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Abstract

Residual norm estimates are derived for a general class of methods based on
projection techniques on subspaces of the form K,, + W, where K,, is the stan-
dard Krylov subspace associated with the original linear system, and W is some
other subspace. These ‘augmented Krylov subspace methods’ include eigenvalue
deflation techniques as well as block-Krylov methods. Residual bounds are estab-
lished which suggest a convergence rate similar to one obtained by removing the
components of the initial residual vector associated with the eigenvalues closest to
zero. Both the symmetric and nonsymmetric case are analyzed.

1 Introduction

It has been recently observed that significant improvements in convergence rates can
be achieved from Krylov subspace methods by enriching these subspaces in a number
of different ways, see, e.g., [2, 4, 8, 9]. One of the simplest ideas employed is to add
to the Krylov subspace some approximation to an invariant subspace associated with
a few of the lowest eigenvalues. A projection process on this augmented subspace is
then carried out. An older technique is to augment the original subspace with other
Krylov subspaces, typically with the same matrix and randomly generated right-hand
sides. This gives rise to the class of block-Krylov and successive right-hand side methods
which have recently seen a regain of interest. [14, 11, 1, 6, 5]. Results of experiments
obtained from these alternatives indicate that the improvement in convergence over
standard Krylov subspaces of the same dimension can sometimes be substantial. This
is especially true when the convergence of the original scheme is hampered by a small
number of eigenvalues near zero, see e.g., [2, 9].
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In this paper we take a theoretical look at this general class of ‘augmented Krylov
methods’. In short, an augmented Krylov method for solving the linear system

Az =b (1)
is any projection method in which the subspace of projection is of the form,
K=K,+W
where K, is the standard Krylov subspace,
K, = span{rg, Arg, ..., A™ 'ry}

with 7o = b — Az, the vector xy being an arbitrary initial guess to the above linear
system. Thus, the usual Krylov subspace K,,, which we sometimes call the primary
subspace, is augmented by another subspace VW. The intuitive rationale for these meth-
ods is that K,, cannot always capture all the ‘frequencies’ of A, so it may become
necessary to include explicitly those components which cause the method to slow-down.
There are many possible ways in which to choose the subspace W following this intuitive
idea. In deflation techniques [9, 2], W is an approximate invariant subspace typically as-
sociated with the smallest eigenvalues and obtained as a by-product of earlier projection
steps. In block-Krylov techniques, W consists of the sum (in the linear algebra sense)
of a few other Krylov subspaces generated with the same matrix A, but different initial
residuals.

We now give a brief background and define some terminology. In what follows, Py
denotes the space of polynomials of degree not exceeding k, while P} is the space of
polynomials p of degree < k normalized so that p(0) = 1. An invariant subspace is any
subspace X of C" such that AX is included in X. If W = [wy,...,w,| is a basis of X
then X is invariant iff there is a p x p matrix G such that AW = WG, In this paper we
often use projections of vectors onto invariant subspaces. This can be done in several
ways. Two important options are to use either orthogonal projectors onto the invariant
subspace, or spectral projectors. A spectral projector is best defined through the Jordan
canonical form. As is well-known, the Jordan canonical form decomposes the subspace
C™ into the direct sum,

C"=X106Xo®---0 X

in which each X; is the invariant subspace associated with a distinct eigenvalue. This
direct sum defines canonically a set of [ projectors. Each of these projectors maps an
arbitrary vector x into its component z; in the above decomposition. A spectral projector
is the sum of any number of these canonical projectors.

Two types of methods are often used to compute an approximate solution from a
given subspace. An orthogonal projection method, or orthogonal residual (Orth-res)
method extracts an approximation solution of the form z = zy + 6 where 0 is in K,
by imposing the orthogonality constraint: b — Az L K. A minimal residual (Min-res)
approach computes an approximation in the same form but extracts the approximation
by imposing the optimality condition that ||b — Az||s be minimal. This second condition
is mathematically equivalent to the orthogonality condition that b — Az 1 AK.



2 Augmented Krylov Methods and FGMRES

To obtain an orthogonal basis of an augmented Krylov subspace, a slight modification
of the standard Arnoldi algorithm is needed. Assume that we have a subspace spanned
by m + p vectors. Specifically, the first m of these vectors are standard Krylov vectors
v1,...,Um, and the last ones, denoted by wy, ..., w, form a basis of the additional sub-
space W. Then at step m+ 1 we introduce the first basis vector w; of W, multiply it by
A as in the Arnoldi process, and orthogonalize the result against all previous vectors. We
then similarly introduce the next basis vector to the subspace and repeat this process.
The algorithm is as follows.

ALGORITHM 2.1 Augmented Arnoldi-Modified Gram-Schmidt

1. Choose a vector v; of norm 1.

2. Forj=1,2,...,m+p Do:

3 If 7 <m then w := Av;, Else w := Aw;_,
4. Fori=1,...,75 do:

53 hij = (w, Uz’)

6. w = w — hiv;

7. EndDo

9. hj_|_1,j = ||UJ||2 If hj_|_17j =0 then StOp.
10. Vjt1 = w/hji1

11. EndDo

We can think of many possible variations to the above basic scheme. For example,
the input vectors w; can themselves be the Krylov vectors of some iterative procedure
for solving Aw = v,,,.1. We can also generate another Krylov sequence starting with an
arbitrary vector w; and append the resulting vectors wsy, ..., ws to the subspace. Some
of these variations are explored in [2].

The above algorithm is a trivial extension of the modified Arnoldi process used in the
Flexible GMRES (FGMRES) algorithm [12]. Its result is that the vectors vy, ..., Upnipt1
forms an orthonormal set of vectors. A number of immediate properties can be estab-
lished. First the vectors produced by the algorithm satisfy the relation:

AZm—|—p = m—|—p+1Hm

in which:

Zmtp = [V1,V2, -+, Upny W1, Wa, .. Wy Vindp+1 = [V1,V2, - - < Umnpt1)

and H,, is the (m+p+1) X (m+p) upper Hessenberg matrix whose nonzero elements h;;
are defined in the algorithm. To solve a linear system with an FGMRES-like approach,
we only need to exploit the above relation and the orthogonality of the v;’s. Thus, if
B = ||rol|]2 and we start the Arnoldi process with v, := 7o/, then an approximate
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solution z from the affine space x¢ + span{Z,,;,} can be written in the form zo + Z,,1,y
and its residual vector is given by

b—Ar =19 — AZm—}-py = Vm—l—p—l—l[ﬂel - Hmy] .

Because of the orthogonality of the column-vectors of V;;,,1, the 2-norm of this residual
vector can be minimized by solving the least-squares problem min, ||3e; — Hy,y||o-

Another important property is that if any vector w in W is the solution of an equation
Aw = v;, for any of the v;’s i < m+1 then, in general, the exact solution can be extracted
from the whole subspace by an FGMRES procedure.

Proposition 2.1 If there exists a vector w in W such that Aw = v;11 for some i,
1 <7 < m and if the matrix H; is nonsingular then the affine space o + K,, + W
contains an exact solution to the linear system Ax = b.

Proof. Assume that w is a vector in W such that Aw = v;;;. Recall the standard
relation [13],
AV; = ViH; + hiy1 v ef (2)

A solution among vectors of the form
=9+ Viy+aw
will be constructed. For such vectors the residual b — Ax is given by,
ro — AViy — aAw = V; (Be; — Hyy) — (hi+1,iez-Ty + a)viy -

If H; is nonsingular, then y can be chosen so that the 1st term in the right-hand-side
vanishes. The scalar a can then be selected to be equal to —hi+1,ieiTy to make the second
term equal to zero. [ |

In the situation of the proposition, FGMRES will compute the exact solution. That
is because FGMRES extracts the (unique) approximate solution with minimum residual.
In fact, any projection procedure onto the subspace xy + K, + W will extract this exact
solution because a solution with zero residual can be obtained from the subspace and
therefore the Galerkin condition will always be satisfied for this (exact) solution. Note
that the proposition is also trivially true for ¢ = 0, with the exception that we no longer
need the assumption on H; which does not exist. In addition, it can also be generalized
to the situation where there is a vector w in W such that Aw = v for some vector v in

Koy
The proposition suggests that a good way to enrich the subspace K,, is to add to
it vectors wy, ..., w, that are approximate solutions of the linear system Aw = v; for

1 < m + 1. These linear systems can be solved with a different preconditioner, for
example, one which complements the initial one used for the primary linear system
being solved. In effect, we can view this as a multirate approach. The Krylov subspace
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K,, is often unable to resolve components of the residual vector that are located in
some subspace. Roughly speaking, much of the work in solving the linear system is
already accomplished by the subspace K,,. The additional subspace will then fine-tune
the current solution in the areas of the spectrum which are not well represented by K,,.
In the simplest case, one can add solutions of linear systems Aw = v, by another
iteration method such as a multi-step SOR. An interesting idea which has been quite
successful is to take VW to be an approximate invariant subspace associated with small
eigenvalues.

3 Augmenting with Nearly Invariant Subspaces

In what follows we denote by x( the initial guess used in the augmented GMRES process
for solving the linear system (1), by ry the associated initial residual b — Az, and by
K,, the Krylov subspace

K. (A,ry) = Span{ry, Arg,..., Amflro} }

We make the assumption that there exists an invariant subspace which is close to W and
analyze the behavior of the resulting augmented Krylov subspace algorithm. Our goal
is to show a residual bound indicating faster convergence when the invariant subspace
is very close to W.

3.1 Basic Results

We recall the following definition of the ‘gap’ between subspaces. For details on this
definition and some properties, see Kato [7] and Chatelin [3].

Definition 3.1 For any pair of subspaces of C" define

0(X,Y) = max min lle = il . (3)
€ X,2#£0 y €Y ||$||2

Then, the gap between the subspaces X and Y 1s,
O(X,Y) = max [5(X, Y),3(Y, X)] . (4)

Thus, §(X,Y) represents the sine of the largest possible angle between vectors in X
and their projections in Y. It is worth pointing out that §(X,Y) = ||[(I — Py)Px]|| in
which Py (resp. Py) is an orthogonal projector onto X (resp. Y). In fact when the two
subspaces X and Y are of the same dimension then, [3, 7]

O(X,Y) = 6(X,Y) = 8(Y, X) = ||Px — Py|lz -

In this case, ©(X,Y) can be viewed as the sine of the angle between the two subspaces
X and Y.



Theorem 3.1 Assume that a minimal residual projection method is applied to A using
the augmented Krylov subspace,

K=K, + W,

in which the subspace AW 1is at a gap of € from a certain invariant subspace U, 1i.e.,
there exists an invariant subspace U, such that

O(U, AW) = ¢ .

Let Py be any projector onto U. Then the residual 7 obtained from the minimal residual
projection process onto the augmented Krylov subspace K satisfies the inequality,

[17]]2 < qlgi]{}* { lg(A) I = Py)roll2 + € [lg(A) Purolla}

Proof. By definition, we have

e = min_ o — Azl )
= GII(ITInl,ElUEW |(ro — Av) — Awl]y . (6)

Each vector v in K, is of the form v = s(A)ry where s is a polynomial of degree < m —1.
It results that the vector 7o — Av is of the form ¢(A)ry where ¢ belongs to the space of
polynomials in P which satisfy the constraint ¢(0) = 1. Hence,

Il = pmin _lla(A)ro — Awll;
- q€ ]P’I*,il;nz}) € WHC](A)(I_PU)TO+q(A)PUT0_Aw||2 (7)
< i — - :
< e IP){mn;ln o lq(A)(I — Py)roll2 + [|g(A) Pyro — Awlls (8)

Observing that ¢(A)Pyry belongs to the subspace U, the second term on the right-hand-
side of (8) is bounded from above by €||g(A)Pyro||2 and this completes the proof. W

The above theorem can be exploited in many different ways. In particular, we may
obtain different bounds depending on which type of projector Py is used. For example,
assume that Py is the spectral projector associated with a set of eigenvalues Ay, ..., A,
with s < p. Let ¢, be the optimal GMRES polynomial obtained for the deflated initial
residual 74y = (I — Py)r:

197 (A)rallo = min flg(A)rallz -

m

Denote by 7q = ¢, (A)ry the GMRES residual vector achieved on this linear system.
Then applying the theorem, we immediately get

17l < gy, (A)ralle + € [lg;, (A) Purol|2
= ||74ll2 + € ||g;, (A) Purollz -
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The first term in the right-hand-side is the result of m steps of a GMRES iteration used
to solve the deflated linear system,

A.T:(I—PU)’/'()

starting with a zero initial guess. If A is diagonalizable and if the initial residual has
the expansion Y a;u; the second term ¢, (A)Pyry will have components ¢, (\;)u;q; in
the eigenbasis. For those eigenvalues close to zero, ¢, ();) should be close to one since
q:,(0) = 1. If U is associated with eigenvalues close to zero, and if € is small we can
therefore expect the method to behave essentially like a deflated GMRES procedure, i.e.,
a procedure in which the initial residual is stripped off of all the components associated
with the subspace U. In fact if W is exactly invariant then € = 0 and [|7||s < ||74]l2,
so we should expect the method to behave like a deflated GMRES procedure in this
case. We remark that the result of the theorem can be slightly improved by replacing
the subspace W in the minimum (7) by the whole subspace K. This can be easily seen
from Equation (6).
An immediate corollary of the theorem is the following.

Corollary 3.1 Let Py be a projector into the tnvariant subspace U and let the assump-
tion of Theorem 3.1 be satisfied. Also assume that there is a polynomial g in P}, such
that,

lg(A) = Pu)rolla < smll(1 = Pu)roll2 (9)
lg(A) Purollz < cml|Puroll (10)

Then the residual 7 obtained from the minimal residual projection process onto the aug-
mented Krylov subspace K satisfies the inequality,

17]l2 < 8ml[(I = Pu)rollz + ecml| Purollz (11)

and in the case when Py is an orthogonal projector,

171l < y/s% + e lrola (12)
The second part of the corollary follows by applying the Cauchy-Schwarz inequality to
(11).

At this point we might provide error bounds using an eigenvector expansion of the
initial residual and exploiting standard approximation theory results based on Chebyshev
polynomials. These would give upper bounds for s,, and ¢, from some knowledge on
the spectrum of the matrix. However, these bounds would utilize in one way or another
the condition number of the matrix of eigenvectors which can be very large in case A
is highly nonnormal. Therefore, this is considered only for the Hermitian case to be
seen shortly. For the non-Hermitian case, we will instead consider the problem from a
different angle and attempt to compare the result of the process with that of a GMRES
iteration which is expected to converge faster. This is taken up in the next section.
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3.2 Comparison results

A desirable result to state would be that the augmented Krylov subspace method con-
verges similarly to the GMRES algorithm applied to the deflated linear system Ad = ry.
Here, the deflated residual r; is obtained from the residual vector ry by removing all
components in the subspace V. In the case when WV is an exact invariant space this
turns out to be true, as was indicated above. If it is only close to an invariant subspace,
then, an intermediate result is to be expected.

Corollary 3.2 Let 7 be the residual obtained from m steps of GMRES applied to the

2n X 2n linear system,
A O 51 _ EPU’F()
(o 4)(5)=(Zmym) (13)

starting with a zero initial guess. Then the residual ¥ obtained from the minimal residual
projection process onto the augmented Krylov subspace K satisfies the inequality,

1712 < V2 |7l -

Proof. Denote by B and 7 the matrix and right-hand side of the linear system (13). As
is well-known, the GMRES algorithm applied to the system (13) with zero initial guess
minimizes the 2-norm ||q(B)7y||2 over all polynomials in P} . Let ¢ be the polynomial
which achieves this minimum. We then have

I7llz = |lg(B)7oll2
= (I@A)T = Po)roll} + la(A)(ePoro)II3) "
= (@A) = Pu)rollz + lla(A) Py 2) (14)

From Theorem 3.1 we can state that
[7ll2 < [lg(A)(I = Po)roll2 + € [la(A) Porol|2
which gives the result in view of (14) and the inequality |a| + [b| < V2 va? + b2 |
In the above result we had to use a linear system of size twice that of the original
matrix in order to obtain an inequality using any projector Py. It is possible to obtain
a similar comparison result using a related linear system of size n only, by being more
specific about the projector Py. However, in this case, the inequality is weakened by

the presence of the angle between the invariant subspace U and its complement. The
following lemma will be needed.

Lemma 3.1 Let U and V be any two subspaces and let 6 be the acute angle between
them as defined by
_ |(u, v)]|
cosf = max

uw€eU; veV m ‘
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Then, the following inequality holds for any pair of vectors u, v with w in U and v in V
.0 2 2\1/2
i+ ollo > Vasing (full3 + [1l3) " (15)

The proof of the lemma is straightforward and is omitted. If Py is a spectral projector
then it commutes with A and with any polynomial of A. In addition, I — Py is also
a spectral projector which commutes with A as well as with any polynomial ¢(A). We
now show a result similar to that of the previous corollary.

Corollary 3.3 Let Py be the spectral projector associated with the invariant subspace
U and 6 the acute angle between PyC™ and (I — Py)C™. Let 7 be the residual obtained
from m steps of GMRES applied to the linear system,

Ad = GPUTO + (I — PU)TO (16)

starting with a zero initial guess. Then, the residual 7 obtained from the minimal residual
projection process onto the augmented Krylov subspace K satisfies the inequality,

sin

[17]]2
>
2

[17]]2 <

Proof. The GMRES algorithm applied to the system (16) with zero initial guess
minimizes the 2-norm ||g(A) (ePyro + (I — Py)ro) |2 over all polynomials ¢ in P¥,. Let
g be the polynomial which achieves this minimum. Since §(A)Pyry belongs to PyC"
and g(A)(I — Py)ry belongs to (I — Py)C™ we have by the previous lemma

17l = [1@(A)T = Pu)ro+ G(A)(ePuro)|
> Vasing (AT — Poroll +llatA) Purold) (17)

Theorem 3.1 implies that
I17ll2 < lg(A)(I = Py)roll2 + € [|g(A) Purol|2

which gives the result in view of (17) and the inequality |a| + |b| < v/2 Va2 + b2 |
The angle 0 is related to conditioning of the invariant subspace U. In the ideal case when
0 = 7/2, then we obtain the same result as that of Corollary 3.2, namely, |72 < v/2 |7l

3.3 Hermitian case

The results of previous sections can be made more explicit in the particular case when
the matrix is symmetric positive definite.



Corollary 3.4 Assume that A is symmetric positive definite with eigenvalues
A< A< <Ay,

and let the assumptions of Theorem 8.1 be satisfied, with U being the s-dimensional
etgenspace associated with the eigenvalues A1, ..., A;, where s < p. Then the residual 7
obtained from the minimal residual projection process onto the augmented Krylov sub-
space K satisfies the inequality,

1
Flla < |Ir —— + € 18
in which
. )\n + )\s—}-l
y= T
)‘n - /\s—|—1

and Ty, is the Chebyshev polynomial of degree m of the first kind.

Proof. Define
2 T (v — at)

o /\n - /\5+1 ’ Qm(t) B Tm(7)

Referring to the result of Corollary 3.1 we will obtain upper bounds for the numbers s,,
and ¢, in the Corollary for the above polynomial q. Assuming that the residual r¢ is
expanded in the (orthonormal) eigenbasis as

n
To = Z QU
i=1

«

then, we have

lg(A)(I = Py)roll3 = 3 Tuly — aX)?al .

1>8

1
Tm(’)/)2
By definition of @ we have |y — a)\;| < 1 for ¢ > s and as a result |T,,(y — a\)| < 1.
Thus, the above expression is upper bounded by

pnil < L sz 2 U =Pl
”q(A)(I PU) 0“2S Tm(7)2i>25 7 Tm(’Y)Q

and so we can define s, = 1/7,,(7y). Similarly, the term ||g(A)Pyrol|2 of Corollary 3.1
can be expanded as
2
lg(A) Purollz = _ (g(Ai)ox)
1<s

In the interval [0, A\;41] the function ¢()) is a decreasing function and is therefore upper
bounded by ¢(0) = 1. This yields,

lg(A)Pyroll5 < af = [|Puroll3-

1<s

As a result we can define ¢,;, = 1. The result follows immediately from Corollary 3.1. B
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4 Case of block-Krylov methods

Results of a slightly different type can be derived for block-Krylov methods. In these
methods the subspace of projection is

K=KV +w

with
W=K®+K® 4...K®

where K¥) = span [v§i),Av§i), . .,Am_lvy)]. The starting vector vg) of the the first
Krylov subspace is the normalized residual r¢/||rol|2. A number of results for analyzing
block methods have already been established in the literature [10, 14]. The approach
presented here shows similar results which are somewhat simpler, by introducing sys-
tematically a subsidiary approximate solution obtained by a projection step onto the
subspace spanned by the initial block. Results using Chebyshev polynomials are omit-
ted again except in the Hermitian case.

4.1 General results

An important factor in the convergence of block methods is the subspace S spanned by

the initial block, i.e., the subspace
S =span{v”, @ ... v} .

Consider any subspace U of dimension s. Typically, U will be an invariant subspace
associated with the s lowest eigenvalues but this is not required in the analysis which
follows. As a background, recall that any projector can be defined with the given of two
subspaces, its range M and its null space N. It is common to define N via its orthogonal
complement L which has the same dimension s as M. Thus,

Range(P) = M; Null(P)=L".
With P is associated the decomposition of C" into the direct sum
C'=MoL". (19)

We say that P is a projector onto M and orthogonal to L. Given two subspaces M and
L, each of dimension s, a projector onto M and orthogonal to L can be defined whenever

M N L+ = {0},

which is the condition under which C” is the direct sum of the two subspaces M and
L*. Recall also that the projection u of an arbitrary vector  onto M and orthogonal
to L is defined by the requirements,

ue M, x—u L L.
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The first of these requirements defines the s degrees of freedom, and the second defines
the s constraints that allow us to extract u = Px given these degrees of freedom. We
now establish the following lemma.

Lemma 4.1 Let Py be a projector onto a subspace U and orthogonal to a subspace L,
and assume that the subspace S satisfies the condition

AS NL*={0}. (20)
Then, for any vector r in C™ there exists a unique vector w in W such that
Py(r—Aw)=0. (21)

The vector Aw is the projection of r onto the subspace AS and orthogonal to L. The
vector w is the result of a projection process onto S orthogonally to L for solving the
linear system Ad = r, starting with a zero initial guess.

Proof. Under the condition (20) the projector P4 onto AS and orthogonal to L exists,
and therefore, for any r there exists a unique Aw in AS, obtaining by projecting r onto
AS and orthogonally to L. This Aw satisfies the condition r — Aw L L which implies
that the vector r — Aw belongs to null(Py) = L* or, equivalently, Py(r — Aw) = 0. The
rest of the proof follows from the definitions of projectors and projection methods for
linear systems. [ |

Condition (21) can be rewritten as
Aw = Pyr + (I — Py)Aw (22)

because Aw = PyAw + (I — Py)Aw and (21) implies that PyAw = Pyr. The above
equation means that the vector Aw has the same U-component as 7 in the direct sum
decomposition (19) associated with the projector Py. Consider the basis

Vi = [U%l), ,U§2)7 e a’U%S)]

of S. If A is nonsingular then AV] is a basis of AS. Let Z = [21,..., 2] be a basis of L.
Then it can be easily seen that condition (20) is equivalent to the nonsingularity of the
s X s matrix Z# AS. The condition (21) immediately yields,

w=Vi(Z%AV)) 7 r .

Theorem 4.1 Let Py be a projector onto a subspace U of dimension s such that the
condition (20) is satisfied for L = Null(Py)*. Let wqy be the vector w defined by Lemma
4.1 for the case when r = rq and denote by 7y the associated residual 7o = ro— Awgy. Then
the residual 7 obtained from the minimal residual projection process onto the augmented
Krylov subspace K satisfies the inequality,

I17]l2 < nin {lg(A)(T — Py) 7ol - (23)
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Proof. We start similarly to the proof of Theorem 3.1:

7l = _min o — Azl
= _min_(ro = Av) = Aulz

As was seen before, a generic vector ro— Awv is of the form ¢(A)rg where ¢ is a polynomial
of degree < m such that ¢(0) = 1 and therefore,

Il = pmin_ llg(A)ro — Awll.
= cauin_ Na(A)U = Po)ro+q(A) Puro — Awllz .

For any polynomial ¢ in P}, and for any vector w in K we have,
17l2 < la(A)I — Po)ro + q(A) Pyro — Awll, . (24)

Consider now the particular vector w = q(A)wy where the vector wy is defined by the
theorem. Using the result of Lemma 4.1, and the equality (22) we obtain,
q(A)Pyro — Aw = q(A)Pyro — Aq(A)wy
= q(A)Pyro — q(A)Awp
= q(A)Pyro — q(A)[Pyro + (I — Py)Aw]
= —q(A)( — Py)Awy .

N N

Substituting this in Equation (24) for any polynomial ¢, results in

I7ll2 < [la(A)(I — Pu)(ro — Awo)][2 (25)
Taking the minimum of the right-hand side over all polynomials in [P} yields the desired
result. [ |

This simple theorem states that a block-GMRES method will do at least as well as
a GMRES method on the linear system whose initial residual has been stripped off
the components in the subspace U by a projection process on the initial subspace S.
The removal of these undesired components, is achieved by a projection process onto S
orthogonally to L = Null(Py)*, as expressed by the Galerkin conditions,

Wy € S, TO—A’U}()J_N’LL”(PU)J'.

Note again that Py is any projector onto the subspace U.

The projector I — Py in Equation (23) is not really needed since 7y has no components
in the subspace U and so (I — Py)7y = 7o. However, its presence is helpful when Py is
a spectral projector, since in this situation,

q(A)(I — Py) = q((I — Py)A(I — FPy)) ,

showing that the GMRES iteration associated with the minimum in (23) is equivalent

to a GMRES iteration for solving a linear system restricted to the spectral complement
of U.
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4.2 Block Krylov methods in the SPD case
We assume throughout this section that A is SPD with the eigenvalues

0<)\1§)\2§)\n

Here, the subspace U is chosen to be the invariant subspace associated with the eigen-
values A1, ..., A, and Py is the spectral projector associated with U. In this case, Py is
the orthogonal projector onto U and the subspace L which was defined as the orthogonal
complement of the null space of P becomes equal to U itself.

By selecting the polynomial in Theorem 4.1 carefully a rather simple result can be
obtained.

Theorem 4.2 Let Py be the orthogonal projector onto the invariant subspace associated
with the eigenvalues A1, ..., A, and assume the condition (20) is satisfied. Let wo be the
vector w defined by Lemma 4.1 for the case when r = ro and 7o = 19 — Awy. Then
the residual 7 obtained from the minimal residual projection process onto the augmented
Krylov subspace K satisfies the inequality,

- [[7oll2
Tllo < . 26
7l < 7 (20)
with
_ )\n + )\p—l—l
Y=Ev
)\n - )\p—l—l
Proof. According to Theorem 4.1, for any polynomial ¢ in P we have
I7]l2 < |lg(A) (I = Py) 7olla < [lg(A) I = Po)ll2 [|7ol2 - (27)

Since I — Py is a spectral projector of A we have,
q(A)I — Py) = (I — Py)q(A) = (I — Pr)q(A) (I — Py) -

The only nonzero eigenvalues of the Hermitian operator (I — Py)q(A)(I — Py) are q(\;)
for 7 > p. Thus,
(I = Py)g(A)(I = Py)lls =, max g(\i)] . (28)

t=p+1,...,n

Consider the polynomial g, (t) defined by

Ty — at)
@m(l) = —F 7~
) Tin(v)
where 7 is defined above and
2
0= ——— .
)\n - /\p—|—1
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Clearly, g,,, belongs to P},. In addition, for ¢ in the closed interval [Ay;1, A,], we have
|y — at| < 1 so that |T,,(y — at)| < 1. For this polynomial the norm of the Hermitian
operator, (I — Py)q(A)(I — Py) in (28) becomes

1

— = — — = O <
lg(A) (I = Po)llz = I = Po)a(A)T = Py)llz = _max [gm(A)] < Tty (29)
Substituting this inequality in (27) yields the desired result. [ |

5 Numerical experiment

The behaviors of the deflated algorithms and the Block-GMRES algorithms are now
illustrated on a simple example. Consider a diagonal matrix of size n = 200 whose
diagonal entries are given by

4 — i when ¢ > 4
v 0.0SX% when 1 < 4 .

This distribution is chosen to have a small cluster of eigenvalues around the origin. In
all tests, the right-hand side b of the linear system is made of (the same) pseudo-random
values, and the initial guess taken is the zero vector. Though the matrix is symmetric,
nonsymmetric iterative solvers such as GMRES and block-GMRES are used in this
experiment. The following runs were made.

1. Standard GMRES without restarts and restarted GMRES, with a Krylov dimen-
sion of 40.

2. Block GMRES (BGMRES) without restarts. The block size chosen is four, which
is the size of the cluster.

3. A deflated GMRES algorithm as described in [9] and [2]. This consists of adding
approximate eigenvectors obtained from the previous Arnoldi step, to the Krylov
subspace. The test uses a subspace dimension of 40, the last four of which are
approximate eigenvectors (except in the first outer iteration). This is denoted by
DGMRES(40,4).

4. For comparison, a run of (nonrestarted) GMRES is shown on the deflated sys-
tem. This system of dimension 196 has a diagonal coefficient matrix with entries
ds, dg, . . . dogo and the right-hand side b with components bs, . . ., bygg. A zero initial
guess was also used.

In the block-GMRES case, 4 linear systems are actually solved simultaneously, the
first of which is the desired linear system. The right-hand sides of the other 3 linear
systems are chosen randomly and the associated initial guesses are again zero vectors.
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The convergence history for these runs is plotted in Figure 1. As is observed, all
curves, except the restarted GMRES curve, have similar convergence slopes towards
the final phase of the iteration. The first 40 steps of GMRES, GMRES(40) and DGM-
RES(40,4) (deflated GMRES) are identical. Differences appear at around step 60, half
way into the second outer loop, between full GMRES and the other two methods. GM-
RES(40) and DGMRES(40,4) are still identical until step 76. Indeed, in the first outer
loop, there was no eigenspace information to be fed into DGMRES so a plain restarted
GMRES is used. The last four vectors entered into DGMRES are eigenvectors obtained
from the first Krylov subspace. Then the behavior of the iteration from that point on
is very close to that of the full GMRES and GMRES on the deflated system.

It is interesting to note that in this case the full GMRES algorithm performs best.
We must keep in mind that after step 40, the full GMRES iteration uses a subspace
which includes the same eigenvectors as DGMRES(40,4). It is therefore able to capture
those eigenmodes in the same way as the deflated GMRES as shown by the curves. Also
interesting is the observation that the block-GMRES algorithm seems to take longer
to capture the cluster and reach the final convergence phase. If we had to solve four
simultaneous linear system, the Block-GMRES algorithm would be competitive since it
would take an average of 45 steps for each linear system to converge (assuming they
converge at roughly equal speed on average). If we had only one linear system to solve,
the results of the plot indicate that a plain or a deflated GMRES run may achieve far
better performance. This is confirmed by experiments elsewhere, see e.g., [2].
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