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Abstract

Domain Decomposition techniques constitute an important class of meth-
ods which are especially appropriate in a parallel computing environment.
However, few general purpose computational codes based on these tech-
niques have been developed so far. In this paper, we propose one such solver
developed around the idea of ‘distributed sparse matrices’. We explore is-
sues related to data structures for distributed sparse matrices, simple matrix
operations, as well as the implementations of the iterative solution kernels
and analyze their performance on different architectures. We also describe a
preliminary version of a portable library of parallel sparse iterative solvers,
P-SPARSLIB, which encompasses the proposed concepts.

Keywords: Sparse matrix, Domain decomposition, Iterative solver,
Parallel computer, Distributed memory



1 Introduction

Domain decomposition (DD) has emerged as a fairly general and conve-
nient paradigm for solving Partial Differential Equations (PDEs) on parallel
computers ( see, e.g. [Quarteroni 1994]). Typically, a physical domain is
partitioned into several sub-domains and some technique is used to recover
the global solution by a succession of solutions of independent subproblems
associated with the subdomains. Each processor handles one or several
subdomains in the partition and then the partial solutions are combined,
typically over several iterations, to deliver an approximation to the global
system. All DD techniques rely on the fact that each processor can do a
large part of the work independently, and the work to construct the global
solution from the partial solutions is not too expensive relative to that of
obtaining these partial solutions.

In order to implement DD techniques efficiently and for realistic problems
we need to keep in mind the following requirements.

1. In order to be able to deal with the most complex problems that arise
in realistic applications, it is vital to provide automatic tools for per-
forming the many tasks that would otherwise make the implementation
impractical.

2. Flexibility is critical in a general purpose DD implementation. A gen-
eral purpose DD library must be able to accommodate various data
structures, iterative solvers, preconditioners, and be adaptable to new
computer architectures.

3. The message passing programming paradigm represents one of the best
possible environments for DD techniques. In addition, DD techniques
may also benefit from a heteregenous computing environment.

Consider the first item in the above list. In order to implement a domain
decomposition approach we need a number of numerical and non-numerical
tools for performing the preprocessing tasks required to partition a domain
and map it into processors, as well as to set up the various data structures. It
is important to be able to perform such tasks automatically. The dependency
between the unknowns in the problem is often conveniently represented by
a graph. One of the basic tasks to be performed is to find a partition of the
graph into subgraphs whose union is equal to the original graph. Ideally,



the subdomains should have roughly equal size, although criteria of load
balancing other than subdomain size can also be used. Once the graph
partitioning is done, we must find a good subdomain to processor mapping
to minimize the inter-processor communications. A general recipe for this
task is difficult to find, since it is architecture- and problem-dependent. The
library must include preprocessing routines to set-up the data structures
and prepare for the iterations.

There is often a trade-off between the second and the third items in
the above list of requirements, namely between flexibility and performance.
The functions whose performance is critical for the overall speed of a code
must often be tuned-up for a particular environment. To achieve good per-
formance it is necessary to isolate these routines in order to adapt them
to changes in computer architecture and programming environment. For
this reason, a general purpose library must have a hierarchical structure.
All the functional routines (iterative solvers and preconditioners) must not
depend on a particular data structure or a message-passing library. They
must instead rely on a lower level set of basic kernels and tools. We have
employed a ‘reverse communication mechanism’ in order to make the major
components of the library free of any particular data structures. In addi-
tion we have aimed at making the code as machine-independent as possible
in order to keep the bulk of the routines reusable if an architecture or a
message-passing paradigm changes. We have avoided to embrace any of the
proposed message-passing standards such as PVM [Beguelin et al. 1993]
or MPI [Gropp et al. 1994] throughout the code, but have rather isolated
the communications routines in order to be able to port them with minor
efforts and to utilize the vendor-supplied software and hardware solutions.
We have assembled the communications routines in a toolkit which together
with the basic linear algebra routines (BLAS) serves as a module of ‘basic
kernels’, both computatutional and communicational, for the library.

Loosely coupled parallel computers provide a perfect framework for im-
plementing DD-type algorithms since processors can perform fairly sub-
stantial coarse grain tasks such as local solutions, between synchronization
points. In addition there is a large number of possible combinations of
different algorithms to choose from. As will be seen, it is rather easy to
develop preconditioners specifically for distributed sparse matrices. On the
other hand, this added flexibility does not come for free, and programming
is typically more complex.



2 Graph partitioning concepts

Here we take a slightly more general viewpoint than that commonly used in
the PDE framework, and we consider general sparse linear systems as the
starting point. The dependency between the unknowns in the linear system
is often conveniently represented by an adjacency graph. The nodes of the
graph may represent vertices of a physical mesh for a discretized PDE, and
we will sometimes call the unknowns ‘nodes’ or ‘vertices’. The matrix can
also originate from an application other than PDEs, e.g. electrical networks,
or queuing models.

One of the first tasks to be performed when solving a sparse linear system
in parallel is to partition the linear system and map it into the processors.
This can be achieved by partitioning the adjacency graph of the matrix into
p subgraphs, whose union is equal to the original graph. We are given a
graph (V, E) where the vertex set V represents the set of unknowns and the
edge set E represents the connectivity between these unknwons as defined
by the sparse matrix. We partition the vertex set V into p subsets V1,...,V},
This results in a partition of the original graph in p subgraphs, (V;, E;). The
edge sets E; describe the connectivity between vertices belonging to V; to
other nodes, possibly belonging to subsets other than V;. For simplicity,
we assume that a vertex subset V;. and its subgraph are associated with a
processor ¢ of a distributed-memory computer. We call a map of V, any set

V1, Va, ..., Vs, of subsets of the vertex set V', whose union is equal to V:
vcv, Uv=v (1)
1=1,s

When all the subsets V; are not pairwise disjoint (i.e. some unknowns
belong to more than one subset) the term ‘partition’ conflicts with common
usage, but we will use the term ‘overlapping partition’ in this case. Efficient
partitioning or node-to-processor mapping is often a problem-dependent
task, but a number of heuristics for general sparse matrices have been de-
veloped (see, e.g., [Pothen et al. 1990; Goehring and Saad 1994)).

The most general way of describing a node-to-processor mapping is to
set up a list for each processor, containing all the nodes that are mapped
to that processor. A graph partitioner may provide such a set of lists in a
standard pointer-list representation of the following form.



PTR=|1 5 7 9 13
IST=(1 2 5 6 3 4 9 10 7 8 11 12

The LST array lists all the vertices of subdomain 1 followed by those
of subdomain number 2, etc... PTR is a pointer array the entries of which
point to the beginning of the sublist for each subdomain in the array list.
Thus, in the above example, the vertices 1, 2, 5, 6, belong to subdomain
number 1, vertices 3, 4, to subdomain 2, vertices 7, 8, 11, 12 to subdomain 3,
vertices 9, 10, to subdomain. This corresponds to the illustration in Fig. 1.

There are two issues which can be raised relative to these mappings.
First, we wish to be able to find good partitionings of the original graph
into subgraphs. We use techniques requiring only graph theory — since we
do not necessarily have coordinates of the vertices. The goal is to find a
partition of the graph which achieves a good load balancing of the work
among the processors and would give a small ratio of communication over
computation with external processors during the iterative procedure. A
number of strategies have been described in the literature the best known
of which is the Recursive Spectral Bisection algorithm [Pothen et al. 1990]
and its many variations, see, e.g., [Hendrickson and Leland 1992; Leet et
al. 1993]. There are also a number of simpler and less expensive heuristics
which do work fairly well in practice, see for example [Goehring and Saad,
1994].

The second problem is to find a good mapping of the subdomains or sub-
graphs to the processors, once a graph partitioning is found. This subgraphs-
to-processor mapping can generally be architecture-dependent. However,
the partitioning algorithm can clearly take advantage of a measure of how
good a given partitioning may be, by using different weight functions for
the vertices, for vertex-based partitionings. We could also search for a good
mapping which will minimize communication costs given some knowledge
on the architecture. Our motivation here is that it is far easier to first find
an architecture-independent partition, and then, in a second phase, find the
proper mapping to the given architecture. Currently, many parallel comput-
ers are built with the goal of attempting to make the system emulate a fully
connected computer by minimizing the difference in performance between
different mappings.

We can define a binary relation between te subdomains to translate the
existence of edges that leave from a subdomain and reach a node in another
subdomain. This clearly defines a graph, referred to as a quotient-graph



or Q-graph, associated with the decomposition. Nodes of the Q-graph will
represent subdomains (subgraphs) and there is an edge from one vertex to
another in the Q-graph when there is at least one edge in the original graph
from a node of the first subdomain to a node of the second subdomain.

Given a map {V;}i=1,..s of a graph G = (V, E) we define a graph Gg =
(Vg, Eq) whose vertices labeled ¢ = 1,...,s represent the subsets V;,i =
1,...,s, and whose edge set is

Eqg ={(i,j),i,j € Vg, st. we Viw eV, (v,w) € E}

Thus, the Q-graph associated with the graph partitioning illustrated in Fig. 1
is shown in Fig. 2. The definition of a Q-graph given here is similar to
the common definition of quotient graphs in [George and Liu 1981] except
that we allow subgraphs to have common nodes. The ) graph indicates
which subdomains or subgraphs need to exchange data with one another
in an iterative solution procedure. It is therefore important to extract this
information in the preprocessing phase which preceeds the execution of an
iterative method for solving a distributed sparse linear system.

We have defined the above partitioning in terms of vertices (nodes) being
assigned to processors. We may in some cases, wish to assign edges of the
graph to processors, or even elements in a finite-element type approach.
There is no conceptual difference between these mappings, since edge-based
partitionings can be viewed as vertex-based partitionings on the dual graph.
Recall that a dual graph of a graph G = (V, E), is defined as a graph whose
vertex set is E/, and whose edge set is the set of pairs of edges in the original
graph sharing a vertex.

3 Distributed sparse matrices

Sparse matrix-by-vector multiplications are among the most expensive op-
erations in an iterative solver, and their performance may strongly influence
the overall speed of the scheme. In this section, we describe the data struc-
tures or ‘formats’ used for storing distributed sparse matrices. We will also
show how to perform matrix-vector products in these formats. The goal of
the ‘distributed sparse matrix’ data structure is to minimize inter-processor
communication and allow an overlap between computations and communica-
tions whenever possible. The proposed communication formats only assume
that the matrix is distributed row-wise among the processors, but do not



specify the local storage mode. The same communication formats can be
combined with local matrices stored in the Compressed Sparse Row (CSR),
Block Sparse Row (BSR), Jagged Diagonal format (JAD), or even dense
storage mode.

Assume that we have a convenient partitioning of the graph, as defined by
a certain node (vertex) to processor mapping. We distinguish the following
four different classes of nodes relatively to a subdomain (processor) i:

1. internal nodes;

2. local interface nodes;

3. external interface nodes;

4. nodes not connected to a processor 1.

A node is internal to a subdomain %, (or, equivalently to processor ¢ hold-
ing the subset V;) if it is connected only to the elements of V;. The local
interface nodes are connected to elements of other subsets. The external
interface nodes are the nodes which belong to the other processors but are
connected to vertices of V;. All three types of nodes must be represented
in a local data structure in order to perform matrix-by-vector products effi-
ciently. These definitions are illustrated in Figure 3. With these definitions
in mind, we now need to set up a local data structure in each processor for
a distributed matrix which will allow us to carry out the basic operations
such as a matrix-by-vector product. First, we recall that we are assuming
that all vectors associated with any solution procedure, including solution
vectors, right hand-sides, and Krylov vectors, are partitioned conformally.
In other words the components of a global vector z whose indices belong to
Vi are mapped to Processor (subdomain) 7. Thus, to add two global vectors
it suffices to add all the local representations of these two vectors. To per-
form dot product, we need to perform a dot product for each pair of these
local representations and then sum-up all the local results. If row number
k is mapped into processor i then so is the unknown k, i.e. the matrix
is distributed row-wise across the processors according the distribution of
the variables. The first step in setting up the local data-structure prior to
executing an iterative algorithm for a distributed sparse matrix is to have
each processor determine the set of all other processors with which it must
exchange information when performing matrix-vector products. Although
these are not necessarily physical neighbors, they hold subdomains that are



adjacent to the subdomain that is mapped to them. For simplicity, and
by analogy with the name used in the actual codes that are run on each
processor, we will refer to the label of a given processor in which a copy of
the (same) code is executed on each processor as myproc.

The information needed to find these neighboring processors is contained
in the global node-to-processor mapping array described in the previous
section. For simplicty we will assume for this description that there is no
overlap, i.e., any node j belongs to only one processor, which we denote by
map(j). The local rows are inspected one by one and for each nonzero a;;
with map(j) # myproc, where myproc is the label of the current processor,
we add map(j) to the list of neighboring processors if it is not already listed.
In the overlapping case, map(j) can actually be a set having more than one
element, so the linked list structure for node 5 must be crossed each time.
We store the labels of the neighboring procesors in an array proc(1 : nproc)
where nproc is the number of processors found.

In this phase, each processor myproc will also determine its external
interface nodes, or the nodes which belong to the neighboring processors
and are coupled with the local interface nodes of that processor. When per-
forming a matrix-by-vector product, neighboring processors must exchange
values of their adjacent interface nodes. In order to perform this data ex-
change operation efficiently, it is important to group these nodes processor
by processor. Thus, we first list all those nodes which must be sent to
proc(1), followed by those to be sent to proc(2) etc.. Two arrays are used
for this purpose, one called iz which lists the nodes as indicated above and
a pointer array ipr which points to the beginning of the list for proc(i).
At the end of the preprocessing step each processor myproc must have the
following information.

1. nproc — The number of all adjacent processors, i.e., processors with
which processor myproc will be exchanging information.

2. proc(1l:nproc) — List of the nproc adjacent processors.

3. ix — The list of local interface nodes, i.e., nodes whose values must
be exchanged with neighboring processors. The list is organized proc-
cessor by processor in order to perform the data exchange efficiently
using a pointer-list data structure.

4. ipr — The pointer to the beginning of the list in array ix of each of



nproc neighboring processors.

This information is extracted by examining the adjacency graph as well
as the partitioning. It is performed in each processor independently if the
adjacency graph is available in each node.

4 Distributed matrix-by-vector multiplication

In order to perform a matrix-by-vector product with a distributed matrix, we
need to multiply the matrix consisting of rows that are local to a given pro-
cessor by a distributed vector. Some components of the vector will be local,
but some components, namely values at the external interface nodes, must
be moved to the current processor from the adjacent subdomains (proces-
sors). Let Ajy. be the local matrix, i.e., the (rectangular) matrix consisting
of all the rows that are mapped to myproc. We will call B, the ‘diago-
nal block’ of A,., or the submatrix of A4;,, whose nonzero elements a;; are
such j is a local variable. Note that By, is a square matrix of size nlocxnloc
where nloc is the number of unknowns residing on myproc. Similarly, we will
call By the ‘off-diagonal’ block, i.e., the submatrix of A;,. whose nonzero
elements a;; are such that j is not a local variable. This structure of a
distributed matrix is illustrated in Fig. 4.

To perform a matrix-vector product, we must perform the following
steps:

1. multiply the diagonal block Bj,. by the local variables;

2. bring in the external variables (components of the distributed vector
at the external interface nodes);

3. multiply the off-diagonal block B.,;: by these external variables and
add the result to that obtained from the first multiplication.

Note that the steps 1 and 2 can be performed simultaneously. A processor
can be multiplying Bj,. by the local variables while waiting for the external
variables to be received.

A section of the code to perform a matrix-by-vector product as we im-
plemented it is as follows.

call MSG_bdx_send(nloc,x,y,nproc,proc,ix,ipr,ptrn)

10



call amux(nloc,x,y,aloc,jaloc,ialoc)

call MSG_bdx_receive(nloc,x,y,nproc,proc,ix,ipr,ptrn)
nrow = nloc - nbnd + 1

call amux1(nrow,x,y(nbnd),aloc,jaloc,ialoc(nloc+1))

In the above code segment, MSG_bdx_send and MSG_bdx_receive are com-
munication routines to be described in the next section, amux (y = Az) and
amuxl (y = y + Az) are the local sparse matrix-by-vector multiplication
routines for the CSR format. Here, nloc is the number of nodes mapped
to myproc; nbnd is the pointer to the start of the interface nodes; aloc,
jaloc, ialoc are the data structures for the two matrices Bj,. and Beg
stored together as one matrix in a CSR format. The call to amux performs
the operation y := BjycTioc- The call to amuxl performs y := y + BegtText-
Notice that the data for the matrix By, is simply appended to that of By,
a standard technique used for storing a succession of sparse matrices. The
Bey+ matrix acts only on the subvector of z which starts at location nbnd of
x. The size of the B,y matrix is nrow = nloc — nbnd + 1.

In the above example we have used the CSR format for the purpose of
illustration only. In fact, we can store the matrices Bj,. and By in any
format that will yield good performance, while keeping the overall strategy
the same. A local matrix-by-vector multiplication routine can be optimized
to take advantage of a particular architecture and employ local BLAS-type
functions. It is important to reorder Aj,. in such a way as to have all the
internal nodes followed by the interface nodes. There are several advantages
of this ordering, one of which being that it facilitates implementations Schur
complement type approaches which iterate with interface points only.

5 Message-passing tools

Operations with matrices and vectors on distributed-memory architectures
require data exchange between the processors. The iterative solvers utilize
only a limited subset of a message-passing library. In fact, there are only
two operations in the body of a solver which employ inter-processor com-
munications. These are the data erchange between the boundaries of the
subdomains and the distributed dot product of two vectors. The first of these
two operations occurs in the distributed matrix-by-vector products and in
the standard preconditioning operations. The dot products are required at
each step of a Krylov subspace procedure. These two communication kernels
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require special attention if we wish to achieve good performance. The bound-
ary exchange and distributed dot product routines together with some aux-
iliary routines have been assembled together in module called the message-
passing toolkit. So far, we have implemented three versions of the toolkit,
the CM5 version (based on the CM5 message-passing library, CMMD), the
CRAY-T3D version (employing both CRAY-PVM and SHMEM routines),
and the PVM version (based on the PVM 3.2 distributed by the Oak Ridge
National Laboratory).

In order to perform the boundary exchange efficiently, we have exploited
two features of message-passing: the asynchronous message-passing capa-
bilities and the redundancy of communications. An asynchronous message-
passing means that a processor can send data into the network and continue
to perform some work without waiting for the data to actually arrive to
its destination. Asynchronous message-passing can be crucial in order to
achieve good performance on some architectures. For instance, only one
message can be transmitted at any time by the Ethernet network serving
as a bus for a workstation cluster, and the case of synchronous (blocking)
message-passing all the other processors would be idle while waiting for a
pair of them to finish the data exchange. The matrix-by-vector multipli-
cation code from the previous section calls a boundary exchange routine,
MSG bdx _send. It sends the boundary information out according to the the
tables nproc,proc,ix,ipr described in the above section. The boundary
information is needed only for the second matrix-by-vector multiplication.
The first multiplication involves only internal nodes, and therefore can be
done without waiting for the interface data to arrive. In this example, the
call to MSG_bdx_receive ensures that all the inter-processor communications
have been completed prior to the matrix-by-vector multiplication for the in-
terface nodes. The computation-communication overlap has increased the
speed of the distributed matrix-by-vector multiplication routine almost by
a factor of two on the CRAY-T3D massively parallel processor.

The data exchange between the boundaries of subdomains often follows
a repeated pattern. The redundancy can be exploited in some cases. The
parameter ptrn passed to MSG_bdx_send in the code example from the pre-
vious section specifies a communication pattern to use. The first call to
MSG_bdx_send with a certain pattern ptrn creates a communication channel
between the participating processors. The processors exchange the addresses
of their send/receive buffers, length and type of message. Each subsequent
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call to MSG_bdx_send with the same ptrn utilizes the corresponding pat-
tern. In the CM-5 version, we have employed the virtual channels functions
provided in CMMD, the CM-5 message-passing library, which allow direct
link between processors and minimize the handshaking overhead involved in
point-to-point message passing. Once a pattern is established, the proces-
sors can communicate without extra handshakes, and the latency decreases
from 85 microsec (point-to-point communication) to 30-35 microsec (virtual
channel). In the CRAY-T3D version, the receiving processor initially sends
the address where the interface data must be put to the sender. At each sub-
sequent call to MSG_bdx_send, the sender knows a location in the receiver’s
memory to place the data. Then a single call to a low-level function (a
SHMEM routine) puts the data into the necessary place. The advantages
of establishing communication channels originate from the features specific
to message-passing libraries, and there is no general recipe for programming
the channel functions.

A matrix-by-vector multiplication is usually the most time-consuming
part of an iterative solver. In addition to the cost of communication, a
sparse distributed matrix-by-vector product has the overhead from the op-
erations with indices. These index operations sometimes generate cache
misses and RAM page faults which also impede performance of the matrix-
by-vector multiplication. We have estimated performance of the distributed
matrix-by-vector product kernel for different architectures. The execution
rate is given in the Fig. 5. In the tests, the matrix was generated by a
5-point 2D finite-difference stencil and stored in the CSR format. The
local matrix-by-vector multiplication for this storage format was imple-
mented in FORTRAN 77, and one can anticipate better performance on
the CRAY-T3D with optimized local matrix-by-vector product kernels [Li
1995]. A 32 processor configuration was used for each architecture. Time
was measured by a wallclock timer in a single user mode. The CM5 code
does not utilize the vector units, and performance of its local operations
is equivalent to the speed of SUN SPARC 2 processor (SPARC 10 for the
CM5E). The dot product belongs to a family of operations known as ‘global
reductions’ where the data are gathered from the processors, combined fol-
lowing a certain rule, and then broadcast back to the processors. The best
strategy for global reductions depends on a network topology. Many paral-
lel computer manufacturers are starting to provide hardware and software
support for performing global reduction operations efficiently. For instance,
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the reductions are performed on the CM-5 by a separate low-bandwidth
and low-latency network. Global reductions are included in the MPI stan-
dard [Gropp et al. 1994] and in the CRAY-T3D message-passing library
(SHMEM). However, the global reductions must be coded employing the
basic point-to-point communications for a more general message-passing
paradigm, such as PVM. A global reduction can be performed in logy N
steps (IV is the number of processors involved) by subsequent binary dis-
section with a broadcast to all at the end. The global reductions used by
the sparse iterative solvers require only a single number to be gathered from
all the processors after they perform the reduction on a local vector. Thus,
a network latency rather than a bandwidth determines performance of the
global reductions.

We have also tested performance of the distributed dot product kernel
for different architectures. The execution rate is given in the Fig. 6. As for
the matrix-by-vector product kernel, a 32 processor configuration was used
for each architecture with the execution time measured by a wallclock timer
in a single user mode.

6 Preconditioned Krylov subspace algorithms

The computational requirements of the various conjugate gradient like al-
gorithms that have been developed are essentially identical. The GMRES
algorithm was introduced in [Saad and Schultz 1986] for solving general
sparse nonsymmetric linear systems. Here, we would like to illustrate the
implementation of these methods with only one such technique, namely the
Flexible variant of the GMRES algorithm (FGMRES) [Saad 1993]. The
FGMRES allows the preconditioner to vary from step to step. In our con-
text, we would like to be able to use any secondary iterative procedure
as a preconditioner, a feature which is quite helpful in DD methods or in
any parallel computing implementation. In the simplest case, if a a block-
Jacobi iteration is used as a preconditioner (additive Schwarz), in which the
blocks correspond to the different subdomains, then we solve each system
associated with a subdomain by an iterative process. In the standard 'non-
flexible’ techniques, these inner solutions must be ‘exact’ or highly accurate
in each subdomain. With FGMRES and other flexible techniques this does
not have to be the case. FGMRES even allows the inner preconditioning
steps to be completely asynchronous, a feature which may help minimize
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communication and synchronization costs in a parallel approach.
Consider a linear system of the form

Az = b, (2)

where A is a large sparse nonsymmetric real matrix of size N. The GMRES
algorithm is a technique which minimizes the 2-norm of the residual vector
b — Az over z in the Krylov subspace

K., = Span{rg, Arg, ..., A™ 1y},

where r( is the initial residual vector b — Azg. When a preconditioner M
is applied to the right of the above linear system, we implicitly solve the
preconditioned linear system

(AM™Y)(Mz) =b. (3)

instead of 2. FGMRES allows the right preconditioner M to be different at
each step 7. The algorithm is desribed next.

1. Start: Choose zy and a dimension m of the Krylov subspaces. Define
an (m + 1) x m matrix Hy, and initialize all its entries h; j to zero.

2. Arnoldi process:

(a) Compute rg = b— Az, 8= ||ro]l2 and v, = r¢/B.
(b) For j=1,...,m do

e Compute z; := Mj_lvj

e Compute w := Az;

hiyj := (w, vi)

Fori=1,...,j
e For 1 y-e-5], do {w::w—hi,jvi

e Compute hjy1; = |w|]2 and vj41 = w/hjq1;.
(c) Define Z,, := [21, ..., Zm]-

3. Form the approximate solution: Compute z,, = £o+ Zp,ym where
Ym = argmin,||Be; — Hyyll2 and e; = [1,0,. .. ,01T.

4. Restart: If satisfied stop, else set ¢ < z,, and goto 2.
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The Arnoldi loop constructs an orthogonal basis of the preconditioned

subspace
K, = Span{vy, AM] vy, ..., AM;" v}

by a modified Gram-Schmidt process, in which the new vector to be orthog-
onalized is defined from the previous vector in the process.

Note that if the preconditioner is constant, i.e., if M; = M for j =
1,...,m then the method is equivalent to the standard GMRES algorithm,
right-preconditioned with M. The approximate solution z,, obtained from
this modified algorithm minimizes the residual norm ||b — Az, |2 over xzg +
Span{Z,,}. In addition, if at a given step k, we have Az, = v (i.e., if
the preconditioning is ‘exact’ at step k) and if the k x k Hessenberg matrix
Hj, = {hij}ij=1,.k is nonsingular then the approximation zj is exact.

To further enhance flexibility, we found it extremely helpful to include
an additional feature referred to as a ‘reverse communication mechanism’
whose goal is to avoid passing data structures to the iterative solver [Ashby
and Seager 1990]. The passing of a matrix can be a heavy burden on the
programmer since it is nearly impossible to find a data structure that will be
suitable for all possible cases. The solution is not to pass the matrices in any
form. Whenever a matrix-by-vector product or a preconditioning operation
is needed, we can simply exit the subroutine and have the subroutine caller
perform the desired operation. The calling program should call the iterative
routine again, after placing the result of the matrix-vector operation in one
of the vector arguments of the subroutine.

The FGMRES routine must return a parameter indicating the type of
operation requested. Thus, a typical execution of a flexible GMRES routine
with reverse communication would be as follows:

icode = 0
1 continue
call fgmres(n,im,rhs,sol,i,v,w,wkl,wk2,eps,maxits,io,icode)
if (icode .eq. 1) then
call precon(n,wkl,wk2) <-- preconditioning operation
goto 1
else if (icode .eq. 2) then
call matvec(n,wkl,wk2) <-- matrix vector product
goto 1
endif
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The icode parameter in the above program segment, is an indicator of the
type of operation needed by the subroutine. If it is set to one then we need to
apply a preconditioning operation to the vector wkl, put the result in wk2
and call FGMRES again. If it is equal to two then we need to multiply the
vector wkl by the matrix A, then put the result in wk2 and call FGMRES
again. Reverse communication enhances the flexibility of the FGMRES
routine enormously. For example, when changing preconditioners, we may
iterate on a coarse mesh and do the necessary interpolations to get the
result at a given step and then iterate on the fine mesh in the following step.
This can be done without having to pass any data regarding the matrix or
the preconditioner to the FGMRES accelerator. Since the matrix-by-vector
multiplication has been taken away from the body of FGMRES routine, the
only communication routine it calls is the distributed dot product of two
vectors. The rest of operations can be done independently and require no
synchronization.

7 Structure of the P-SPARSLIB library

We have implemented the above ideas in a software library for parallel sparse
matrix computations, named P-SPARSLIB. It consists of four parts:

1. accelerators (GMRES, FGMRES, CG, etc.);
2. preprocessing tools;

3. preconditioning routines;

4. message-passing tools.

The accelerators together with the preconditioners constitute the functional
layer of the library. Except in special instances, Krylov subspace methods,
whether for standard or distributed matrices, will work poorly without pre-
conditioning. The preconditioners module consists of a number of ‘standard’
options for preconditioning distributed sparse matrices, such as overlapping
block Jacobi (overlapping additive Schwarz), multicolor block SOR (over-
lapping multicolor multiplicative Schwarz), distributed ILU(0), approximate
inverse preconditioners, etc. These modules will be described in forthcoming
paper.

The message-passing tools with the local BLAS-1 routines form the low-
est level of the library. The message-passing toolkit consists of the boundary
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information exchange routine, distributed dot product, send/receive routines
used at the preprocessing stage, and some auxiliary functions such as timers,
machine configuration inquiries, synchronization tools. This routines utilize
an underlying message-passing library (CMMD, PVM, SHMEM). The rest
of the modules is completely machine-independent and would work in both
distributed and shared-memory environment. Most of the routines have
been written in FORTRAN 77 with a few C modules. The P-SPARSLIB
routines are available on the Internet from
http://www.cs.umn.edu/research/darpa/p_sparslib/psp-abs.html.

8 Conclusions

With the currently available hardware, the overall performance of the li-
brary the local is predominantly controled by the BLAS-1 routines. We
have estimated the cost of inter-processor communications by running the
example mentioned earlier without the data exchange between the proces-
sors. The communication overhead for the massively parallel computers
equipped with fast networks (CRAY-T3D and CM-5) was rather moderate,
and did not exceed 10% for all the grids tested. This fact shows that it is the
rate of local arithmetic which must be chiefly improved. We have employed
a FORTRAN 77 version of the BLAS-1 routines distributed with the LIN-
PACK library [Dongarra et al. 1979]. Vendor-supplied, optimized BLAS-1
routines may greatly enhance performance of the P-SPARSLIB modules.
We have also measured performance of the matrix-by-vector and dot prod-
uct kernels on a cluster of IBM RISC 6000 workstations connected with
the ATM network. We found that despite an impressive rate of local arith-
metics, a cluster of workstations can hardly be used to run P-SPARSLIB
because of a very high latency of communications which resulted in 500%
communication overhead.

The work remaining to make the library useful for solving real life prob-
lems, is to develop more preconditioning options, and possibly to establish
one or a few standard data structures for sparse matrices in order to facilitate
the use of parts of the library.
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Figure 1: Mapping of a simple 4 x 3 mesh to 4 processors.

Figure 2: Q-graph for the mapping in Fig. 1.
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Figure 6: Performance of the distributed dot product kernel.
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