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Abstract

The Davidson method is a popular preconditioned variant of the Arnoldi method for solv-
ing large eigenvalue problems. For theoretical, as well as practical reasons the two methods
are often used with restarting. Frequently, information is saved through approximated eigen-
vectors to compensate for the convergence impairment caused by restarting. We call this
scheme of retaining more eigenvectors than needed ‘thick restarting’, and prove that thick
restarted, non-preconditioned Davidson is equivalent to the implicitly restarted Arnoldi. We
also establish a relation between thick restarted Davidson, and a Davidson method applied
on a deflated system. The theory is used to address the question of which and how many
eigenvectors to retain and motivates the development of a dynamic thick restarting scheme
for the symmetric case, which can be used in both Davidson and implicit restarted Arnoldi.
Several experiments demonstrate the efficiency and robustness of the scheme.
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1 Introduction

The computation of a few eigenpairs of large, sparse, eigenvalue problems Az = Az, is central
to many scientific applications [19]. The Arnoldi method, and its equivalent in the symmetric
case the Lanczos method, have been the traditional approach to solving these problems. Pre-
conditioning, through some shift-and-invert technique [22], is frequently employed to improve
robustness. A different approach is followed by the Generalized Davidson (GD) method [8, 16, 6]
which is a popular preconditioned variant of the Lanczos iteration. Instead of using a three-term
recurrence to build an orthonormal basis for the Krylov subspace, the GD algorithm obtains the
next basis vector by explicitly orthogonalizing the preconditioned residual (M — XI)~*(A—AI)z
against the existing basis. A straightforward extension to the nonsymmetric case has also been
studied in [21]. When M = A, the preconditioned residual yields back z, thus providing no im-
provement. The Jacobi-Davidson (JD) modification, proposed in [23], suggests that the proper
way to precondition the residual is through an operator with range orthogonal to z. The GD
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and its JD modification can be regarded as two ways of improving convergence and robustness
at the expense of a more complicated step.

Often, eigenvalue problems are very large and ill-conditioned. As a result, eigenvalue meth-
ods require a large number of steps, and need to save all the vector iterates for extracting the
eigenvectors. Such cases exhibit overwhelming storage requirements. In addition, the Lanczos
and Arnoldi processes, which traditionally had been considered without restarting, are plagued
by orthogonality problems and spurious solutions. For the above reasons many restarting vari-
ants are used in practice [7, 18, 24, 2]. The GD method improves convergence, and solves some
of the aforementioned problems through orthogonalization and preconditioning. However, the
number of iterations can still grow very large, and cause similar storage problems. The problem
is actually aggravated in the symmetric case, where the better theoretical framework and soft-
ware has led researchers to consider matrices of huge size that allow only a few vectors to be
stored. The GD method also can be restarted every time the basis contains m vectors (GD(m)).
If the [ lowest eigenvalues are needed, the [ lowest Ritz values are computed at the my, step,
and their corresponding Ritz vectors are used as initial guesses for the restarted GD iteration.

Truncating the Krylov sequence is expected to impair the convergence rate of the method.
There are two main reasons: the new vectors entering the basis repeat some of the information
that was discarded when restarting, and the Rayleigh-Ritz procedure does not minimize over
the whole Krylov subspace. There has been much discussion about the problems caused by
restarted methods for both linear systems and eigenvalue problems [27, 20, 24]. Some methods
tend to save additional information at each restart [14, 3, 11]. For the Davidson method, Murray
et al. [17], and Van Lenthe et al. [29], have proposed restarting with two vectors per required
Ritz vector with some success. In an effort to minimize execution time, Crouzeix et al. [6], have
proposed a dynamically chosen size m.

Recently, ‘implicit restarting’ has gained popularity as a means of improving convergence of
the restarted Arnoldi procedure [24]. By using p = m — k steps of the implicit QR algorithm on
the Hessenberg matrix, the basis is truncated down to k vectors. It turns out that the k new basis
vectors can be considered the Arnoldi vectors obtained from a polynomially transformed starting
vector. This is the basis of the popular eigenvalue package ARPACK [13]. Preconditioners for
eigenvalue problems usually vary between steps, in which case the Implicitly Restarted Arnoldi
(IRA(k,m)) is not straightforward to apply. Further, in case of the GD(m) where the residual
is preconditioned, the Ritz vectors can not be described with a polynomial of A. Clearly, a new
restarting scheme is needed.

In this paper, we study an extension to the IRA(k,m) technique for the GD(m), which we
call ‘thick restarting’ and denote by GD(k, m), and which depends on an integer parameter k.
GD(k,m) restarts with k Ritz vectors instead of the [ wanted ones, where | < k < m. The
principle idea is mentioned by Kosugi in [11], Sleijpen et al. in [23] and Morgan in [15]. In
the literature, the benefits of IRA(k,m) are studied in relation to the polynomially transformed
initial vector. This paper addresses the question of which and how many Ritz vectors should be
kept. The theory presented motivates a dynamic strategy of thick restarting, that can be used in
both IRA(k, m) and GD(k, m). Although the results are proved for the non-preconditioned case,
the idea of thick restarting is readily applicable to the preconditioned GD(k,m) and similar be-
havior is expected. Compared with IRA(k, m), GD(k, m) can also assume any number of initial
guesses, and/or enhancements of the basis through arbitrary vectors, during the procedure.

After briefly presenting the IRA(k, m) and GD(k, m) algorithms in section 2, in section 3 we
prove as an extension to [15] that in the absence of preconditioning, and for arbitrary targeting



scheme of GD(k,m), the IRA(k,m) using the Ritz-values as shifts, and GD(k,m) are equivalent,
in the sense that their basis vectors span exactly the same space. In section 4 a theorem is
proved that relates the IRA(k,m), and thus GD(k,m), with an Arnoldi process applied on an
approximately deflated initial vector. This extends the ideas that appeared recently in [28]. In
section 5, a dynamic choice of k is derived for the symmetric case, where the rate of convergence
is described by well-known bounds. In section 6, numerical experiments on matrices from the
Harwell Boeing collection demonstrate the effectiveness of GD(k, m).

2 The restarted Arnoldi and Davidson methods

Throughout this paper we assume that the matrix A is diagonalizable, of order N, with eigenpairs

(Ai,zi). We look for I outermost eigenpairs (e.g., lowest or highest in the symmetric case).

The Arnoldi and Davidson methods use a basis size of m > [. The following descriptions of

the algorithms serve for establishing the notation. For theoretical and implementation details

refer to [24, 13, 8, 16, 6, 23]. For all quantities, the superscripts in parentheses denote the

corresponding restarting step. These superscripts are dropped whenever there is no ambiguity.
Restarted Arnoldi’s method in its simplest form can be expressed as follows:

ALGORITHM 2.1 Restarted Arnoldi

0. Start: Choose initial unit vector v(®

1. For s=0,1,... Do
v = 1)(3), V'l(s) — {Ul}
Forj=1,...,m Do
hij = (Afui,vj),_ i=1,...,7,
wj = Av; — 3I_) hijv;
hjt1,5 = llwjll2, if hjt1,5 =0 stop.
vjt1 = wi/hjt1
Enddo
Compute the wanted eigenpairs (p(s),ygs)) of Hr(,f) - (hi,j)

i
and the Ritz vectors xgs) = Vn(f)ygs), where V7$f) ={v1,...,vm}

10. oGt = Eciwz(-s), for some ¢;, and the wanted mz(-s)
11. Enddo
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The algorithm builds a Hessenberg matrix, from which the approximate eigenpairs are extracted
through the Rayleigh-Ritz procedure. For the symmetric case, I—L({f) is a tridiagonal matrix, and
a three-term recurrence replaces the above orthogonalization step. A linear combination of the
wanted Ritz vectors are used to restart the algorithm. Such a restarting strategy however, may
discard a lot of information and result in degradation of the convergence rate.

Implicitly restarted Arnoldi applies the implicit QR algorithm with the m — [ unwanted
eigenvalues as shifts to the Hessenberg matrix, and uses the generated orthogonal transforma-
tions to truncate the basis down to [ vectors. Therefore, it avoids the need to restart with a
single vector which captures the information for all [ eigenvectors. The number of vectors in the
new basis after restart, may also be larger than [, say k. For the rest of the paper we assume
that | <k <m, p=m — k, and IRA(k,m) denotes the associated method. An outline of the
IRA(k, m) algorithm follows:



ALGORITHM 2.2 Implicitly Restarted Arnoldi

0. Start: Choose initial residual vector ’Ugo)
1. Build an initial Arnoldi iteration of k steps: (Vk(o),H,EO))
2. Fors=0,1,... Do

3. Test for convergence

Extend Vk(s) to k + p vectors, taking p more Arnoldi steps: (Vk(j_)p,H,g?p)
Choose shifts u;, 1=1,...,p

Hyyp = QTHIEQPQ, with Q) the orthogonal matriz obtained through
the implicit QR algorithm with p;,1 = 1,...,p shifts

7. Define Vk(s+1) = (Vk(j_)pQ) ( % ); and

s I
8. H{=(1 O)Hk+p<(;c)
9. FEnddo

S G

The power of the IRA(k,m) lies in the following two properties. First,
(s+1) () _ T (5)
S S S
Uy = (A’ = H(A — pil)vy”, (1)
i=1

for any choice of shifts y;, not limited to the exact shifts (Ritz values), and thus the new
Arnoldi iteration starts with a polynomially transformed initial vector. Second, the vectors

Uésﬂ),...,v,(csﬂ) can be considered the Arnoldi vectors of the Arnoldi process started with
v§5+1). Thus, no matrix vector multiplications are needed for the first & Arnoldi vectors. Among

various interpretations, IRA(k,m) can be considered a truncation of the QR algorithm for
dense matrices, as well as an efficient and robust implementation of the subspace iteration with
polynomial transformations.

The Davidson method first appeared as a diagonally preconditioned version of the Lanczos
method for the symmetric eigenproblem. Extensions, to both general preconditioners and to
the nonsymmetric case have been given since. The following describes the algorithm for the
symmetric case. For the nonsymmetric case, line 5 should also include the computation of the

)

last row of the projection matrix Tj(s .
ALGORITHM 2.3 Generalized Davidson

0. Choose initial unit vectors Ul(o) = {ugo), e ,ul(o)}
1. Fors=0,1,... Do

w® =Aul® i=1,..1-1
Forj=1,...,m Do
w§-s) = Aul?.
tij = (w§-s§,u§-s)), 1=1,...,7, the last column of Tj(s)

Compute some wanted eigenpair, say (u1,21) of Tj(s).

T = U;S)zl and r = Ax1 — p111, the Ritz vector and its residual
Test ||r|| for convergence. If satisfied target a new vector.

Solve M(; jt =, for t.

© X RS G o



10. b, = MGS(UY, t)

j+1
11. Enddo

12.  Set UISHI) ={z1,...,x1}, k <m, and restart
13. Enddo

The preconditioning is performed by solving the equation at step 9. In [23] Sleijpen et al.
show that for stability, robustness, as well as efficiency, the operator M, ;) should have a range
orthogonal to z. The method is called Jacobi-Davidson (JD), and it solves approximately the
projected correction equation:

(I —z12) (A — i D)(I — z12]) t = (I — 2127 (1 I — A)zy.

The projections can be easily applied if an iterative linear solver is used. For preconditioners
which approximate A directly, such as incomplete factorizations and approximate inverses, the
above orthogonality condition is enforced through an equivalent formulation known as Olsen
method. Since the purpose of this paper is the study of restarting strategies, we use the general
description of GD, and the results are valid whether step 9 is performed through JD or otherwise.

A Davidson step is more expensive than that of the Lanczos and Arnoldi algorithms, to
allow for preconditioning. In addition, the Davidson algorithm can start with any number of
initial vectors, and include in the basis any extra information that can be available during
the execution. The targeted eigenpair (i.e., the one chosen for preconditioning) may vary in
different steps, allowing for a variable targeting scheme. Finally, it can restart with the ap-
proximate eigenvectors, so it does not share the problems of the original Restarted Arnoldi. As
in IRA(k,m), the Davidson method can also restart with more Ritz vectors than needed. We
call this version ’thick restarting’ and denote by GD(k, m), where [, k, and m are defined as in
IRA(k,m). In the following section, we show that IRA(k, m) and GD(k, m) are equivalent in the
non-preconditioned case, but GD(k, m) offers all the aforementioned advantages and extensions.

3 Thick and implicit restarting

It is known that the Lanczos and the Davidson methods are equivalent when no preconditioning
is used. However, this has been pointed out only for the non-restarted case, where one eigenvalue
is sought [16]. Recently, the equivalence of the IRA(k, m) with an Arnoldi method restarting
with a Ritz vector and augmented by k — 1 Ritz vectors has been shown [15]. In this section we
prove that in the non-preconditioned case, if GD(k, m) starts with one initial vector, IRA(k,m)
and GD(k,m) are equivalent, for any targeting scheme of GD(k,m).

The first Lemma is an extension of Lemma 3.10 in [24], and it is the basis for the equivalence
proof. Note that the implicit QR algorithm is applied to any diagonalizable matrix H.

Lemma 3.1 Let \(H) = {A1,..., A} U{p1,...,up} be a disjoint partition of the eigenvalue set
of a diagonalizable matriz H. Let QQ = Q1Q2 - -- Qp, where Q; is the orthogonal matriz implicitly
defined by the shift u; in the implicit QR algorithm on H. Then, the first k columns of Q) span
the same space as the k eigenvectors y; of H associated with the eigenvalues N\, i =1,... k.

Proof. After p steps of the implicit QR algorithm, it holds:

P

QR=Q1Q2-- QpRy--- RoRy = [[(H — i),

=1



where Q;R; is the QR decomposition of H; — p; at the iy, step, and R = (ry;) = Rp- -+ RoRy

denotes an upper triangular matrix. Since the shifts y;, ¢ = 1,...,p are eigenvalues of H, QR

is a rank k£ matrix, and if the decompositions are performed with traditional column pivoting,

r 70, 1=1,....,kand r;; =0, 1 = k+1,...,k + p. For Hessenberg matrices it is shown in

[24] that ¢; = Qe is in the span of {y1,...,yx}. Using a similar argument, if e; = Efif &5,
k p

QRe1 = qiri1 = Y & [T (N — ma)wy

j=1 =1l

. k
and ¢ € span{yi,...,yk - Inductively, let q1,...,¢qs € span{yi,...,yx}. Iif es41 = Zji‘f &s.iY5

s k p
QResi1 = rjor1dj + Tsitsi1dse1 = O Esy [T — 1)y,
j=1 j=1 =1
and since 7541541 # 0, ¢s+1 € span{yi,...,yg}. Since @ is orthogonal matrix, the first &k
columns of ) are independent and therefore span{qi,...,qx} = span{yi,...,yx}- O

In the special case where the matrix H is the Hessenberg matrix obtained from the Arnoldi
procedure, an immediate consequence is the following:

Lemma 3.2 If at step s the basis vectors Uéf) and Vn(f) of GD(k, m) and IRA(k,m) respectively,
span the same space, then, after restarting both methods,

span(Vk(sH)) = span(U,gsH)).
Proof. From the assumption, the Ritz vectors are the same for both methods at the end
of the s-th step, and after restarting, UIESH) contains the k chosen ones, say Xj. If Q(1: k) are
the first k£ columns of the orthogonal matrix of Lemma 3.1, we have: V,C(SH) = VT%S)Q(I 1 k) =

Vrsf)Y(l : k)C = Xy C, where Y(1 : k) are the chosen k eigenvectors of the Hessenberg matrix
H,,, and C some k X k coefficient matrix. O

The above shows the equivalence of the two methods at restart. To conclude the proof we
need the following proposition which describes the residuals of the Ritz vectors of the Arnoldi
procedure [19].

Proposition 3.1 At the jy, step of inner Arnoldi loop, let y; be the iy, eigenvector of H;
associated with the eigenvalue \;, and x; the Ritz approzimate eigenvector x; = Vjy;. Then,

(A= XiD)a; = hjy15ef yi vjga.

Theorem 3.1 If GD(k,m) without preconditioning and IRA(k,m) are executed with the same
initial vector v%), and at each restarting the p shifts used in IRA(k,m) are the Ritz values of
the Ritz vectors discarded by GD(k,m), then the basis vectors produced by the two methods span
the same space, for any targeting scheme of GD(k,m), and thus the methods are equivalent.



Proof. If the two methods start with the same initial vector and no restarting is used,
the vectors built are identical. This is an immediate consequence of Proposition 3.1, for any
selection of targets in GD(k,m). This is well established in the literature (see [16, 21]).

For the general case, a simple induction on the number s of restarts is used. From the above,
it follows that for s = 0, the bases built by IRA(k, m) and GD(k,m) satisfy 7%0) = ,(,?).

Let for s > 0, span(Vrgf)) = span( 7(75)) After restarting both methods, and from Lemma 3.2,

Span(Vk(SH)) = span(U,gsH)). As a result, at this k step, the Ritz vectors for both methods are

the same, and because of Proposition 3.1, the next expansion vectors for both methods are
parallel. Thus it holds, span(V,*T") = span(U{*!"), and inductively,

span(V,T1)) = span(UY).
a

A few comments are in order. Lemma 3.1 can be applied to the Hessenberg matrices built
by Krylov subspace methods, if these are diagonalizable. This assumption is always satisfied
by the tridiagonal matrices built in the symmetric case. This justifies the use of this result in
Lemma 3.2, for the non-preconditioned case.

Further, Lemma, 3.1 applies to any non-Hessenberg diagonalizable matrix, and although
Lemma 3.2 discusses the IRA(k,m) method, it is true for all methods that use an implicit
restarting scheme. Consequently, implicit restarting can be applied to the projection, full ma-
trix T obtained from the preconditioned basis vectors of GD(k,m). If exact shifts are used, it
produces a sequence of vectors that span the same space with the required Ritz vectors. Several
numerical examples, however, have shown that this can be an unstable process. The reason is
traced back to the forward numerical instability of the QR process. Treatments of the prob-
lem have been developed [12], but we find it inexpensive and stable to thick restart with the
orthogonal (or orthogonalized in the nonsymmetric case) Ritz vectors.

In the preconditioned case, the application of implicit restarting does not result in a poly-
nomial transformation as in equation (1). Specifically, let U = {ugo), . ,u$2)} be the GD(k, m)
basis before restarting, with decomposition AU = UT + E and U¥E = 0. Following similar

steps to Lemma 3.1 and to those in [24], the first basis vector ugl) after the implicit restarting

can be expressed as: ugl) = p(UUHAUUH )ugo) = Uyp(T)UH ugo)’ where v is an appropriate
polynomial. The polynomial transformation involves the projected matrix on the space spanned
by U, and not the full rank matrix A. An arbitrary choice of shifts may lead to a different
polynomial but there are no clear advantages for doing so.

Finally, in the unlikely case where preconditioning produces a defective projection matrix,
both implicit and thick restarting may fail as described earlier. Working with the Schur vectors,
rather than the Ritz vectors provides a stable solution to the problem. The algorithm has been
proposed recently in [10] and consists of a slight modification to the GD(k,m): Instead of finding
the eigendecomposition of 1", a Schur decomposition is computed and the diagonal elements of
the upper triangular matrix are used as shifts in the implicit restarting procedure. In this way
the algorithm computes a partial Schur decomposition of A. Note that thick restarting can still
be applied keeping more Schur vectors than needed.



4 The deflation connection

Krylov methods for linear systems, such as conjugate gradient (CG) and GMRES, demonstrate
a superlinear convergence at later iterations. One explanation of this phenomenon is the con-
vergence of the outermost eigenpairs of the matrix, so that each method behaves as if deflation
has occurred, resulting in faster convergence. Such observations have appeared as early as in [5],
but actual quantification of the behavior appears in [20] and [27, 28]. In the latter papers, the
optimality of the CG and GMRES polynomials is employed to relate each method after some
iterations with a similar process of the same method on a deflated residual.

Results similar to [28] can not be applied directly to the residual and eigenvalues in the
nonsymmetric Arnoldi, since there is no optimality principle. In the following, we extend the
results found in [28] to the Arnoldi method, by considering the distance of some eigenvector from
the Arnoldi Krylov subspace. Again preconditioning is not considered since the space that it
creates is not a Krylov subspace. This general result is used later in the context of thick/implicit
restarting to justify the expected benefits and to help provide a good choice of k.

For simplicity, let A be a diagonalizable matrix, X "'AX = A = diag();), of order N.
The results in this section can be extended naturally to the Jordan form of A, following the
methodology in [28]. However, the presentation is more involved. Let v = X¢ be the expansion of
the starting Arnoldi vector to the eigenvector basis. Define three numbers satisfying [ < k' < k,
where k — 1 is the number of steps that a non-restarted Arnoldi method takes starting from v.
We can assume an eigenvalue ordering so that the first [ ones are wanted, and the eigenvalues
I+1,...,Kk" are well approximated by the k — 1 steps of Arnoldi. Let u; be the k Ritz values
from this K (v) space. At this point we let the Arnoldi process take p more steps and build the
space Kiyp(v). The following shows the ordering of these numbers:

1 I Kk’ k k+p
wanted deflated first k steps p additional steps

Define D) a diagonal matrix with elements:

(k) O, fOI‘j:l+1,...,k,
D]J = k' Xi—Xi X i ' . (2)
Hi:l"'l_J—)\j—Mi’ forj<lorj=k+1,...,N

Assuming the above definitions we have the following theorem:

Theorem 4.1 Let z; an eigenvector to be approzimated from the Krylov subspace Kjyip(v),
and Z; the corresponding Ritz vector from Ky(v), whose components of xiy1,..., Ty have been
removed. If these Krylov subspaces can be built, then for any j =1,...,1:

dist(z, Kg4p(v)) < |1 — D] + [|IXD® X Y| dist(z;, Ky ().

Proof. At step k£ — 1 of the Arnoldi procedure, the Ritz vector z’; from Ky (v) has the
following expression:

zy = q;(A)v/llg;(A)v|, with
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Note that the eigen-components [ + 1,..., k" of the vector h(A)v are annihilated. If & = 0 for
i=141,...,k" and & = & otherwise, then zj = %qu(A)g, where ¢ is a normalization factor.
Since any vector in K, p,(v) can be expressed as a polynomial of A applied on v, if 7* is some
polynomial of degree p, and e; the j;, orthocanonical vector, we have:

ist(@), Kep()) = min - llzj —a(A)l

< lzj — 7 (A)A)XE

= |lz; — X7*(A)DWg; (A)]|

= Jlzj — XDP X X7 (A)g; (A)E]|

= |lz; — XDWX 1t (A)gz,||

= |lz; - XD®) X1 Xe; + XD® X1 Xe; — XD® X~1n*(A) i,

< WU—DWQN+HXD®X‘WWU—WWAM@W (3)

The result follows by choosing 7* = 17, where 74 is the polynomial that minimizes the distance
of z; from KC,(Z;), and assuming ||z;|| = 1. O

The term || XD®) X~1|| is bounded as follows [28]:

max ]S = ka(X)F,
.7?1: +1,.., i=l+1 ] l'l’l

IXDBX | < ky(X)

where ky(X) = || X||[|X ~!|| is the condition number of the eigenvectors. If k is large enough, then
the approximations y; converge to A; fori = 1,...,k'. Thus, Fy — 1, and |1 — D(k | = 0. Even

when these are not accurately converged, prov1ded that O(dist) < O(|]1 — J(’;)|), the distance
behaves similarly to the distance from a deflated Krylov subspace. It should be noted that the
above bound is rather pessimistic, since D*) converges to a part of the identity matrix and thus

XD®) X1 converges to a spectral projector.

4.1 Deflation in IRA(k,m)

Theorem 4.1, can be applied to the k+ p vectors at the end of an IRA(k, m) step. As previously,
[ eigenpairs are needed, k pairs are retained after each restart, and p = m — k additional vectors
are built. Theorem 4.1 applies with the same [, k,p and k' = k:

dist(z, Kk 1p(0(*)) < [1 = DE2|+ | XDE XY dist(wj, Kp(E5)-



Note that the space K (v(*)) contains exactly the wanted k Ritz vectors at the end of the previous
s — 1 step. From the comments in section 2, the Krylov space }C;H_p('u(s)) is built implicitly by
only p steps. Therefore, Theorem 4.1 relates the p steps of the deflated method, to p, rather
than k + p steps of the original method.

The diagonal elements of Dk:5) depend on two parameters: k the number of the initial
Krylov steps, and s the restarting step on which the theorem is applied. Since k in IRA(k,m)

is bounded, the reason for convergence of DJ(.I;-’S) is assumed by s, the step number. It has been
proved for the symmetric case, and under certain assumptions for the nonsymmetric case [24],
that the retained eigenpairs in IRA(k,m) converge. Thus, F,Ss) — 1l and |1 — DJ(-];-’S)\ — 0, as
s — oo. After several restarts, the IRA(k, m) method builds a space close to the one built by
an IRA(k,m) applied on a system deflated from the eigen-components [ + 1,...,k. Because of
Theorem 3.1, the GD(k, m) performs in a similar way.

The above results suggest that there are advantages in keeping more vectors at each restart,
i.e., using a thicker restart. If only the wanted eigenpairs (1,...,[) are retained at restart,
the method does not demonstrate the deflation behavior for any other eigenpairs. At every
restarting the current approximations of eigenpairs (I 4+ 1,...,k + p) are annihilated, and thus
they do not converge. Frequently, some eigenvalues close to the wanted ones or close to the
other end of the spectrum are relatively well approximated before restarting, and if retained,
they would have converged soon. Even more undesirable is the fact that these approximations
will slowly reappear in the Krylov subspace, since their approximations are not accurate enough
to completely annihilate the corresponding eigenvectors. Therefore, thick restarting should
almost always be beneficial.

5 Dynamic thick restarting in the symmetric case

In this section we restrict the discussion to the symmetric case where explicit bounds for conver-
gence rates are known. Two difficulties are associated with thick restarting: the choice of which
eigenpairs to retain, and how many of them. It is well known that the Arnoldi method constructs
vectors with strong components in the direction of the extreme eigenvectors (associated with
extreme eigenvalues), and therefore close to the few wanted ones. Sleijpen et al. in [23] argue
that the restarted Arnoldi method repeats the information for these extreme eigenpairs that are
dispensed in previous iterations, and they propose keeping [ +1,.. ., k eigenvalues closest to the
wanted ones. A similar strategy is followed in the implicit restarting of the ARPACK code. We
denote this special case of GD(k,m) as TR(k), implying the basis size m.

The preceding discussion suggests that thick restarting should aim at improving the con-
vergence of the method through deflation. TR(k) attempts to increase the gap of the wanted
eigenvalues from the rest of spectrum by keeping nearby eigenpairs. The same objective is fol-
lowed by subspace iteration where the number of vectors determines the rate of convergence.
Since IRA(k,m) can be interpreted as an efficient way to perform subspace iteration [12], similar
restarting considerations hold. However, convergence depends on the gap ratios of the eigen-
values and therefore the other end of the spectrum is also of importance. A more general form
of thick restarting would be TR(L,R), where L lowest (leftmost) and R highest (rightmost)
eigenvectors are kept.

We need to address the issue of choosing optimal restarting parameters. In ARPACK, k
is chosen dynamically, starting from a relatively small number and increasing it every time an
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eigenvalue converges. This attempts to maintain a “constant” gap, and it is slightly different
from the strategy reported in [24], where values of k close to m/2 usually gave the best results.

Because of the deflation relation, the thicker the restarting, the larger the part of the spec-
trum that is deflated. However, the basis size m is limited, and if too many vectors are retained
when restarting, the Lanczos process can not effectively build additional basis vectors. A dy-
namic choice of the parameters L and R should be able to capture this trade-off. For the Lanczos
procedure, convergence is governed by a term involving a Chebyshev polynomial. If p Lanczos
steps are taken, the error of the iy, eigenvalue involves the following term:

1 Ai — Aig1

L ithy, = .
TF(1+ 2v) T N A

v; is the gap ratio of the iy, eigenvalue, and for small gap ratios (i.e., difficult problems) the
above term behaves as:

1

— ~2e VY, 4

The L and R thick restarting parameters should maximize the deflated gap ratio v = (A\; —
Ar+1)/(Ar+1 — An—g) and also maximize the number of new Lanczos steps p = m — L — R.
The trade-off is captured by minimizing the error approximation equation (4). Since the actual
eigenvalues are not known, the m approximate Ritz values (u;) before restarting should be used
to estimate the spectrum. Thus, assuming the [ lowest eigenpairs are sought, L and R are
obtained dynamically by maximizing the following expression:

Ai — ALyt

m—L—R)y| ———————.
( ) AL+1— Am—R

max
L=l,...,m, R=0,....,m—l, L+ R<m

We implement a combination of the dynamic restarting and the TR(L) schemes. Similarly
to subspace iteration and ARPACK, we keep at least L' > [ vectors from the side of the required
eigenpairs to guarantee an increased separation gap. In the experiments in the next section the
value L' = 10 is chosen. The dynamic scheme is adopted for the rest of the vectors, maximizing
the above expression for L = L', ..., m. In this way, we capture the benefits from both strategies.
It has been observed that if some unwanted eigenvector has converged it is usually beneficial to
include it in restarting, since this information may be slowly repeated. We do not consider this
option and let the dynamic choice of L and R take care of such cases.

For the nonsymmetric GD(k,m) a similar expression may be maximized, where the Ritz
values are ordered according to the required objective, i.e., largest modulus, largest real part, etc.
Often, this ordering corresponds to the outermost eigenvalues of the spectrum that the Arnoldi
method approximates first, and thus similar deflation arguments can be made. However, this
may not always be true, and the choice is more ad-hoc because of lack of general expressions for
convergence rates. The dynamic strategy can also be used in case of preconditioning, although
its effects are expected to be less pronounced for two reasons. First, the spectrum of the
varying operator is transformed by the preconditioners, and second the preconditioning equation
usually targets one specific eigenvector for correction, offering little improvement to the rest of
the eigenvectors. Often, however, the use of less efficient preconditioners does not affect the
eigenvalue order significantly, and thick restarting can perform as well in this case. Finally,
dynamic thick restarting can be used in both GD(k,m) and in the IRA(k,m) of the ARPACK
package.
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6 Numerical experiments

In the first part of this section we give a small artificial example which demonstrates the in-
creasing effect of deflation in thick restart TR (k). In the second part, we present results from
a large number of tests on the symmetric matrices of the Harwell-Boeing collection [9]. The
GD(k,m) code is based on a program published in [25] and the extensions proposed in [26].
It implements a variable block generalized Davidson method, using the reverse communication
protocol for matrix vector multiplication and preconditioning operations. Robust shifting and
the Olsen strategy, which is equivalent to the Jacobi-Davidson approach in exact arithmetic [23],
are adopted in preconditioning. In the third and fourth parts, the dynamic strategy is used to
provide the shifts to the IRA(k,m) of the ARPACK implementation. Results from standard
nonsymmetric cases are reported in the third part. In the last part, comparisons with the orig-
inal ARPACK code, and with the ARPACK code using Leja shifts [2] in the symmetric case
facilitate a discussion on the effects of the basis size.

6.1 Deflation works

The GD(k,m) is applied on an artificially generated diagonal matrix of order 100, and elements:

]/557 forj=1,...,8
Ajj =13 19/55+ /55, forj=9,...,16 . (5)
J— 16, for j =17,...,100

The lowest eigenvalues of this matrix are grouped in two clusters of 8 equidistant eigenvalues
each. The separation between the two groups is equal to the separation of the second group
from eigenvalue 17. Figure 1 depicts the lowest part of this spectrum. We look for the lowest
eigenvalue and allow for 20 basis vectors in all versions of GD(k, m). The history of the logarithm
of the eigenvalue error is plotted in Figure 2 for various restarting thicknesses of TR(k).

Figure 1: The lowest 20 eigenvalues of the 100x100 matrix. The first two clusters contain 8
equidistant eigenvalues each. The rest 80 eigenvalues are the integers from 5 up to 84.

As expected, the poor separation of the lowest eigenvalue results in a very slow original
GD(20) (or TR(1)) method. A very good approximation of the second eigenvalue is available
quite early, and thus when retained (TR(2)), the convergence rate improves by 30%. Similarly

12



with TR(4) and TR(8). The superlinear convergence is more evident in TR(8). In early itera-
tions, higher eigenvalues are not well approximated and TR(8) behaves similarly to TR(1) and
TR(2). Later, as better approximations for eigenvalues 2-4 appear, TR(8) is similar to TR(4),
and as higher eigenvalues settle down, TR(8) exhibits a concave convergence curve.

Log of eignvalue error

TR(8)

Dyn

12 I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000

Iterations

Figure 2: Effects of thick restarting to the convergence of the Generalized Davidson. No pre-
conditioning is used, and the lowest eigenvalue is sought. TR(k) denotes GD(k,20).

Methods TR(k), with 8 < k£ < 16 are similar to TR(8) since there is no significant improve-
ment to the deflated gap ratio. In theory, TR(16) should be different, because of the large
separation between eigenvalues 16 and 17. In practice however, TR(16) does not perform signif-
icantly better than TR(8). The reason is that the Krylov subspace is of dimension 20, and it is
difficult for the 164, Ritz eigenvalue to converge. The dynamic thick restarting, shown as Dyn
in the figure, takes advantage of both ends of the spectrum and performs better than TR(8) and
close to TR(16), requiring no prior knowledge about the spectrum.

6.2 Harwell-Boeing Tests

To confirm the theoretical benefits of thick and dynamic thick restarting, a wide variety of
tests has been performed on the symmetric matrices from the Harwell-Boeing collection. This
includes a set of 67 matrices with orders ranging from 48 to 15,439. Some of matrices have
been derived from eigenvalue problems, but for almost all of them, the lowest end of spectrum
is very poorly conditioned, making them particularly hard test problems. The higher end of the
spectrum usually consists of well separated, very large eigenvalues, providing a good test for
easy or intermediate problems.

We have compared three different versions of GD(k, m) for both the lower and the higher
part of the spectrum. Five eigenvalues are sought and the basis size m for all GD methods is
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20. An eigenpair is considered converged when the norm of its residual is less than 10~ '2||A]| ,
where ||A||r is the Frobenius norm of its matrix. For the highest eigenvalues only the non-
preconditioned versions of GD(k,m) are considered, while for the lowest ones we consider di-
agonal, and approximate inverse preconditioning. The former is computed at every step as
(diag(A) —p)~!, and the latter is only computed once as the approximate inverse of A [4]. Since
most of the matrices are positive definite, this is a relatively powerful preconditioner.

In Table 1, the results from the lower part of the spectrum are reported. A maximum number
of 5000 matrix vector multiplications is allowed. The table does not include any of the diagonal
matrices. As it is easily seen, TR(11) outperforms the original Davidson method (TR(5)), except
for BCSSTK?22. It is usually several times faster, and offers better robustness, converging for 6
additional matrices. Further, dynamic thick restarting, improves both the robustness, and the
speed in almost all cases. Sometimes, the reduction in the matrix vector multiplication number
can be up to 50-70% over TR(11). With diagonal preconditioning TR(11) still outperforms
TR(5) in both convergence and robustness. Dynamic thick restarting improves convergence
even further, although the improvements are not as impressive as in the non-preconditioned
case. On the average, the approximate inverse preconditioner is better than the diagonal one,
but with several exceptions since it depends on the characteristics of the matrix. Dynamic
thick restarting still performs much better than the original approach, and it is relatively faster
and more robust than TR(12). However, as mentioned in the previous section, in those cases
where approximate inverse works well the differences between thick and dynamic thick restarting
diminish, because of the higher quality preconditioner.

Similar behavior of the methods is shown in Table 2, where the five largest eigenpairs are
required. Dynamic thick restarting improves on the performance of TR(10) which in turn
improves on the performance of TR(5). However, the few steps required for the problems in this
table do not yield the same impressive improvements as in Table 1.

6.3 The effect of the basis size

The dynamic thick restarting strategy, developed for the GD(k,m), can also be used to provide
the shifts to the ARPACK code through the supplied reverse communication protocol. Results
from this implementation when seeking one lowest eigenpair of the Harwell-Boeing collection
appear in Table 3. Two tests are performed, one with basis size of 25, and one with basis size
of 10. The dynamic restarting significantly improves the speed and robustness of the native
restarting scheme of ARPACK, which for one eigenvalue is the equivalent with thick restart
of half the basis size. What is more interesting is that dynamic restarting seems much less
sensitive to reduction of the basis size. Similar insensitivity to the basis size has recently been
demonstrated through the use of Leja points as shifts in IRA(k,m) [2]. We have implemented
the Leja shifts restarting strategy as outlined in [2], and the results appear in Table 3. For the
small basis size, dynamic thick restarting and Leja shifts are comparable. However, as the basis
size increases, the dynamic strategy is more efficient and even more robust. Although Leja shifts
may be better for extremely small spaces (less than 5 vectors), they are harder to implement
and they are more expensive to compute.

Experience with the dynamic thick restarting has shown that most of the vectors are retained
at every restart, and only 3 or 4 are annihilated. The range of the annihilated ones varies from
step to step. Figure 3 shows the range of eigenvalues which the filtering polynomial covers, as
well as the shifts of this polynomial, at every restart for a typical case. We have observed that it
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Table 1: Comparison of thick (TR(L)) and dynamic thick restarting (Dyn) with original David-
son (TR(5)) on symmetric Harwell-Boeing matrices, with diagonal and approximate inverse
preconditioners. The number of matrix vector multiplications is reported, with a maximum of
5000. Five smallest eigenvalues are sought. The GD codes use basis size of 20.

No preconditioning Diagonal preconditioning Approximate Inverse
Matrix TR(5) TR(11) Dyn | TR(5) TR(10) Dyn | TR(5) TR(12) Dyn
BCSSTKO01 - 1675 360 288 132 124 264 9% 108
BCSSTKO02 - 209 204 - 194 190 188 89 92
NOS4 321 178 171 405 261 244 127 90 91
BCSSTKO03 - - - - 3697 1225 - 4699 1685
BCSSTKO04 - - 1905 - 189 188 - 208 221
BCSSTK?22 4054 - 1626 - 931 721 - 320 300
LUND A - 2017 727 858 271 250 3623 394 349
LUND B - - 1347 774 396 349 909 381 338
BCSSTKO05 1174 975 612 1322 465 409 358 247 251
BCSSTKO07 - - - - - 1401 - - 3158
BCSSTMO07 - - 31n 1018 406 363 - 2390 1195
NOS5 - 2016 921 2659 1401 819 837 387 354
662 BUS - - - 3220 1482 902 699 307 291
NOS6 - - - - - 1434 - - -
685 BUS - - 1793 2473 987 763 486 272 267
NOS7 - - - 200 216 194 128 109 94
GR 30 30 259 228 229 248 224 221 204 146 143
NOS3 2179 620 458 2096 878 664 524 253 258
BCSSTKO09 - 1206 721 | 2283+ 1508 964 3291 363 352
BCSSTK10 - - - - - 2808 - 2093 1076
BCSSTM10 498 226 207 448 258 250 3266 3189 2636
BCSSTK?27 - - - - - 3307 - - 3017
BCSSTM27 - 4455 1689 - 4304 1768 - 636 509
BCSSTK14 - - - - - 2136 - - 3723
BCSSTM13 - - - 381 285 269 291 183 177
BCSSTK?21 - - - - 2568+ 1141 1776 877 601
BCSSTK16 3962 1333 676 2410 905 663 752 331 317
BCSSTK18 - - - - - 3098 - - -
BCSSTM25 - - - 62 64 55 40 38 37

+ denotes that one eigenpair has been skipped
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Table 2: Comparison of thick (TR(10)) and dynamic thick restarting (Dyn) with original David-
son (TR(5)) on Harwell-Boeing matrices. The number of matrix vector multiplications is re-
ported. Five largest eigenvalues are sought. The GD codes use basis size of 20.

No preconditioning No preconditioning
Matrix TR(5) TR(10) Dyn Matrix TR(5) TR(10) Dyn
BCSSTKO01 57 42 38 NOS2 2236 906 520
BCSSTKO02 62 49 52 NOS3 194 156 150
NOS4 176 107 114 BCSSTKO08 36 35 33
BCSSTKO03 51 44 43 BCSSTKO09 316 236 206
BCSSTKO04 103 84 78 BCSSTK10 146 94 90
BCSSTK22 106 71 65 BCSSTM10 443 151 137
LUND A 195 124 120 1138 BUS 84 73 75
LUND B 92 66 68 BCSSTK27 129 89 81
BCSSTKO05 81 67 66 BCSSTM27 130 96 87
NOS1 257 147 133 BCSSTKI11 441 220 200
PLAT362 165 111 114 BCSSTM12 164 115 129
BCSSTKO06 332 114 109 BCSSTK14 195 73 75
BCSSTKO07 332 114 109 PLAT1919 102 94 100
BCSSTMO7 240 172 155 ZENIOS 53 48 48
NOS5 210 117 111 BCSSTK24 112 118 121
662 BUS 65 54 55 BCSSTK?21 1144 418 335
NOS6 123 91 87 BCSSTK15 - 1374 328
685 BUS 31 30 30 BCSSTK16 99 83 83
NOS7 88 65 68 BCSSTK17 82 67 62
BCSSTK19 113 100 92 BCSSTK18 166 86 86
GR 30 30 502 451 396 BCSSTK25 45 59 44
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Table 3: Implementation of the Leja shifts and dynamic thick restarting for the ARPACK
code. Native is the restarting scheme used internally by ARPACK, Leja(k) refers to implicit
restarting with k Leja shifts, and Dyn is the dynamic thick restarting. The number of matrix
vector multiplications is reported for two tests with basis sizes 10 and 25, on Harwell-Boeing
matrices. One lowest eigenvalue is sought.

ARPACK
Basis Size of 10 Basis Size of 25
Matrix Native Leja(3) Dyn | Native Leja(5) Dyn
BCSSTKO1 - 3805 3922 1637 1309 341
BCSSTKO02 530 235 198 129 134 124
NOS4 220 136 166 116 114 120
BCSSTMO03 1165 1696 298 265 1014 90
BCSSTKO04 - - - - - 2013
BCSSTK22 - 1132 1222 1520 1124 999
BCSSTM22 240 166 149 103 104 89
LUND A - 2461 1644 2079 1774 759
LUND B - 1990 2777 3002 1404 1150
BCSSTKO05 2810 727 874 766 609 588
BCSSTMO06 4675 1462 494 792 529 243
NOS5 - 1123 1546 1494 864 880
BCSSTM20 - - - - - 896
494 BUS - - - - - 3634
662 BUS - 1642 1547 2443 1429 1108
685 BUS - 2482 2515 1962 1819 700
NOS3 1210 388 492 402 334 348
BCSSTKO09 1140 367 419 337 309 304
BCSSTM10 420 214 274 181 164 174
BCSSTM27 - 2698 1931 2781 1509 1461
BCSSTM11 65 196 41 25 25 25
BCSSTM13 - 4285 3471 - 4459 2995
ZENIOS 60 58 56 90 84 80
BCSSTK16 - 946 1063 1000 774 712
BCSSTK25 - - - - - 1399
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Figure 3: The range annihilated by the filtering polynomial of dynamic thick restarting at every
restart. Each interval includes the m-L-R Ritz values, depicted as circles, which are picked for
annihilation by the dynamic scheme. The example matrix is BCSSTKO05 from Harwell-Boeing
and basis size of 20 is used. The crosses on the top of the graph represent the location of the
eigenvalues on the real axis.
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is important to have both a small degree polynomial at every restart (i.e., only few eigenvalues
annihilated) and to also vary the range from where these shifts are chosen. Therefore, TR(16)
does not perform as well as dynamic restarting, even though, on average, it retains the same
number of vectors. Also, if we force the dynamic restarting to annihilate more than 5 or 6 shifts
at every restart, the scheme does not perform as well either. The efficiency of the dynamic thick
restarting may be attributed to the fact that the filtering polynomial is of low degree and seems
to select the best region to dampen, without growing fast outside these regions. The efficient
use of the Leja shifts in the ARPACK also exhibits analogous requirements.

Finally, we should point out that the above results compare the number of matrix vector
multiplications of the methods. This is an acceptable performance metric if the matrix-vector
operation is expensive. Since on average, thick restarting uses more vectors in the basis than
the original Davidson, its Davidson step is also more expensive. Although improvements like
the ones in Table 1 justify any increase in the expense of the Davidson step, for easier cases a
less aggressive choice of restarting might be more effective.

6.4 Thick restarting in the nonsymmetric case

As in the symmetric case, we can use likewise the dynamic thick restarting scheme to provide
the shifts to the nonsymmetric ARPACK code. Results from this implementation applied on
the nonsymmetric matrices of the test matrix collection of eigenvalue problems of Bai et al. [1]
appear in Table 4. All the matrices stem from standard eigenvalue problems, except ODEP400A
which is included because it is close to symmetric. Since for almost all examples the rightmost
eigenpairs are of interest, we look for five eigenpairs with largest real parts. The convergence
threshold for ARPACK is set to 10!, and a maximum of 5000 matrix vector multiplications
is allowed.

The shifts for thick restarting are chosen similarly to the symmetric case. First, we order
the Ritz values according to their real parts. The dynamic scheme works on these real parts,
yielding the numbers L and R on the real axis. We then supply the corresponding Ritz values
as shifts to ARPACK, requiring that conjugate Ritz values are either annihilated together or
kept together.

The results show that the thick restarted versions improve efficiency and robustness of the
native scheme of ARPACK, and that thicker restarting schemes achieve better efficiencies. This
is expected by analogy with the subspace iteration method. The dynamic thick restarting is not
uniformly better than the rest as in the symmetric case. In fact, it seems comparable to TR(20)
which on the average keeps the same number of vectors as the dynamic one. As mentioned in
section 5, the extreme eigenpairs chosen by the dynamic scheme are based on the ordering of the
real parts of the Ritz values and may not always represent the extreme eigenpairs approximated
well by the Arnoldi method. In spite of this, dynamic thick restarting is still the most robust
of the methods used, and shows that the efficiency of the one-sided thick restarting can be
improved.

7 Conclusions

Restarting is a necessary technique for solving large eigenvalue problems, which may cause sig-
nificant convergence deterioration. In this paper we consider a class of restarting techniques
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Table 4: Implementation of thick and dynamic thick restarting for the nonsymmetric ARPACK
code. Native is the restarting scheme used internally by ARPACK, TR(L) is one-sided thick
restarting with L vectors, and Dyn is the dynamic thick restarting. The number of matrix
vector multiplications is reported for the test-matrix collection for eigenvalue problems. Five
eigenvalue with largest real parts are sought.

ARPACK ARPACK
Matrix Native TR(12) TR(20) Dyn Matrix Native TR(12) TR(20) Dyn
BWM200 558 207 185 180 | | QHT768 - 2935 751 881
BWM2000 - - - 3999 | | RDB1250 610 454 145 139
CDDE5 357 272 252 237 RDB1250L 524 513 436 449
DW2048 681 675 815 495 | | RDB2048 887 181 185 170
DW8192 - - - 4942 | | RDB2048L 755 615 588 598
DWA512 118 116 116 113 | | RDB3200L 842 738 736 729
DWB512 350 298 315 267 | | RDB450 376 259 90 85
GRCAR200 2606 698 524 572 | | RDB450L 343 295 280 309
LOP163 383 279 214 242 RDBS8OOL 429 421 354 391
ODEP400A 1683 837 1005 704 RW136 170 128 109 108
OLM100 548 357 255 316 | | RW496 247 179 164 168
OLM1000 - - - 3602 RW5151 743 514 406 473
OLM500 4303 2514 1867 1622 | | TOLS90 - - 330 1295
PDE225 343 281 234 254 TUB100 318 181 154 165
PDE2961 192 140 124 130 | | TUB1000 - 4042 3730 1696

which, at every restart, retain more Ritz vectors than needed, and we denote it as ‘thick restart-
ing’. The GD(k,m) and IRA(k, m) are proved to be equivalent in the absence of preconditioning
and a relation is given between thick restarted Davidson, and a Davidson method applied on a
deflated system. These theoretical results imply that retaining more outermost Ritz pairs can
enhance convergence.

For the symmetric case, the results can be interpreted as an effort to increase the gap
ratio for the required eigenvalues. Since the number of basis vectors is limited, the actual
objective is to maximize the error reduction between restarts. This gives rise to a dynamic
thick restarting technique which applies to IRA(k, m) and to the preconditioned GD(k, m). The
extensive numerical experiments demonstrate the efficiency and robustness of the dynamic thick
restarting, and show that the robustness carries over to the nonsymmetric case. In addition,
this scheme seems to be much less sensitive to smaller Krylov subspace dimensions, and can be
extremely beneficial in very large eigenvalue problems.
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