ITERATIVE SOLUTION OF GENERAL SPARSE LINEAR SYSTEMS ON CLUSTERS OF WORKSTATIONS*

Gen-Ching Lo and Yousef Saad
Department of Computer Science, and
Minnesota Supercomputer Institute
University of Minnesota
Minneapolis, MN 55455

May 27, 1996

Abstract

Solving sparse irregularly structured linear systems on parallel platforms poses sev-
eral challenges. First, sparsity makes it difficult to exploit data locality and this is true
for both distributed and shared memory environments. Second, it is difficult to find
efficient ways to precondition the system. For example, preconditioning techniques that
have a high degree of parallelism often lead to slower convergence than their sequen-
tial counterparts. Finally, a number of other ‘global’ computational kernels such as
inner products can outweigh any gains due to parallelism, and this is especially true on
workstation clusters where latency times may be high. In this paper we discuss these
issues and report on our experience with PSPARSLIB, an on-going project for building
a library of parallel iterative sparse matrix solvers.

1 Introduction

In the past few years, there has been a flurry of activity on the use of distributed memory
computers to solve challenging scientific problems. Particularly noteworthy is the recent
surge of interest in the use of workstation clusters. Connecting a small number of work-
stations by fast communication networks is increasingly gaining acceptance as a low-cost
and effective alternative to large supercomputer engines. However, in using iterative meth-
ods to solve large sparse linear systems on workstation clusters several problems emerge.
First, if few processors are used then any gains that are made from parallelism can easily
be outweighed by overhead, particularly communication. This is not untypical of parallel
processing in general but the problem is more acute with workstation clusters because com-
munication costs can be quite high. Second, inner products and other global operations
which normally cause few problems can now be the source of serious bottlenecks. The rea-
sons are similar: the communication overhead in performing the global sum of the smaller
inner products can overwhelm the actual time to carry out the arithmetic. On the other
hand, workstation clusters present several advantages over traditional distributed comput-
ers. One of these advantages is that memory is no longer a serious limitation. This is in
contrast with massively parallel computers where the global memory is often very large but
the local memory attached to each individual processor is small, being limited by physical

*Work supported in part by ARPA under grant number NIST 60NANB2D1272 and in part by the
National Science Foundation under grant NSF/CCR-9214116

SPARSE ITERATIVE SOLVERS ON WORKSTATIONS

I
|
| SGI Challengel |
- - - — 4 Processors l

I

|

l

! SGI Challenge L
:____, 4 Processors

FibreChannel Switch
SGI Challenge L
_____ 4 Processors

----- SGI Challenge XL |

8 Processors |
- ______ I

|

|

. Eth
SGl/Indigo 2 — Ethernet

HiPPI Switch

Figure 1: A workstation cluster configuration.

constraints. For example, in our earlier experiments on the Thinking Machines CM-5 we
found that in order to obtain satisfactory speed-ups, the problems to be solved would have
to be very large, so large in fact that they would not fit in memory given the relatively
small size of local memory available. This is not the case on workstation clusters.

A typical workstation configuration is shown in Figure 1. In this particular case, each
workstation is a 4-processor computer having a memory size of 512MB except for the rack-
mounted Challenge XL, which has 8 processors and 2 GB of RAM. Each processor is a
R4400 processor with 4MB cache. Codes within each node can be programmed either in
shared memory mode, or using message passing. We used MPI to communicate between
nodes within each workstation or between nodes of the cluster.

The HiPPI and Fibre-Channel switches shown are switches which permit high-speed
communication between the 4 workstations. Communication speeds based on these new
technologies are constantly gaining ground. One of the limiting factors here is not the
bandwidth (the speed of the links themselves) but the latency. In many cases, data move-
ment starts taking place only after several layers of software — corresponding to different
faces of a common protocol — have been traversed resulting in relatively long delays.

The outline of the paper is as follows. The paper starts by discussing distributed sparse
linear systems in general terms and addresses issues related to data structures and matrix-
vector operations. Section 3 gives some details on the implementation of Krylov subspace
methods such as GMRES and the orthogonalization procedure. Section 4 presents a few
preconditioning techniques. In Section 5 a general framework for Schur complement tech-
niques is presented. Section 6 presents numerical experiments and the last section draws a
few concluding remarks.

SPARSE ITERATIVE SOLVERS ON WORKSTATIONS

2 Distributed Sparse Linear Systems
We consider a linear system of the form
Az = b, (1)

where A is a large sparse nonsymmetric real matrix of size n. When mapping such a system
into a distributed memory parallel computer, it is most natural to assign pairs of equations-
unknowns the same processor. Thus, each processor will hold a set of equations (rows of
the linear system) and a vector of the variables associated with these rows. The assignment
of the equation-unknown pairs to processors, can be determined with the help of a graph
partitioner or ad hoc from knowledge of the problem. Here, it is assumed for simplicity that
each processor is assigned only one subgraph (or subdomain, in the PDE literature). This
natural way of distributing a sparse linear system is fairly general and is closely related to
the physical viewpoint.

Rather than starting from the standard natural ordering used in the sequential setting,
it is important to regard the system as a distributed object and try to develop techniques
for the global system using the distributed data structure. It is crucial when developing
these techniques to set up the local equations as well as the dependencies of local variables
from external variables. A preprocessing phase is required to determine this information as
well as some other information required during the iteration phase.

External
/ interface points

Figure 2: A local view of a distributed sparse matrix.

2.1 The Local Data Structure

Figure 2 is an illustration of the ‘physical domain’ viewpoint of a sparse linear system
adopted in PSPARSLIB. This representation borrows from the domain decomposition lit-
erature — so the term ‘subdomain’ is often used instead of the more proper term ‘subgraph’.
Each point (node) belonging to a ‘subdomain’ is actually a pair representing an equation
and an associated unknown. It is important to distinguish between three types of unknowns:
(1) Interior variables are those that are coupled only with local variables by the equations;
(2) Local interface variables are those coupled with non-local (external) variables as well as

SPARSE ITERATIVE SOLVERS ON WORKSTATIONS

% Externa data

Externa data

local
.~ Daa

O A, O

Figure 3: Representation of the local system.

local variables; and (3) External interface variables are those variables in other processors
which are coupled with local variables.

Along with this figure, we can represent the local equations as shown in Figure 3. The
local equations do not in any way correspond to contiguous equations in the original system.
The matrix represented in the figure can be viewed as a reordered version of the equations
which uses a local numbering of the equations/unknowns pairs.

As can be seen in the figure, the rows of the matrix assigned to a certain processor, say
processor k, have been split into two parts: a local matrix A; which acts on the local variables
and an interface matrix X; which acts on remote variables. These remote variables must
be first received from other processor(s) before the matrix-vector product can be completed
in these processors. A key feature of the data structure is the separation of the boundary
points from the interior points. The interface nodes are always listed last after the interior
nodes. This ‘local ordering’ of the data presents several advantages, including more efficient
interprocessor communication, and reduced local indirect addressing during matrix-vector
products. The zero blocks shown are due to the fact that local internal nodes are not
coupled with external nodes.

Thus, each local vector of unknowns z; is split in two parts: the subvector u; of internal
nodes followed by the subvector y; of local interface variables. The right-hand side b; is
conformally split in the subvectors f; and g;,

- (3) w-(0)

The local matrix A; residing in processor ¢ as defined above is block-partitioned according
to this splitting, leading to

With this, the local equations can be written as follows.

<Zi g:) <Z:) ' <ZjeN?Eijyj> B (g;:) 3)

The term FE;;y; is the contribution to the local equation from the neighboring subdomain
number j and N; is the set of subdomains that are neighbors to subdomain 7. The sum

SPARSE ITERATIVE SOLVERS ON WORKSTATIONS

of these contributions, seen on the left side of of (3) is the result of multiplying a certain
matrix by the external interface variables. It is clear that the result of this product will
affect only the local interface variables as is indicated by the zero in the upper part of the
second term in the left-hand side of (3). For practical implementations, the subvectors of
external interface variables are grouped into one vector called y; ¢+ and the notation

> Eijyj = Xilient
JEN;

will be used to denote the contributions from external variables to the local system (3). In
effect this represents a local ordering of external variables to write these contributions in a
compact matrix form. With this notation, the left-hand side of the (3) becomes

w; = Aiwi + X extYieat (4)

Note that w; is also the local part the matrix-by vector product Az in which z is a vector
which has the local vector components z;, 1 =1,...,s.

To facilitate matrix operations and communication, an important task is to gather the
data structure representing the local part of the linear matrix as was just described. In this
preprocessing phase it is also important to form any additional data structures required to
prepare for the intensive communication that will take place during the solution phase. In
particular, each processor needs to know (1) the processors with which it must communicate,
(2) the list of interface points and (3) a break-up of this list into pieces of data that must
be sent and received to/from the “neighboring processors”.

The complete description of the data structure associated with this boundary informa-
tion is given in [17] along with additional implementation details.

2.2 Matrix-vector products

Consider now the matrix-vector operation for a distributed matrix. This is an essentially lo-
cal operation which takes a distributed vector £ and produces the result w = Az, distributed
conformally to the mapping of all vectors. Each processor ¢ will produce w;, the local part of
the result w. The matrix-vector product is carried out by implementing equation (4). First,
the external data y; ¢;+ needed in each processor is obtained. The matrix-vector product
with the matrix A4; on the local data z; can be carried out at the same time that this com-
munication step is being performed. Then the matrix-vector product with the matrix X;
on the external data y; s+ can be carried out and the result is added to the result obtained
from A;z;. Thus, a matrix-vector product can be performed by the following sequence of
operations

1. multiply the local matrix A; by the local variables;
2. receive the external variables;

3. multiply these external variables by the external matrix X; associated with them and
add the result to that obtained from the first multiplication.

Note that steps 1 and 2 can be performed simultaneously. A processor can be multiplying A4;
by the local variables while waiting for the external variables to be received. For additional
details on the matrix-vector product operation see [17].

SPARSE ITERATIVE SOLVERS ON WORKSTATIONS

3 Distributed Krylov accelerators

The main operations in a standard Krylov subspace acceleration are (1) vector updates,
(2) dot-products, (3) matrix-vector products and (4) preconditioning operations. If we
exclude the matrix-vector products and preconditioning steps, the rest of the operations
in an algorithm such as GMRES are mainly operations to orthogonalize sets of vectors,
as well as vector updates. It is assumed that all the vector quantities are split in the
same fashion a global SAXPY of two vectors across p processors, consists of p independent
saxpy’s. In contrast, a global dot product requires a global sum of the separate dot products
of the subvectors in each processor. The dot products are mainly used in orthogonalizing
sets of Krylov vectors and this constitutes one of the potential bottlenecks in a parallel
implementation of GMRES procedures. This is discussed in detail in Section 3.3.

3.1 FGMRES

The main Krylov accelerator used in this paper is the flexible variant of GMRES [18] known
as FGMRES [12]. This is a right-preconditioned variant that allows the preconditioning to
vary at each step. Since the preconditioning operations require solving systems associated
with entire subdomains it becomes important to allow the preconditioner itself to be an
iterative solver. This means that the GMRES iteration should allow the preconditioner to
vary from step to step within the inner GMRES process. One variant of GMRES which
allows this is called the flexible variant of GMRES (FGMRES) [12]. It is derived by ob-
serving that in the last step of the standard GMRES algorithm, the approximate solution
is formed as a linear combination of the preconditioned vectors z; = M~ 'v;,i = 1,...,m,
where the v;’s are the Arnoldi vectors [18]. Since these vectors are all obtained by applying
the same preconditioning matrix M ! to the v’s, we need not save them. We only need to
apply M~ to the linear combination of the v’s. If the preconditioner varies at every step,
then we need to save the ‘preconditioned’ vectors z; = M j*l'uj to use them when computing
the approximate solution. For further details on the algorithm, see [12].

3.2 Reverse Communication

An additional feature of our implementation of FGMRES is that we use “reverse commu-
nication”, a mechanism whose goal is to avoid passing data structures to the accelerator.
When calling a standard FORTRAN subroutine implementation of an iterative solver, we
normally need to pass a list of arguments related to the matrix A and to the precondi-
tioner. This can be a burden on the programmer because of the rich variety of existing
data structures. The solution is not to pass the matrices in any form. When a matrix —
vector product or a preconditioning operation is needed, the subroutine exits and the calling
routine performs the desired operation and then calls the subroutine again, after placing
the desired result in one of the vector arguments of the subroutine.

An important consequence of this implementation is that data structures associated
with the matrix and preconditioner are not needed in the calling sequence of the FGMRES
routine. Among the other operation in FGMRES, only the dot product requires global
communication. The dot product operation can be done with a ‘global reduction’ operation,
which is often provided in message-passing communication libraries.

SPARSE ITERATIVE SOLVERS ON WORKSTATIONS

3.3 Arnoldi Orthogonalization

One of the potential bottlenecks in a parallel implementation of GMRES is the orthogo-
nalization of the Krylov vectors in the Arnoldi procedure. As will be seen, the parallel
performance of GMRES can be strongly affected by the (parallel) performance of the or-
thogonalization procedure used, especially as the number of processors increases.

In sequential implementations, orthogonalization is typically carried out by a Modified
Gram-Schmidt Orthogonalization (MGSO) procedure which is usually sufficient. To or-
thogonalize a given vector w against j already orthogonal vectors v1,...,v;, MGSO uses
the following loop,

fori=1,...,5do
Compute h := (w, v;)
Compute w := w — hv;
EndDo
Compute ||w||2 and define v, := w/[|wl2.

ANl

It is typical to add a reorthogonalization step when loss of orthogonality is deemed severe
based on a test. A well-known difficulty with MGSO in a parallel computing environment
is that each of the inner products in line 2, must be done in sequence. Each global inner
product requires one global communication and this counts as one synchronization point in
the procedure. Adding the inner product in line 5, this means that we have exactly 7 + 1
synchronization points which may be rather expensive, particularly when the vectors are
short.

One remedy is to use the Classical Gram-Shmidt (CGSO) Orthogonalization which
reduces the number of synchronization points from j 4+ 1 to just 2. The main loop is as
follows.

Fori=1,...,5do
Compute h;; := (w,v;)
EndDo
Fori=1,...,5 do
Compute w := w — h;jv;
EndDo
Compute ||w||2 and define v, := w/[|wl2.

NS Ttk e

The first of the two synchronization points is associated with the inner products com-
puted by the first loop which can all be computed in parallel. The second is in the inner
product in line 7. For the larger Krylov subspace sizes, CGS without reorthogonalization
tends to perform poorly. Smaller block sizes could be used to reduce loss of orthogonality
but this may slow down convergence for harder, larger, problems. Ultimately, this is linked
to the quality of the preconditioner, since a good preconditioner reduces the number of
steps to achieve convergence, allowing the use of very small Krylov subspaces.

It is possible to reduce the synchronization points in CGSO further to only one by
reordering the computations. This ‘synchronized version’ will be called Synchronized Clas-
sical Gram-Schmidt Orthogonalization (SCGSO). It is based on the observation that the
normalization of w in Line 7 of CGSO be postponed until the next step of the algorithm —
keeping in mind that the vector v;;1 is not orthonormal. The algorithm is as follows.

AvrcoriTHM 3.1 SCGSO

SPARSE ITERATIVE SOLVERS ON WORKSTATIONS

Compute h;j := (w,v;) fori =1,...5 and t; = (vj,;).
Doi=1,...,5—1: hy = hyj/\/t;; Compute hj; := hj;;/t;
vj =i/
Fori=1,...,5do

Compute w := w — h;;v;
EndDo
Define vji1 :==w

NS S o=

One drawback of the above algorithm is that when reorthogonalization is to be un-
dertaken, then the overhead is high. The vector v; in Line 1, must be reorthogonalized
against all v}s, for 4 = 1,...,5 — 1. This cost is expected. However, a difficulty is that
in the traditional Arnoldi routines, the vector w typically depends on v;, in fact in the
unpreconditioned version, it is simply defined as w = Av;. This would mean that w = Av;
would have to be recomputed as well as its inner products with the v;’s. This is far more
expensive than in traditional reorthogonalization procedures. However, in the context of
FGMRES, variations in the vector v; are seen as perturbations which can be viewed as part
of the variations in the preconditioner. Also, since we typically perform a small number of
steps, reorthogonalization is rarely an issue, and near orthogonality is often sufficient. A
few experiments with the various orthogonalization procedures are reported in Section 6.2.

4 Preconditioning

The main preconditioners considered in this paper are based on Domain Decomposition
ideas. In Domain Decomposition methods the equations are solved by means of a succession
of solutions of local residual equations at each step. Domain Decomposition preconditioners
are essentially block preconditioners in which blocking is based on the domains. Variants of
block Jacobi and block Gauss-Seidel preconditioners are considered. The Schur complement
variants of these techniques will be introduced in a separate section.

4.1 Distributed block Jacobi preconditioning

Figure 2 will be used again to illustrate a few key points. Preconditioners can be derived
from Domain Decomposition techniques, the simplest of which is the so-called additive
Schwarz procedure. This form of block Jacobi iteration, in which the blocks refer to systems
associated with entire domains, is sketched next.

ALGORITHM 4.1 Block Jacobi Iteration (Additive Schwarz):
1. Obtain external data y; cqt
2. Compute (update) local residual r; = (b — Az); = b; — Aizi — XiYi ext
3. Solve A;6; = r;
4. Update solution x; = x; + 6;

It is interesting to observe that the required communication, as well as the overall structure
of the routine, is identical with that of Matrix — Vector products.

To solve the systems which arise in line 3 of the above algorithm, a standard (sequential)
ILUT preconditioner [14] combined with GMRES for the solves associated with the blocks
is used. A factor which can affect convergence is the tolerance used for the inner solve. As
accuracy increases the number of outer steps may decrease. However, since the cost of each

SPARSE ITERATIVE SOLVERS ON WORKSTATIONS

P,

Figure 4: Overlapping domains

inner solve increases, this often offsets any gains made from the reduction in the number of
outer steps to achieve convergence. This is illustrated in the numerical experiments section.

Of particular interest in this context are the overlapping Jacobi methods. In the domain
decomposition literature [1, 3, 6, 11] it is known that overlapping is a good strategy to reduce
the number of steps. There are however several different ways of implementing overlapping
block Jacobi iterations. The illustration of Figure 4 will help understand the options. For
simplicity, only three subdomains are shown. Some of the overlapping data in domain P;
will have two or three versions. For example the data in the overlapping triangle-shaped
subregion will overlap three times and therefore it has three versions, one for P, one for P;
and the local version associated with P;. When exchanging data during the iteration phase,
we can either (1) replace the local version of the data by its external version or (2) use some
average of the data. The advantage of averaging is that the vectors used to iterate are the
same.

4.2 SOR and SSOR preconditioners

A block Gauss-Seidel iteration can be easily carried out as a sequence of annihilations
or eliminations of the residual components of the system which are local to the processor.
Each elimination provides a correction to these local variables of the unknown vector. These
variables are then updated as well as the global residual vector. In order to implement this,
all that is required is a global order in which to perform these eliminations as well as some
global stopping criterion.

The global ordering can be based on an arbitrary labeling of the processors provided
two neighboring domains have a different label. The most common global ordering is a
multi-coloring of the domains, which maximizes parallelism [6, 5, 4, 13, 19].

Thus, if the domains are colored and the global ordering of the domains is the ordering
defined by the colors, the Gauss-Seidel iteration as executed in each processor would be as
follows:

ALGORITHM 4.2 Multicolor Block Gauss-Seidel Iteration

1. Docol =1,...,numcols

2 If (col.eq.mycol) Then

3. Obtain external data y; eqt

4 Update local residual r; = (b — Azx);

SPARSE ITERATIVE SOLVERS ON WORKSTATIONS

Figure 5: Multicoloring of the subdomains for a multicolor Gauss-Seidel sweep.

5. Solve Azéz =7T;
6. Update solution z; = z; + 6;
7. EndIf

Algorithm 4.2 is executed on each processor and a convergence test on the global residual
or some measure of the error must be included. This block Gauss-Seidel algorithm is
the simplest form of the Multiplicative Schwarz procedures used in domain decomposition
techniques [2, 9, 10, 7]. Many variations are possible, including overlapping of the domains,
inaccurate solves in step 5, inclusion of a relaxation parameter w, etc.

Normally, after a step is done with an active color, the processors of this active color
need only send data to the (inactive) neighboring processors. They need not receive any
new data from them since their interface data have not changed (and they themselves
will become inactive in the next color step). This can reduce communication times at the
expense of a more complicated code. Qur implementations do not take advantage of coloring
for communication, i.e., after each color step, all boundary data is exchanged.

One problem with multicoloring is that as the domains associated with a given color is
active, all other colors will be inactive. As a result it is typical to obtain only 1/numcol
efficiency if numcol is the number of colors. To alleviate this problem somewhat, we can
further block the local variables into two blocks: interior and interface variables. Then the
global SOR iteration is performed with this additional blocking.

In effect, each local matrix A; is split as

B; E; B, O 0 E;

A' = ’ t = ¢ ¢
' (Fz Ci) (0 Ci>+(Fi 0))
The B; part corresponds to internal nodes. The global diagonal blocking is now associated
with the block diagonal matrices in the first part of the right-hand side of (5). In a block-
Gauss-Seidel iteration, the equations associated with the interior variables are solved first.

Then a loop similar with the color loop of Algorithm 4.2 takes place for the interface
variables only. This 2-level block block Gauss-Seidel iteration is as follows,

ALGORITHM 4.3 Two-level Gauss-Seidel iteration
1. Solve B;d;y = Tiy4
2. u; = u+ 51',“
3. Docol =1,...,numcols
4. If (col.eq.mycol) Then

10

SPARSE ITERATIVE SOLVERS ON WORKSTATIONS

5 Obtain external data y; eqt

6 Update y-part of residual ;4

7. Solve CZ(SZ,y =Ty

8 Update interface unknowns y; = y; + 0; 4
9 EndIf

In our current implementation the exchange of data is the same as the one for multicolor
SOR and for block Jacobi.

The advantage of this procedure over the standard multicolor Gauss-Seidel iteration is
that the bulk of the computational work in each domain, which corresponds to the solves
with the internal variables, is done in parallel. Loss of parallelism comes from from the
color loop which involves only solves with interfaces, which is of lower complexity.

5 Schur complement techniques

Schur complement techniques refer to methods which iterate on the interface unknowns only,
implicitly using internal unknowns as intermediate variables. A global system involving
these interface unknowns can be easily obtained by eliminating internal variables from
the local equations, see [16]. Here we will focus on a general strategy for deriving Schur
complement techniques associated with arbitrary global fixed point iterations.

Consider the simplest case of a block-Jacobi iteration described earlier. The Schur
complement system is derived by eliminating the variable u; from the system (3) extracting
from the first equation u; = B;” 1(fi — E;y;) which yields, upon substitution in the second
equation,

Sivi+ Y Eyy; = g9i— FEB; f; (6)
JEN;

in which S; is the ‘local’ Schur complement:
S; =C; — F;B; 'E; (7)

The equations (6) for all subdomains i altogether constitute a system of equations which
involves only the interface points y;, 7 = 1,2,...,s and which has a natural block structure
associated with these vector variables. The diagonal blocks in this system, namely the
matrices S;, are dense in general but the off-diagonal blocks E;; are sparse. As is known,
with a consistent choice of the initial guess, a block-Jacobi (or Gauss-Seidel) iteration with
the reduced system is equivalent with a block Jacobi iteration on the global system, see,
e.g., [16]. A block Jacobi iteration on the global system takes the following local form:

e

-1

A (fi .)
b \gi — Xjen, Eijyj(-)

(Lo se) (o m®)
= - - _ k
—-S7'EB; S) \gi— > jen; Eijyj(-)

11

SPARSE ITERATIVE SOLVERS ON WORKSTATIONS

Here a * denotes a nonzero block whose actual expression is unimportant. The important
observation is that the y iterates satisfy an independent relation of the form,

yV =57 g - BB fi— Y Byl

JEN;

(8)

If we call g} the right-hand side of the reduced system (6) then (8) can be rewritten as

P =) 4 g

Zyz Z EZ]y] (9)

JEN;

which is nothing but a Jacobi iteration on the Schur complement system.

In summary, the sequence of the y-part of the Jacobi vectors on the global system can be
viewed as a sequence of Jacobi iterates for the Schur complement system. A similar result
holds for the Gauss-Seidel iteration as well. From a global viewpoint, we have a primary
iteration for the global variable of the form,

2 = M2® 4 ¢ (10)

and the vectors of interface variables y associated with these iterates satisfy an iteration of
the form,
y k) = Gy®) 1y (11)

The matrix G is not known explicitly but it is easy to advance the iteration by one step
from an arbitrary (starting) vector v, meaning that it is easy to compute Gv + h for any v.

Now the idea is to accelerate the sequence y*) with a Krylov subspace algorithm such
as GMRES. One way to look at this acceleration procedure is that we are attempting to
solve the system

(I-Gy=h (12)

To solve the above system with a Krylov-type method an initial guess and corresponding
residual are needed. Also, the Krylov iteration requires a number of matrix-vector product
operations. The right-hand side h can be obtained from one step of the iteration (11)
computed for the initial vector 0, i.e.,

h=(Gx0+h)
Given the initial guess %(*) the initial residual s(O) = h — (I — @)y(®) can be obtained from
O = b (O _ Gy®) = 4@ _ O

Matrix-vector products with I — G can be obtained from one step of the original iteration.
To compute w = (I — G)y proceed are as follows,

1. Perform one step of the primary iteration (Z:) =M (2) + ¢
2. set w:=1y;

3. Compute w:=y—w-+h

This strategy allows to derive a Schur complement technique for any primary fixed-point
iteration on the global unknown. Among the possible choices are the Jacobi, and SOR iter-
ations, with and without overlap, as well as iterations derived (somewhat artificially) from
ILU preconditioning techniques. The main advantages of this viewpoint are the generality
and flexibility of the formulation.

12

SPARSE ITERATIVE SOLVERS ON WORKSTATIONS

6 Numerical Experiments

In this section, we report on some results obtained for solving distributed sparse linear
systems on an IBM SP2 with 10 nodes, an IBM cluster of 8 workstations, and an SGI
Challenge cluster. The IBM SP2 available to us has a maximum of 10 processors. The
SGI challenge workstation cluster consists of three 4-processor Challenge L workstations
one 8-processor Challenge XL workstation. The processors on the Challenge L and XL are
the same (R4400) but the memory configurations are different. Communication between
different SGI cluster workstations (resptively IBM RS workstations) is performed with a
Fibre-Channel switch (respectively, an ATM switch) using the MPI communication library.
The SP-2 nodes communicate with a High-Performance switch.

6.1 The test problems

Seven test matrices have been used, with sizes ranging from fairly small to large. Table 1
shows the sizes and number of nonzero elements of these matrices along with some infor-
mation on their pattern. A ‘Sym’ symbol indicates that the sparsity pattern is symmetric
and a ‘NonSym’ symbol indicates a nonsymmetric pattern. When the pattern of a matrix
is nonsymmetric then its symmetrized version is used for the purpose of partitioning. The
matrices are sometimes scaled (rows then columns are scaled by their 2-norms) and this
is also indicated on the ‘Scaling’ column. The first two of these matrices are from the
Harwell-Boeing collection. The EX matrices are from the FIDAP subcollection of matrices
and the last two are from a NASA subcollection 1.

Matrices | Dimension NNZ | Scaling | Pattern
Harwell-Boeing:
PORES2 1224 9613 No | NonSym
SHERMANS 3312 20793 No | NonSym
FIDAP:
ex20.mat 2203 69981 Yes Sym
ex27.mat 974 40782 Yes Sym
ex37.mat 3565 67591 No Sym
SIMON:
RAEFSKY3 21200 | 1488768 No Sym
VENKATO01 62424 | 1717792 No Sym

Table 1: The test matrices

All problems are tested in the following manner. The matrix is read on one workstation.
Then the graph partitioning is done on this workstation and the matrix and right-hand side
are then distributed. The distributed sparse system solver is then invoked to solve the
resulting distributed sparse linear system.

6.2 Experiments with Arnoldi Orthogonalization

Table 2 compares MGSO, CGSO, and SCGSO on the SGI cluster with two different machine
configurations. In the four workstations case, using four processors means a configuration

LAll these matrices are available via anonymous ftp

13

SPARSE ITERATIVE SOLVERS ON WORKSTATIONS

of one processor per machine and using eight processors means a configuration of two
processors per machine.

1 workstation
Matrix | Procs | MGSO | CGSO | SCGSO
RAEFSKY3 1 107.8 107.8 109.5
4 87.3 53.1 46.7
8 102.6 44.8 36.0
VENKATO01 1 335.1 357.0 358.2
4 170.2 116.5 111.5
8 138.8 80.1 69.3

4 workstations
RAEFSKY3 1 107.8 107.8 109.5
4 167.3 110.5 70.9
8 184.6 117.0 67.1
VENKATO01 1 335.1 357.0 358.2
4 261.5 272.0 225.8
8 208.8 159.4 96.1

Table 2: MGSO, CGSO, and SCGSO on the SGI cluster

These examples show that when m is large and more processors are used then the Mod-
ified Gram Schmidt Orthogonalization (MGSO) may generate long synchronization delays
and lead to poor performance. They also indicate that the impact may be more damag-
ing for small size problems. The Synchronized Classical Gram-Schmidt orthogonalization
procedure (without reorthogonalization) is the overall winner. However, if a large Krylov
subspace dimension must be used, the compromise offered by the classical Gram-Schmidt
with reorthogonalization may be safer. Reorthogonalization may be performed only when
needed, as determined by a test suggested by Daniel et al. [8].

6.3 Different cluster configurations

When a fixed number of processors (e.g. 16) is available, there are many different ways to
configure a cluster. We can put all 16 processors into one box or have 8 in each of 2 boxes
or 4 in each of 4 boxes. It is expected that computations done in the same box will be
faster. However, it is important to have an idea on how much is lost when a computation is
done across different boxes versus when it is done on a single computer. Many factors are at
play, including the speed of the internal bus and the memory configuration (4-way interleave
versus 2-way interleave for example), the speed and latency of the high-speed network, etc..
The experiments which follow give one such comparison. When preconditioning is used,
for different numbers of processors, different preconditioners result. In obtain to obtain
comparable data, we use GMRES without preconditioning.

Table 3 shows the performance of GMRES(15) for the matrices RAEFSKY3 and VEN-
KATO1. The header ‘SGI k£ Wst’ indicates the type and number of workstations used.
The processors indicated in the next line are divided equally (when applicable) among the
workstations. For example, for the ‘4 Wst’ configuration with 8 processors, each workstation
has 2 processors. and for the ‘4 Wst’ configuration with 4 processors, each workstation has 1

14

SPARSE ITERATIVE SOLVERS ON WORKSTATIONS

matrix size = 62424
80 T

70 b .
60
50
40
30
20
10

0 .

1 4 8
Processors

Timein Seconds

Figure 6: MGSO, CGSO, and SCGSO on IBM SP2

processor. The table also shows the speed-up and efficiency for the non-trivial cases of 4 and
8 processors. As can be seen, there is a loss of efficiency when going out of a workstation.
The loss is not too damaging for the larger problems but other experiments show that it
could be dramatic for smaller problems. The efficiency of 57% is achieved on 8 nodes on the
SP2 as opposed to 40% on 8 processors distributed on 4 Challenges, and 70% on a single
box 8-processor Challenge.

SGI 1 WSt SGI 4 WSts IBM SP2
1 4 8 1 4 8 1 4 8
RAEFSY3. | 598.8 | 176.7 | 105.4 | 598.8 | 238.8 | 184.3 | 118.1 | 40.4 | 25.5
Speed-up: 3.38 | 5.67 2.50 | 3.24 2.92 | 4.62
Efficiency: 84% | 70% 62% | 40% 73% | 57%
VENKATOL. | 957.3 | 278.7 | 160.0 | 957.3 | 455 .6 | 249.9 | 190.1 | 73.3 | 41.7
Speed-up: 3.43 | 5.98 2.10 | 3.83 2.59 | 4.55
Efficiency: 85% | 4% 52% | 4% 64% | 56%

Table 3: Execution times, speed-ups, and efficiencies for performing 1500 steps of GMRES
with various cluster configurations

6.4 Experiments with block Jacobi preconditioning

We now compare the results obtained with the distributed block Jacobi preconditioner
using the three different overlapping options as described in Section 4.1. These results are
summarized in Table 4. In the table, Jaco_no stands for block Jacobi with no overlapping,
Jaco_ov_av for block Jacobi with overlapping and averaging of the overlapping data, and
Jaco_ov for block Jacobi with overlapping and exchange of overlapped data. In the table its

15

SPARSE ITERATIVE SOLVERS ON WORKSTATIONS

is the number of FGMRES iterations. The comparison shows that overlapping can reduce
the total number of iterations. A comparison of the results shows that Jaco_ov is usually
faster than the other two options.

Number of Processors

Matrix Method 1 2 4 8 16
its time | its time | its time | its time | its time
SHERMANS Jacno| 6 042 6 04219 1.16 |31 2.32| 80 27.08
Jac_ov_av 7 0.50 7 049 |12 072 |16 1.44 | 23 8.10
Jaccov| 7 049 | 7 049 |12 07016 1.22 |30 104
RAEFSKY3 Jacno| 4 127 9 194 |11 11.7| 13 6.6 | 8 3.6
Jacoviav| 4 149 | 5 104 | 6 872 | 7 6.26| 6 3.98
Jacov | 4 148 | 5 971 | 7 816 | 7 405| 7 3.22
VENKATO01 Jacno| 5 30.7 13 453 |14 24016 152 |16 12.0
Jacoviav| 5 309 | 8 284 | 9 288 |11 16.8 |11 12.7
Jac_ov 5 31.0 9 30.8 9 164 |11 113 | 11 8.25

Table 4: Comparison of FGMRES with distributed block Jacobi preconditioner and three
different domain overlapping strategies

The next results are obtained on the IBM SP2. Table 5 shows how requiring more
accuracy in the inner solver can affect the outer solver. Both number of steps and time are
shown. The main conclusion from the table is that in most cases, it does not seem to pay
to perform more inner iterations.

Matrix size | inner its Number of Processors
1 2 4 8
its time | its time | its time | its time
ex37.mat 1 50.17 50.15 6 0.14 7 0.25
3 50.14 50.13 6 0.11 7 0.12
5 5 0.14 50.13 6 0.11 7 0.11
RAEFSKY3 1 9 4.52 8 2.26 71.14 70.73
3 6 3.92 5 1.75 7 1.60 6 0.71
5 4 2.77 41.59 7 2.07 6 0.91
10 4 3.96 42.08 7 2.39 6 1.31

Table 5: Comparison on the IBM SP2, of various choices for the number of steps in the
inner solver

6.5 Experiments with block Gauss-Seidel preconditioner

Table 6 shows a comparison of multicolor Gauss-Seidel and block Jacobi preconditioners
on the IBM SP-2. On each subdomain the systems are solved ILU solves, with LU factors
obtained from an ILUT factorization. The msor_s preconditioner refers to the two-level
multicolor Gauss-Seidel preconditioner in which the interface data is solved for after the

SPARSE ITERATIVE SOLVERS ON WORKSTATIONS

Matrix size = 62424
50 T T T

45
40
35
30 Fe N : _
25
20
15

Timein Seconds

Processors

Figure 7: Timing for overlapped block Jacobi on the SGI cluster

Matrix size = 62424

20 T T T

Number of iterations

1 2 4 8 16
Processors

Figure 8: Iteration count for overlapped block Jacobi on the SGI cluster

17

SPARSE ITERATIVE SOLVERS ON WORKSTATIONS

interior data. As can be seen this approach is very close to the block Jacobi iteration. As
was already explained, the Multicolor SOR scheme used here involves a high of idle time
corresponding to the fact that one color is active at any one time.

Number of Processors
Matrix Method 1 2 4 8
its time | its time | its time | its time

RAEFSKY3 Jacov | 11 11.71 | 10 5.68 | 10 3.46 | 10 1.88
msor | 11 9.16 | 10 6.42 | 12 580 | 10 3.27
msors | 11 920 | 10 4.89 | 10 3.47 |10 2.66

VENKATO01 Jac.ov | 20 30.05 | 20 1545 | 21 942 | 25 6.27
msor | 20 23.84 | 21 1832 | 22 16.96 | 25 10.63
msors | 20 23.91 | 21 13.74 | 22 10.60 | 24 6.73

Table 6: Block Jacobi versus Multicolor Gauss-Seidel on the IBM SP-2.

6.6 Experiments with Schur complement techniques

Before discussing the results obtained with the Schur complement technique, it is worth
pointing out that these techniques are often implemented in conjunction with direct solvers.
These solvers are invoked either to compute the actual Schur complement matrix, in forming
the Schur complement system, or for solving the successive linear systems which arise during
the iterative process. If an iterative process is to be used instead of a direct solver, it is
important to note that the solves involved with the Schur complement iteration process
must be accurate. This represents the main weakness of Schur complement techniques. The
experiments we performed confirm this fact. As is shown in Table 7, the Schur complement
approach is not competitive with the standard primary preconditioners from which they are
defined. In the table ’itsgmr=1’ represents a scheme in which only one step of the primary
iteration is performed, while ’itsgmr=>5’ represents the scheme in which five (at most) steps
are taken. The ’fgmr’ columns represent the times spent in FGMRES alone and ’tot’ is
the total time. It is observed that there are significant savings in the orthogonalization
times (FGMRES) due to the shorter vectors involved in the FGMRES iteration. However
these times are only a small percentage of the total time. In fact, in the Schur complement
techniques, most of the time is spent in the accurate solutions related to the primary
preconditioning scheme.

6.7 A performance comparison on different machines

Figure 9 shows the times achieved for various machines to solve a linear system with the
VENKATO01 matrix. We must mention that the y coordinate in the plot is not to scale. The
Cray time and the Sun time are provided only as reference points. For example, the time
achieved on the CRAY C-90 is on one processor and the code has not been optimized for
vectorization. Since the ILUT code used is fairly scalar in nature, it is not too surprising
that one IBM RS 6000 processor achieves a similar speed. The performances shown for
the SGI cluster are for all processors in one workstation. Notice how the gains in speed-
up become smaller of the SP-2 after the number of processors exceeds 4. One the IBM
workstation cluster the gains are not as good initially but improve steadily as the number

18

SPARSE ITERATIVE SOLVERS ON WORKSTATIONS

block Jacobi Schur block Jacobi
itsgmr = 1 itsgmr = 5 itsgmr = 1 itsgmr = 5
Procs | its fgmr tot | its fgmr tot | its fgmr tot | its fgmr tot
1 13 .02 10.05 5 .122 6.67 1 0 494 1 .0 21.38
2 12 29 557 5 07 4.04 | 10 .016 30.23 | 3 .043 45.38
4 12 A9 0 327 6 .059 290 | 11 .061 1930 | 3 .024 27.29
8 17 19 265 9 .067 253 |12 .066 11.87| 4 .025 19.94
10 16 A3 197 |10 .073 221 |11 .069 732| 4 .036 12.22

Table 7: Schur complement techniques for the test matrix VENKATO1 on the IBM SP2

T T T T T T T
54 SSUN. i
(%2}
©
c
:
£
2 SGI(R4400)
= 10 .
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Cay
T IBM RSEK
““““““““““““ ~ IBM SP2
1 1 1 1 1 1 1

2 4 6 8 10 12 14 16
Processors

Figure 9: Performance comparison for different machines

of processors increases. Overall, the SP-2 achieves a fairly good performance for the solution
of unstructured sparse linear systems of equations.

6.8 Where is the time spent?

Figures 10 presents a breakdown of the times spent in a typical solution. The results are
for the matrix VENKATO1, using a relative tolerance of ¢ = 107% and a Krylov subspace
dimension of m = 15. The figure shows that all contributions decrease as the number of pro-
cessors increases at the exception of the FGMRES time (dominated by orthogonalization)
which moves up slightly in going from 8 to 16 processors.

7 Conclusion

Thanks to the availability of communication libraries such as MPI and PVM, and inex-
pensive network technologies, workstation clusters have recently become one of the most

19

SPARSE ITERATIVE SOLVERS ON WORKSTATIONS

35 . . T
"total" —
30 "precond" ----- .
---------- . “fgmres' -
o5 | . "matvec"
g 20 +
£
e 15 |
=
10 +
Sr \\\\t:
O I' D
1 2 4 8 16

Processors

Figure 10: Contributions to total execution time for a distributed block Jacobi precondi-
tioner with overlapping

promising paradigms for high performance computing. Our main conclusion from the ex-
periments in this work is that workstation clusters can be effectively used to solve very large
sparse linear systems. Small systems can be handled more efficiently on a single workstation.
The break-even point depends on many factors and is a function of the architecture param-
eters and the iterative solution techniques used. For example, any improvements in latency
and bandwidth will allow us to solve smaller problems more efficiently, thus moving down
the break-even point. For very large problems, communication becomes less of an issue as
it is small relative to computation. For these problems, avoiding idle time and achieving a
more effective utilization of the memory and the processors becomes more important.

Of all the preconditioning options we have tried, the overall winner is the overlapping
Additive Schwarz (overlapping block Jacobi). Within each subdomain an effective iterative
solver can be used. However, we found that using one step of an ILU solve with an accu-
rate ILUT factorization is usually less expensive. Other preconditioning options exist, see
e.g. [15], which have not been tested here. As the number of processors increases these
alternatives may become preferable.

References

[1] P. E. Bjgrstad. Multiplicative and Additive Schwarz Methods: Convergence in the 2
domain case. In Tony Chan, Roland Glowinski, Jacques Périaux, and O. Widlund,
editors, Domain Decomposition Methods, Philadelphia, PA, 1989. STAM.

[2] P. E. Bjgrstad and O. B. Widlund. Iterative methods for the solution of elliptic prob-
lems on regions partitioned into substructures. SIAM Journal on Numerical Analysis,
23(6):1093-1120, 1986.

20

SPARSE ITERATIVE SOLVERS ON WORKSTATIONS

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

P. E. Bjgrstad and O. B. Widlund. To overlap or not to overlap: A note on a domain
decomposition method for elliptic problems. SIAM Journal on Scientific and Statistical
Computing, 10(5):1053-1061, 1989.

X. C. Cai and Y. Saad. Overlapping domain decomposition algorithms for general
sparse matrices. Numerical Linear Algebra with Applications, 1996. To appear.

X. C. Cai and O. Widlund. Multiplicative Schwarz algorithms for some nonsymmetric
and indefinite problems. SIAM Journal on Numerical Analysis, 30(4), August 1993.

Xiao-Chuan Cai, William D. Gropp, and David E. Keyes. A comparison of some
domain decomposition and ILU preconditioned iterative methods for nonsymmetric
elliptic problems. J. Numer. Lin. Alg. Appl., June 1993. To appear.

T. F. Chan and T. P. Mathew. Domain decomposition algorithms. Acta Numerica,
pages 61-143, 1994.

J. W. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart. Reorthogonalization and
stable algorithms for updating the Gram-Schmidt QR factorization. Math. Comput,
30:772-795, 1976.

Maksymilian Dryja and Olof B. Widlund. Towards a unified theory of domain decom-
position algorithms for elliptic problems. In Tony Chan, Roland Glowinski, Jacques
Périaux, and Olof Widlund, editors, Third International Symposium on Domain De-
composition Methods for Partial Differential Equations, held in Houston, Texas, March
20-22, 1989. STAM, Philadelphia, PA, 1990.

Maksymilian Dryja and Olof B. Widlund. Some recent results on Schwarz type domain
decomposition algorithms. In Alfio Quarteroni, editor, Sizth Conference on Domain
Decomposition Methods for Partial Differential Equations. AMS, 1993. Held in Como,
Ttaly, June 15-19,1992. To appear. Technical report 615, Department of Computer
Science, Courant Institute.

William D. Gropp and Barry F. Smith. Experiences with domain decomposition in
three dimensions: Overlapping Schwarz methods. Technical report, Mathematics and
Computer Science Division, Argonne National Laboratory, 1992. To appear in the
Proceedings of the Sixth International Symposium on Domain Decomposition Methods.

Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM Journal on
Scientific and Statistical Computing, 14:461-469, 1993.

Y. Saad. Highly parallel preconditioners for general sparse matrices. In G. Golub,
M. Luskin, and A. Greenbaum, editors, Recent Advances in Iterative Methods, IMA
Volumes in Mathematics and Its Applications, volume 60, pages 165-199, New York,
1994. Springer Verlag.

Y. Saad. ILUT: a dual threshold incomplete ILU factorization. Numerical Linear
Algebra with Applications, 1:387-402, 1994.

Y. Saad. ILUM: a parallel multi-elimination ILU preconditioner for general sparse
matrices. SIAM Journal on Scientific Computing, 1996. To appear.

21

SPARSE ITERATIVE SOLVERS ON WORKSTATIONS

[16]

[17]

[18]

[19]

Y. Saad. Iterative Methods for Sparse Linear Systems. PWS publishing, New York,
1996.

Y. Saad and A. Malevsky. PSPARSLIB: A portable library of distributed memory
sparse iterative solvers. In V. E. Malyshkin et al., editor, Proceedings of Parallel Com-
puting Technologies (PaCT-95), 3-rd international conference, St. Petersburg, Sept.
1995, 1995.

Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Com-
puting, 7:856-869, 1986.

J. N. Shadid and R. S. Tuminaro. A comparison of preconditioned nonsymmetric krylov
methods on a large-scale mimd machine. SIAM J. Sci Comput., 15(2):440-449, 1994.

22

