm+1(Hmy - aImy)a Vm—H (Hmy - ﬂlmy))
= (Hmy - almy, Hmy - ﬁ]my)

Then, the requirement that (17) be valid in K, translates into the condition,
(Humy — oIy, Hny — flwy) <0, Yy € R™. (47)

Denoting by H,, the m x m matrix obtained from H,, by deleting its last row, an
expansion of (47) yields,

H,+H!
#y,y> +af(y,y) <0, Vy.

(B (a9
This means that a result similar to that Theorem 2.1 can be shown. The requirement
is now that H,, be positive definite, instead of A. We state this result without proof.

Theorem 3.3 Let H,, and H,, be the (m + 1) x m and m x m Hessenberg matrices
obtained from m Arnoldi steps applied to a matriz A and assume that H,, is positive
definite. For any w > 0, let Y(w) be the largest generalized eigenvalue of the pair
HTH,, H,+HT
( wfm o1, g) . (48)
w 2

Define Ypmin to be the minimum of ¥(w) over w > 0. Then,

N 4
17l < /1 = z2— lIroll- (49)

men

3.3.2 Chebyshev polynomials of the Hessenberg matrix

The relation (42) can be rewritten as
AVm - VmHm + hm+1,mvm+le%

where H,, is the leading m x m upper block of H,,. In Arnoldi’s method some of the
eigenvalues of A are approximated by eigenvalues of H,,. The question addressed in this
section is whether or not these approximations can be used instead of the exact ones in
an inequality such as (41). It is clear that we are free to select anything we want for «
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and § when defining A. In particular we can use those scalars that are associated with
an ellipse which encloses the spectrum of H,,. We will then get an inequality similar to
(41), except that all quantities defined will be related to the parameters of the optimal
ellipse for H,, instead of A. Specifically, we can state the following result which is a
straightforward consequence of Theorem 3.2.

Corollary 3.1 Assume that an ellipse E(cp, dpm, ay) with center ¢y, focal distance dy,
and major semi-aris a,, can be found which includes the spectrum of H,,. Let A, =
Bmd — amA with oy, = 1/dy, and B = ¢m/dm, and By, defined by (37) in which A s
replaced by A,,. Then the residual vector r,, obtained from a Minimal Residual method
using a Krylov subspace of dimension m satisfies the inequality,

1B womll

Tmll <
|72l \/T%(cm/dm)+T%,1(cm/dm)

(50)

where wo m, 15 the 2n vector consisting of the subvectors ro and A,,ry.

One difficulty with the above inequality is that we do not know if the vector B wq
can be very large since the ellipse enclosing the eigenvalues of H,,, may potentially miss
eigenvalues of A which could cause the Chebyshev polynomials T,,(A,,)re to be very
large. The spectral radius of B is provided in Theorem 3.2 to show that the asymptotic
growth of the numerator in (39) is slower than that of the denominator. This spectral
radius is equal to one when the eigenvalues are real and should be close to one in other
situations. In fact, as is shown next, the term in the numerator of (50) also grows more
slowly than the denominator. Its growth s actually governed by the eigenvalues of H,,,
not those of A, i.e., they act as a power sequence associated with matrix with spectral

radius am/dm 4+ \/ (@m/dm)* — 1. We start by recalling the following result.

Lemma 3.1 Let A be any matrix and V,,, H,, the results of m steps of the Arnoldi
or Lanczos method applied to A. Then for any polynomial p; of degree j < m — 1 the
following equality holds

pj(A)vl = Vmpj(Hm)el- (51)

For a proof see, e.g., [12, 13]. Since the residual polynomial is of degree m, it is convenient
to extend this result to polynomials of degree < m. For this we need to define for an
arbitrary scalar 7 the square matrix obtained by appending a column of zeros except in
the diagonal position (m + 1,m + 1) where the value 7 is inserted. In other words,

Hy = (Hpy Temy ) - (52)
Then the desired extension of the above lemma can be stated.

Lemma 3.2 For any polynomial py of degree k > 1, we have

oy pk(Hm) 0
Pe(Hy) = (e%Qk—l(Hm) pk(T)) (53)
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in which q_1 s a certain polynomial of degree k — 1. As a result, for 1 <k <m —1,

pr(Hy)er = (pk(}(j)m)el) (54)
and for 1 < k <m,
pr(A)vy = Vm+1pk(H2)€1- (55)

Proof. To prove the first part it is sufficient to establish the result for the particular
polynomials pg(t) = t*. The proof is by induction and is straightforward. The relation
(54) follows from (53) and the fact that the vector HYe; has nonzero components only
in locations 1,2,...,k+ 1. Finally, to prove (55) write the polynomial p;, of degree < m
in the form

pr(t) = n+tsp_1(t)
where si_; is of degree < m — 1. Then,
pr(A)vr = nup+ Asp_1(A)vy
nuy + AVysk 1 (Hpm)er
= Vi [7761 + EmSk—1(Hm)€1]

= Vit lﬂel + [y Tem] <Sk_1(Hm)el>]

0
= Vs [0 4+ Hy s—1(Hpy)] en
= Virpk(H,))e

The result we sought now follows immediately. Its goal is to essentially relate the
vector sequence B™wy,, which appears in (50) with a similar vector sequence which is
obtained from HZ. This latter sequence is then easier to analyze.

Lemma 3.3 Assume that an ellipse E(cp,, dm, ) with center c,,, focal distance d,, and
major semi-axis a,, can be found which includes the spectrum of H,, with at least one
eigenvalue on the boundary. For any 7 € E(cpm,dm,an) define the matrices

Hyo = Bl — amHS  and  Hy, = (27’” —01 ) (56)
with oy, = 1/dy, and By, = ¢m/dm. Then the following equality holds,
1B womll = [|Homzmll (57)

where 2y, is the 2(m + 1)-dimensional vector consisting of the subvectors ||ro|ler and
H,.(||rolle1). The spectral radius of the matriz H.,, is given by

am

) = 22 ) (22) -1 (59)

and in particular when am, = dpy, (spectrum of H,, is real) then p(Hy,) = 1.
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Proof. By definition,
B wom = ( Ton (Ao ) . Hpyzm = ( Ton(Hn)ex ) :

For the previous lemma

~

Tm(Am)To = Vm-i—le(Hm) ||TO||€1

and similarly for Tm_l(fim)ro. Thus the equality (57) follows immediately. It remains
to determine the spectral radius of #,,. The result is similar to that of Theorem 3.2.
However, the matrix H, has the extra eigenvalue 7 in addition to the eigenvalues of H,,.
Since by assumption 7 belong to the ellipse enclosing the spectrum of H,,, this ellipse
also contains all the eigenvalues of HY, with at least one on the boundary. [ |

Incidentally, it is interesting to note that the residual polynomial is of degree m and
as a result the GMRES polynomial minimizes the norm of p(H_)e; over all polynomials
of degree < m such that p(0) = 1. The result of Corollary 3.1 replaces the GMRES
polynomial in this minimization by a Chebyshev polynomial to provide an upper bounds.

4 Numerical Examples

The behavior of the various Chebyshev bounds is now illustrated on two simple examples.
We consider an upper triangular matrix of size n = 50, with diagonal entries

CijZ 1/_]]:1,,TL

and non-diagonal elements are equal to a constant —~. This matrix can become highly
non-normal (ill-conditioned set of eigenvectors) even for moderate values of . For
v = 0.1 the condition number of the matrix of eigenvectors exceeds 10*°. This can easily
seen by computing the eigenvectors explicitly. We tested three cases and performed all
experiments in Matlab. First, we took v = 0.001 and n = 50 which produces a moderate
condition number of k(X ) =~ 8.8 for the matrix of eigenvectors. The other two examples
used a matrix of the same size n = 50 but v = 0.005 leading to k2(X) ~ 3.6 x 10* and
then v = 0.01 leading to k2(X) ~ 6.8 x 107. The initial residual is selected to be a
random vector. A comparison of the residual norms produced by the (full) GMRES
algorithm and three upper bounds is shown in Figures 3, 4, and 5 for these three tests.

Our second set of test matrices used arises from the centered difference discretization
of convection-diffusion operators. Specifically, we selected A in the form

B -I 4 6
-1 B -I 5, 4 6.
A= with B = S
-1 B 5, 4
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gamma=0.001; Cond(X) = 8.7956

Res norm & estimates
|
w
T

Figure 3: Actual GMRES residuals (+) and a comparison with the classical bound given
by (1) (), the vector power bound (39) (solid line), and the matrix power bound (41)

(dotted line).
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gamma=0.005; Cond(X) = 3.5786e+04
6 T T

oL , x%..  Class. |

Res norm & estimates

Step number

Figure 4: Actual GMRES residuals (+) and a comparison with the classical bound given
by (1) (), the vector power bound (39) (solid line), and the matrix power bound (41)
(dotted line).
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gamma=0.01; Cond(X) = 6.7653e+07
10 ‘ T

Res norm & estimates

Step number

Figure 5: Actual GMRES residuals (+) and a comparison with the classical bound given
by (1) (), the vector power bound (39) (solid line), and the matrix power bound (41)
(dotted line).
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Conv. Diff. matrix; n=200; cond(X)=3.2434e+03
7 T T T T T

+
+ -
*+++# :

Res norm & estimates
N

Class.
ot Power-v
+ — — —+Act. Res. X
Y}
) x P—Power-v \* 7
* +
_2 - +\+\ .
+*
SN

-3 | | | | | | | r
0 5 10 15 20 25 30 35 40

Steps

Figure 6: Actual GMRES residuals (‘Act. Res.”) and a comparison with the classical
bound (‘Class.’) given by (1), the vector power bound (‘Power-v’) given by (39), and
the projected version (‘P-Power-v’) given by (50).

with
0oy =—14+7v, od_=-1-—1.

For 0 < v < 1 the eigenvalues of A are real. We generated a matrix of size 200 by taking
a 20 x 10 grid, leading to a matrix B of size 20 and a block size of 10. The parameter
was taken equal to 0.4 and this yields a condition number of about 3,243 for the matrix
of eigenvectors. The plot shown in Figure 6 illustrates the behavior of the inequalities
shown earlier. The matrix power bound was omitted from this experiment but results
with the projected version (50) of the vector power bound are shown. Because of the
similarity of the two bounds, one should expect them to behave similarly. In fact in
many of our examples the projected and non-projected bounds were so close as to be
hard to distinguish.

5 Conclusion

The error bounds which are used to analyze the behavior of Krylov subspace methods
in the non-Hermitian case are often too pessimistic and utilize information that is not
readily available. We have shown a number of such bounds and a few variants. In
general, any attempt to model the behavior of iterates in the highly non-normal case,
will lead to poor estimates. One of the main reasons for this is that the tools available for
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modeling simple matrix-polynomial behavior are not accurate in the highly non-normal
case, i.e., lower bounds obtained by using these tools are typically too loose. One possible
solution advocated in some of the results in this paper is to exploit comparisons with
sequences of the form B*v where B is a matrix whose spectral radius is known. In
this way, the asymptotic behavior is understood, as in the classical bounds, but the
intermediate upper bounds are not too pessimistic. The use of such bounds has been
demonstrated in a few examples, indicating that they are fairly accurate at the initial
stages of the process before the super-linear behavior of GMRES sets in.
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