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Abstract

This paper proposes some preconditioning options when the system matrix is
in block-partitioned form. This form may arise naturally, for example from the
incompressible Navier-Stokes equations, or may be imposed after a domain decom-
position reordering. Approximate inverse techniques are used to generate sparse
approximate solutions whenever these are needed in forming the preconditioner.
The storage requirements for these preconditioners may be much less than for ILU
preconditioners for tough, large-scale CFD problems. The numerical experiments
reported show that these preconditioners can help us solve difficult linear systems
whose coefficient matrices are highly indefinite.

1 Introduction

Consider the block partitioning of a matrix A, in the form

A:(fé g) (1)

where the blocking naturally occurs due the ordering of the equations and the variables.
Matrices of this form arise in many applications, such as in the incompressible Navier-
Stokes equations, where the scalar momentum equations and the continuity condition
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form separate blocks of equations. In the 2-D case, this is a system of the form

By By Fup u fu
A= Bvu va va v = fv (2)
Epi  Ep 0 p o

where u and v represent the velocity components, and p represents the pressure. Here, the
B submatrix is a convection-diffusion operator, the F' submatrices are pressure gradient
operators, and the £ submatrices are velocity divergence operators.

Traditional techniques such as the Uzawa algorithm have been used for these problems,
often because the linear systems that must be solved are much smaller, or because there
are zeros or small values on the diagonal of the fully-coupled system. These so-called
segregated approaches, however, suffer from slow convergence rates when compared to
aggregated, or fully-coupled solution techniques.

Another source of partitioned matrices of the form (1) is the class of domain de-
composition methods. In these methods the interior nodes of a subdomain are ordered
consecutively, subdomain after subdomain, followed by the interface nodes ordered at
the end. This ordering of the unknowns gives rise to matrices which have the following
structure:

By Fy
B, Fy
: (3)
B, F,
E, £y --- E, S

Typically, the linear systems associated with the B matrix produced by this reordering
are easy to solve, being the result of restricting the original PDE problem into a set of
independent and similar PDE problems on much smaller meshes. One of the motivations
for this approach is parallelism. This approach ultimately requires solution methods for
the Schur complement S. There is a danger, however, that for general matrices, B may
be singular after the reordering.

Much work has been done on exploiting some form of blocking in conjunction with
preconditioning. In one of the earlier papers on the subject, Concus, Golub, and Meurant
[7] introduce the idea of block preconditioning, designed for block-tridiagonal matrices
whose diagonal blocks are tridiagonal. The inverses of tridiagonal matrices encountered
in the approximations are themselves approximated by tridiagonal matrices, exploiting an
exact formula for the inverse of a tridiagonal matrix. This was later extended to the more
general case where the diagonal blocks are arbitrary [4, 17]. In many of these cases, the
incomplete block factorizations are developed for matrices arising from the discretization
of PDE’s [2, 3, 7, 17, 19] and utilize approximate inverses when diagonal blocks need to
be inverted. More recently, Elman and Silvester [13] proposed a few techniques for the
specific case of the Stokes and Navier-Stokes problems. A number of variations of Block-
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Jacobi preconditioners have also been developed [1, 9]. In these techniques the off-block
diagonal terms are either neglected or an attempt is made to approximate their effect.

This paper explores some preconditioning options when the matrix is expressed in
block-partitioned form, either naturally or after some domain decomposition type re-
ordering. The iterative method acts on the fully-coupled system, but the preconditioning
has some similarity to segregated methods. This approach only requires preconditioning
or approximate solves with submatrices, where the submatrices correspond to any combi-
nation of operators, such as reaction, diffusion, and convection. It is particularly advan-
tageous to use the block-partitioned form if we know enough about the submatrices to
apply specialized preconditioners, for example operator-splitting and semi-discretization,
as well as lower-order discretizations.

Block-partitioned techniques also require the sparse approximate solution to sparse
linear systems. These solutions need to be sparse because they form the rows or columns
of the preconditioner, or are used in further computations. Dense solutions here will
cause the construction or the application of the preconditioner to be too expensive. This
problem is ideally suited for sparse approximate inverse techniques. The approximate
solution to the sparse system Ax = b is found by

min ||b — Az||2
r

using an iterative method implemented with sparse matrix—sparse vector and sparse
vector—sparse vector operations. The intermediate and final solutions are forced to be
sparse by numerically dropping elements in  with small magnitudes. If the right-hand-
side b and the initial guess for = are sparse, this is a very economical method for computing
a sparse approximate solution. We have used this technique to construct preconditioners
based on approximating the inverse of A directly [6].

This paper is organized as follows. In Section 2 we describe the sparse approximate
inverse algorithm and some techniques for finding sparse approximate solutions with the
Schur complement. Section 3 describes how block-partitioned factorizations may be used
as preconditioners. The most effective of these are the approximate block LU factorization
and the approximate block Gauss-Seidel preconditioner. Section 4 reports the results of
several numerical experiments, including the performance of the new preconditioners on
problems arising from the incompressible Navier-Stokes equations.

2 Sparse approximate inverses and their use

It is common when developing preconditioners based on block techniques to face the need
to compute an approximation to the inverse of a sparse matrix or an approximation to
columns of the form B~!f in which both B and f are sparse. This is particularly the
case for block preconditioners for block-tridiagonal matrices [7, 19]. For these algorithms
to be practical, they must provide approximations that are sparse.
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A number of techniques have recently been developed to construct a sparse approxi-
mate inverse of a matrix, to be used as a preconditioner [5, 6, 8, 10, 15, 17, 18]. Many
of these techniques approximate each row or column independently, focusing on (in the
column-oriented case) the individual minimizations

Hll,inHej_A:cH% j:1727"'7n (4)

where €; is the j-th column of the identity matrix. Such a preconditioner is distinctly
easier than most existing preconditioners to construct and apply on a massively parallel
computer. Because they do not rely on matrix factorizations, these preconditioners often
are complementary to ILU preconditioners [6, 22].

Previous approaches select a sparsity pattern for x and then minimize (4) in a least
squares sense. In our approach, we minimize (4) with a method that reduces the residual
norm at each step, such as Minimal Residual or FGMRES [20], beginning with a sparse
initial guess. Sparsity is preserved by dropping elements in the search direction or current
solution at each step based on their magnitude or criteria related to the residual norm
reduction. The final number of nonzeros in each column is guaranteed to be not more
than the parameter Ilfil. In the case of FGMRES, the Krylov basis is also kept sparse
by dropping small elements. To keep the iterations economical, all computations are
performed with sparse matrix—sparse vector or sparse vector-sparse vector operations.

For our application here, we point out that the approximate inverse technique for
each column may be generalized to find a sparse approximate solution to the sparse linear
problem Az = b by minimizing

min b — Az (5)
possibly with an existing preconditioner M for A.

2.1 Approximate inverse algorithm

We describe a modification of the technique reported in [6] that guarantees the reduction
of the residual norm at each minimal residual step. Starting with a sparse initial guess,
the fill-in is increased by one at each iteration. At the end of each iteration, it is possible
to use a second stage that exchanges entries in the solution with new entries if this causes
a reduction in the residual norm. Without the second stage, entries in the solution cannot
be annihilated once they have been introduced. For the problems in this paper, however,
this second stage has not been necessary.

In the first stage, the search direction d is derived by dropping entries from the residual
direction r. So that the sparsity pattern of the solution z is controlled, d is chosen to have
the same sparsity pattern as x, plus one new entry, the largest entry in absolute value.
Minimization is performed by choosing the steplength

(r, Ad)
(Ad, Ad)
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and thus the residual norm for the new solution is guaranteed to be not more than the
previous residual norm. The solution and the residual is updated at the end of this
stage. If A is indefinite, the normal equations residual direction ATr may be used as the
search direction, or simply to determine the location of the new fill-in. It is interesting
to note that the largest entry in ATr gives the greatest residual norm reduction in a
one-dimensional minimization. This explains why a transpose initial guess for the ap-
proximate inverse combined with self-preconditioning (preconditioning r with the current
approximate inverse) is so effective for some problems [6].

There are many possibilities for the second stage. We choose to drop one entry in
x and introduce one new entry in d if this causes a decrease in the residual norm. The
candidate for dropping is the smallest absolute nonzero entry in x. The candidate to be
added is the largest absolute entry in the previous search direction (at the beginning of
stage 1) not already included in d. The previous direction is used so that the candidate
may be determined in stage 1, and an additional search is not required. The steplength
B is chosen by minimizing the new residual norm

16— Az — zses + Ber)»

where ¢; is the i-th coordinate vector, x is the entry in = to be dropped at position s
(smallest), while 3 is the entry to be added at position [ (largest), and we have generalized
the notation so that b is the right-hand-side vector, previously denoted m;. Let A; denote
the 7-th column of A. Then the minimization gives

(b— Az + xA5, Ay)

P T LAY

which just involves one sparse SAXPY since b— Az is already available as r, and one sparse
dot-product, since we may scale the columns of A to have unit 2-norm. It is guaranteed
that s # [ since [ is chosen from among the entries not including s.

The preconditioned version of the algorithm for minimizing ||b — Az||s with explicit
preconditioner M may be summarized as follows. A is assumed to be scaled so that its
columns all have unit 2-norm. The number of inner iterations is usually chosen to be [fil
or somewhat larger.

ALGORITHM 2.1 Approximate inverse algorithm

1. Starting with some initial guess x, r := b — Ax

2. Forinner =1,2,...,n; do

Stage 1

3. t:=Mr

4. Choose d to be t with the same pattern as x;

If nnz(x) < 1fil then add one entry which is the
largest remaining entry in absolute value
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= Ad

d. q

6. o= %

7. ri=r—aqq

8. z:i=x+ ad

Stage 2

9. s := index of smallest nonzero in abs(x)
10. [ := index of largest nonzero in abs(t — d)
11. Bi=(r+ A5, A)

12. ri=r+4+ax,As — BA

13. If||7)| < ||r]| then

14. Set x5 :=0 and x;:= f3

15. ri=T

16. End if

17. End do

2.2 Sparse solutions with the Schur complement

Sparse approximate solutions with the Schur complement S = C — EB™'F are often
required in the preconditioning for block-partitioned matrices. We will briefly describe
three approaches in this section: (1) approximating S, (2) approximating S™', and (3)
exploiting a partial approximate inverse of A.

2.2.1 Approximating S

To approximate S with a sparse matrix, we can use
S=C—-EY, Y~BF, (6)

where Y is computed by the approximate inverse technique, possibly preconditioned with
whatever we are using to solve with B. Since Y is sparse, S computed this way is also
sparse. Moreover, since S is usually relatively dense, solving with S is an economical
approach. Typically, a zero initial guess is used for Y. We remark that it is usually too
expensive to form Y by solving B~'F approximately and then dropping small elements,
since it is rather costly to search for elements to drop. We also note that we can generate S
column-by-column, and if necessary, compute a factorization of Sona column-by-column
basis as well. The linear systems with S can be solved in any fashion, including with an
iterative process with or without preconditioning.



BLOCK APPROXIMATE INVERSE TECHNIQUES 7

2.2.2 Approximating S~}

-1

Another method is to compute an approximation to S™' using the idea of induced pre-

conditioning. Since S~! is the (2,2) block of

(7)

B F\ [ B'4BFSTEB! —B'FS
EC) = —S-'EB! 51

we can compute a sparse approximation to it by using the approximate inverse technique
applied to the last block-column of A and then throwing away the upper block. In practice,
the upper part of each column may be discarded before computing the next column. In
our experiments, since the approximate inverse algorithm is applied to A, an indefinite
matrix in most of the problems, the normal equations search direction ATr is used in the
algorithm, with a scaled identity initial guess for the inverse.

2.2.3 Partial approximate inverse

A drawback of the above approach is that the top submatrix of the last block-column
is discarded, and that the resulting approximation of S™! may actually contain very few
nonzeros. A related technique is to compute the partial approximate inverse of A in the
last block-row. This technique does not give an approximation to S™!, but defines a
simple preconditioning method itself. Writing the inverse of A in the form,

(& o) =) ®

we can then get an approximate solution to A (z) = (5) with

- ()

v = BT(f-Fy). (9)

It is not necessary to solve accurately with B. Again, the normal equations search direc-
tion is used for the approximate inverse algorithm in the numerical experiments. Some
results of this relatively inexpensive method will be given in Section 4.

3 Block-partitioned factorizations of A

We consider a sparse linear system

Au=15 (10)

(5 o) ()=(5) 2

which is put in the block form,
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For now the only condition we require on this partitioning is that B be nonsingular. We
use extensively the following block LU factorization of A,

B F B 0 I B™'F .
ez c)=(& s) (o ") (12)
in which S is the Schur complement,
S=C—-EB'F. (13)
As is well-known, we can solve (12) by solving the reduced system,
Sy=¢g with ¢'=¢g— EB7'f (14)

to compute y, and then back-substitute in the first block-row of the system (11) to obtain
x, i.e., compute x by

v=B"(f - Fy).

The above block structure can be exploited in several different ways to define precon-
ditioners for A. Thus, the block preconditioners to be defined in this section combine
one of the preconditioners for S seen in Section 2.2 and a choice of a block factorization.
Next, we describe a few such options.

3.1 Solving the preconditioned reduced system

A method that is often used is to solve the reduced system (14), possibly with the help
of a certain preconditioner Mg for the Schur complement matrix S. Although this does
not involve any of the block factorizations discussed above, it is indirectly related to it
and to other well-known algorithms. For example, the Uzawa method which is typically
formulated on the full system, can be viewed as a Richardson (or fixed point) iteration
applied to the reduced system. The matrix S need not be computed explicitly; instead,
one can perform the matrix-vector product w = Sv, with the matrix S, via the following
sequence of operations:

1. Compute t := Fu;
2. Solve Bu =t;
3. Compute w := Cv — Eu.

If we wish to use a Krylov subspace technique such as GMRES on the preconditioned
reduced system, we need to solve the systems in Step 2, exactly, i.e., by a direct solver or
an iterative solver requiring a high accuracy. This is because the S matrix is the coefficient
matrix of the system to be solved, and it must be constant throughout the GMRES
iteration. We have experimented with this approach and found that this is a serious
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limitation. Convergence is reached in a number of steps which is typically comparable
with that obtained with methods based on the full matrix. However, each step costs much
more, unless a direct solution technique is used, in which case the initial LU factorization
may be very expensive. Alternatively, a highly accurate ILU factorization can be employed
for B, to reduce the cost of the many systems that must be solved with it in the successive
outer steps.

3.2 Approximate block diagonal preconditioner

One of the simplest block preconditioners for a matrix A partitioned as in (1) is the
block—diagonal matrix

B 0
M = ( 0 MC) (15)
in which M¢ is some preconditioning for the matrix C'. If C' = 0 as is the case for the
incompressible Navier-Stokes equations, then we can define My = [ for example. An

interesting particular case is when C' is nonsingular and My = C. This corresponds to a
block-Jacobi iteration. In this case, we have
0 B7'F
— -1 —
-arta=(ohy %)
the eigenvalues of which are the square roots of the eigenvalues of the matrix C"'EB™'F.
Convergence will be fast if all these eigenvalues are small.

3.3 Approximate block LU factorization

The block factorization (12) suggests using preconditioners based on the block LU factor-
ization

M= LU

B 0 I B 'F
L-(E MS) and U_<O 7 )

to precondition A. Here Mg is some preconditioner to the Schur complement matrix S. If

in which

we had a sparse approximation S to the Schur complement S we could compute a precon-
ditioning matrix Mg to S, for example, in the form of an approximate LU factorization.
We must point out here that any preconditioner for S will induce a preconditioner for A.
As was discussed in Section 3.1 a notable disadvantage of an approach based on solving
the reduced system (14) by an iterative process is that the action of S on a vector must
be computed very accurately in the Krylov acceleration part. In an approach based on
the larger system (11) this is not necessary. In fact any iterative process can be used for
solving with Mg and B provided we use a flexible variant of GMRES such as FGMRES
[20].



BLOCK APPROXIMATE INVERSE TECHNIQUES 10

Systems involving B may be solved in many ways, depending on their difficulty and
what we know about B. If B is known to be well-conditioned, then triangular solves with
incomplete LU factors may be sufficient. For more difficult B matrices, the incomplete
factors may be used as a preconditioner for an inner iterative process for B. Further, if
the incomplete factors are unstable (see Section 4.2), an approximate inverse for B may
be used, either directly or as a preconditioner. If B is an operator, an approximation to it
may be used; its factors may again be used either directly or as a preconditioner. This kind
of flexibility is typical of what is available for using iterative methods on block-partitioned
matrices.

An important observation is that if we solve exactly with B then the error in this
block ILU factorization lies entirely in the (2,2) block since,

0 0
A_LU+(O S—MS)' (16)
One can raise the question as to whether this approach is any better than one based on
solving the reduced system (14) preconditioned with Mg. It is known that in fact the
two approaches are mathematically equivalent if we start with the proper initial guesses.
Specifically, the initial guess should make the z-part of the residual vector equal to 0 for
the original system (11), i.e., the initial guess is

Uy = (IO) with  zo = B7'(f — Fyo) .
Yo

This result, due to Eisenstat and reported in [16], immediately follows from (16) which
shows that the preconditioned matrix has the particular form,

(L) ta= (g Mgls) | (17)
Thus, if the initial residual has its z-component equal to zero then all iterates will be
vectors with y components only, and a GMRES iteration on the system will reduce to a
GMRES iteration with the matrix M3'S involving only the y variable.

There are many possible options for choosing the matrix Ms. Among these we consider
the following ones.

e Mg = I — no preconditioning on S.

o Mg = C — precondition with the C' matrix if it is nonsingular. Alternatively we can
precondition with an ILU factorization of C.

e Mg ~ S — construct a sparse approximation to S and use it as a preconditioner. In
general, we only need to approximate the action of S on a vector, for example, with
the methods described in Sections 2.2.1 and 2.2.2.
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The following algorithm applies one preconditioning step to (g) to get ( )

T
Yy

ALGORITHM 3.1 Approximate block LU preconditioning

1. z:=DB7'f
2. Y= Ms_l(g—Ex)
3. r:=x— B 'Fy

We have experimented with a number of options for solving systems with Mg in step 2
of the algorithm above. For example, Mg may be approximated with S = C — EY, where
Y ~ B7!'F is computed by the approximate inverse technique. If this approximation is
used, it is possible to also use Y in place of B™1F in step 3.

3.4 Approximate block Gauss-Seidel

By ignoring the U factor of the approximate block LU factorization, we are led to a form
of block Gauss-Seidel preconditioning, defined by M = L, i.e.,

M:(g z\25> (18)

The same remarks on the ways to solve systems with B and ways to define the precon-
ditioning matrix Mg apply here. The algorithm for this preconditioner is the same as
Algorithm 3.1 without step 3.

To analyze the preconditioner, we start by observing that

1 B_1F>

-1 .
M A_<0 MG'S

(19)
showing that the only difference with the preconditioned matrix (17) is the additional
block B~*F' in the (1,2) position. The iterates associated with the block form and those
of the associated Schur complement approach M3'Sy = ¢’ are no longer simply related.
However there are a few connections between (17) and (19). First, the spectra of the two
matrices are identical. This does not mean, however, that the two matrices will require
the same number of iterations to converge in general.

Consider a GMRES iteration to solve the preconditioned system M~'Au = M~'b.
Here, we take an initial guess of the form

w=(3) o

in which zg is arbitrary. With this we denote the preconditioned initial residual by

ro = M7 (b— Aug) = (ZO> )

S0
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Then GMRES will find a vector u of the form u = ug+ w, with w belonging to the Krylov
subspace

(M7 A, ro) = span{ro, M~ Ara, ..., (M7 A)" ' ro}

which will minimize ||M~'(b — Au)||2. For an arbitrary u in the affine space ug +

K.(M™A rg), ie.,
() =)
U =Ug+w, U= , W=
Yo n

the preconditioned residual is of the form
M™Y(b— Au) = M7 (b— Aug + w)) = M~ (rg — Aw)

and by (19) this becomes,

R £ A 6+ B 1Fy
M= Au)_<30) ( Mgt Sn '

As a result,
M0 — Au)|ly = lso — Mg Snll3 + llz0 — 6 = B~ Fapll; - (21)

Note that ||sg — M5'Sn]||; represents the preconditioned residual norm for the reduced
system for the y obtained from the approximation of the large system. We have

[M7H(b — Au)llz > [|so — Mg Sl

which implies that if the residual for the bigger system is less than e, then the resid-
ual obtained by using a full GMRES on the associated preconditioned reduced system
M3' Sy = M5'g" will also be less than ¢. We observe in passing that the second term in
the right-hand-side of (21) can always be reduced to zero by a post-processing step which
consists of forcing the first part of the residual to be zero by changing 6 (only) into:

§=zg— B 'Fy .

Equivalently, once the current pair x,y is obtained,  can be recomputed by satisfying

the first block equation, i.e.,
v =B (f~-Fy).

This post-processing step requires only one additional B solve.

Assume now that we know something about the residual vector associated with m
steps of GMRES applied to the preconditioned reduced system. Can we say something
about the residual norm associated with the preconditioned unreduced system? We begin
by establishing a simple lemma.
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Lemma 3.1 Let

1Y .
z2=(y &) (22)
Then, the following equality holds
_ vy (0 —YG*F ) o
(I-2)2" = (0 (1 — G)Gk (23)

Proof. First, it is easy to prove that

v (1 Yk)
7=y o

in which Y, = Y[I + G+ --- G*71]. We now multiply both members of the above equality
I — 7 to obtain,

1-02=( 266 6) =0 o)

We now state the main result concerning the comparison between the two approaches.

Theorem 3.1 Assume that the reduced system (14) is solved with GMRES using the
preconditioner Mg starting with an arbitrary initial guess yo and let 5, = M3 (g' — Sym)
the preconditioned residual obtained at the m-th step. Then the preconditioned residual
vector r,41 obtained at the (m + 1)-st step of GMRES for solving the block system (11)

Zo

preconditioned with the matric M of (18) and with an initial guess ug = in which x

is arbitrary satisfies the inequality
[rmsillz < = M7 A2l sp]l2. (24)
In particular if s,, = 0 then r,11 = 0.

Proof. The preconditioned matrix for the unreduced system is of the form (22) with
Y = B7'F and G = M3'S. The residual vector s,, of the m-th GMRES approximation

associated with the reduced system is of the form,
Sm = pm(G)s0

in which p,, is the m-th residual polynomial, which minimizes ||p(G)so||2 among all poly-
nomials p of degree m satisfying the constraint: p(0) = 1. Let

pm(t) = Zaiti .
1=0
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Consider the polynomial of degree m + 1 defined by

Bt (t) = (1 = 1) pn(t). (25)

It is clear that
Bm-}—l(o) =1.

The residual of w,, 41, the m—+1-st approximate solution obtained by the GMRES algorithm
for solving the preconditioned unreduced system minimizes p(Z)rg over all polynomials p
of degree m + 1 which are consistent, i.e., such that p(0) = 1. Therefore,

7msillz < || Bmsi(Z)roll2 -

Using the equality established in the lemma, we now observe that

bsilZ) = (I=2)Y a2’

1=0

- Sa(§ )
Y pu(G) )
(I = G)pm(G)

_ <0 -Y ) (O 0 )

N0 TG/ \0 pa(G))°
The first matrix in the right-hand-side of the last equality is nothing but I — Z. Hence,
the residual vector 7,41 is such that

o
Il

Il
TN
o oo

[rma1llz < 1 = Z|l2]|pm(G) 0|2

which completes the proof. O

It is also interesting to relate the convergence of this algorithm to that of the block-
diagonal approach in the particular case when Mg = C'. This case corresponds to a block
Gauss-Seidel iteration. We can exploit Young and Frankel’s theory for 2-cyclic matrices
to compare the convergence rates of this and the block Jacobi approach. Indeed, in this
case, we have from (19) that

I—M—1A=<

0 —B7'F )
0 C'EB'F)°

Therefore, the eigenvalues of this matrix are the squares of those of matrix I — M~1A
associated with the block-Jacobi preconditioner of Section 3.2.
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4 Numerical Experiments

This section is organized as follows. In Section 4.1 we describe the test problems and
list the methods that we use. In Section 4.2, we illustrate for comparison purposes the
difficulty of incomplete LU factorizations for solving these problems in a fully-coupled
manner. In Section 4.3, we make some comments in regard to domain decomposition
types of reorderings. In Section 4.4 we show some results of the new preconditioners on a
simple PDE problem. Finally, in Sections 4.5 and 4.6, we present the results of the new
preconditioners on more realistic problems arising from the incompressible Navier-Stokes
equations.

Linear systems were constructed so that the solution is a vector of all ones. A zero
initial guess for right-preconditioned FGMRES [20] restarted every 20 iterations was used
to solve the systems. The Tables show the number of iterations required to reduce the
residual norm by 10=7. The iterations were stopped when 300 matrix-vector multiplica-
tions were reached, indicated by a dagger (f). The codes were written in FORTRAN 77
using many routines from SPARSKIT [23], and run in single precision on a Cray C90
supercomputer.

4.1 Test problems and methods

The first set of test problems is a finite difference Laplace equation with Dirichlet boundary
conditions. Three different sized grids were used. The matrices were reordered using a
domain decomposition reordering with 4 subdomains. In the following tables, n is the
order of the matrix, nnz is the number of nonzero entries, ng is the order of the B
submatrix, and n¢ is the order of the €' submatrix.

‘ Grid ‘ n ‘ nnz ‘ ng ‘ ne ‘
32 by 32 | 961 | 4681 | 900 | 61
48 by 48 | 2209 | 10857 | 2116 | 93
64 by 64 | 3969 | 19593 | 3844 | 125

Table 1: Laplacian test problems.

The second set of test matrices were extracted from the example incompressible Navier-
Stokes problems in the FIDAP [14] package. All problems with zero C' submatrix were
tested. In the case of transient problems, the matrices are the Jacobians when the Newton
iterations had converged. The matrices are reordered so that the continuity equations are
ordered last. The scaling of many of the matrices are poor, since each matrix contains
different types of equations. Thus, we scale each row to have unit 2-norm, and then scale
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each column the same way. The problems are all originally nonsymmetric except 4, 12,

14 and 32.

‘ Matrix ‘ n ‘ nnz ‘ ng ‘ ne ‘

EX04 | 1601 | 31850 | 1151 | 450 | Hamel flow

EX06 | 1651 | 49063 | 1180 | 471 | Die swell

EX12 | 3973 | 79078 | 2839 | 1134 | Stokes flow

EX14 | 3251 | 65875 | 2351 | 920 | Isothermal seepage

EX20 | 2203 | 67830 | 1603 | 600 | Surface disturbance attenuation
EX23 | 1409 | 42761 | 1008 | 401 | Fountain flow

EX24 | 2283 | 47901 | 1635 | 648 | Forward roll coating

EX26 | 2163 | 74465 | 1706 | 457 | Driven thermal convection
EX28 | 2603 | 77031 | 1853 | 750 | Two merging liquids
EX31 ]3909 | 91223 | 3279 | 630 | Dilute species deposition
EX32 | 1159 | 11047 | 863 | 296 | Radiation heat transfer
EX36 | 3079 | 53099 | 2575 | 504 | Chemical vapor deposition
EX40 | 7740 | 456189 | 5916 | 1824 | 3D Die swell

Table 2: FIDAP example matrices.

The third set of test problems is from a finite-element discretization of the square lid-
driven cavity problem. Rectangular elements were used, with biquadratic basis functions
for velocities, and linear discontinuous basis functions for pressure. We will show our
results for problems with Reynolds number 0, 500, and 1000. All matrices arise from a
mesh of 20 by 20 elements, leading to matrices of size n = 4562 and having nnz =138,187
nonzero entries. These matrices have 3363 velocity unknowns, and 1199 pressure un-
knowns. The matrices are scaled the same way as for the FIDAP matrices—the problems
are otherwise very difficult to solve.

We will use the following names to denote the methods that we tested.

NOPRE No preconditioner.
ILUT(nfil) and ILUTP(nfil) Incomplete LU factorization with threshold of nfil nonze-

ros per row in each of the L and U factors. This preconditioner will be described in
Section 4.2.

PAR(Ifil) Partial approximate inverse preconditioner described in Section 2.2.3, using
lfil nonzeros per row in M.

ABJ Approximate block-Jacobi preconditioner described in Section 3.2. This precondi-
tioner only applies when C' # 0.
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ABLU(Ifil) Approximate block LU factorization preconditioner described in Section 3.3.
The approximation (6) to S with [fil nonzeros per column of ¥ was used.

ABLU y(lfil) Same as above, but using Y whenever B~ F needs to be applied in step
3 of Algorithm 3.1.

ABLU _s(lfil) Approximate block LU factorization preconditioner, using (7) to approxi-
mate S~! with {fil nonzeros per column when approximating the last block column
of the inverse of A.

ABGS(Ifil) Approximate block Gauss-Seidel preconditioner described in Section 3.4.
The approximation (6) to S with [fil nonzeros per column of ¥ was used.

The storage requirements for each preconditioner are given in Table 3. The ILUT
preconditioner to be described in the next subsection requires considerably more storage
than the approximate block-partitioned factorizations, since its storage depends on n
rather than n¢. Because the approximation to S™! discards the upper block, the storage
for it is less than Ifil xne. The storage required for S is more difficult to estimate since it
is at least the product of two sparse matrices. It is generally less than 2 x Ifil X n¢; Table
11 in Section 4.5 gives the exact number of nonzeros in S for the FIDAP problems.

‘ ‘ Matrices ‘ Matrix locations ‘
ILUT(nfil) LU 2 x nfil xn
PAR(Ifil) M, Ifil xne
ABJ none none
ABLU({fil) S less than 2 x Ifil x n¢
ABLU_y(lfil) | S,Y less than 3 x Ifil x n¢
ABLU s(lfil) | approx S™* | less than {fil xn¢
ABGS(Ifil) S less than 2 x Ifil x n¢

Table 3: Storage requirements for each preconditioner.

4.2 1ILU for the fully-coupled system

We wish to compare our new preconditioners with the most general, and in our experi-
ence, one of the most effective general-purpose preconditioners for solving the fully-coupled
system. In particular, we show results for ILUT, a dual-threshold, incomplete LU factor-
ization preconditioner based on a drop-tolerance and the maximum number of new fill-in
elements allowed per row in each L and U factor. This latter threshold allows the storage
for the preconditioner to be known beforehand. Drop-tolerance ILU rather than level-fill



BLOCK APPROXIMATE INVERSE TECHNIQUES 18

ILU is often more effective for indefinite problems where numerical values play a much
more important role. A variant that performs column pivoting, called ILUTP, is even
more suitable for highly indefinite problems.

We use a small modification that we have found to often perform better and rarely
worse on matrices that have a wide ranging number of elements per row or column. This
arises for various reasons, including the fact that the matrix contains the discretization of
different equations. Instead of counting the number of new fill-ins, we keep the nonzeros
in each row of L and U fixed at nfil, regardless of the number of original nonzeros in that
row. We also found better performance when keeping nfil constant rather than having it
increase or decrease as the factorization progresses.

It A is highly indefinite or has large nonsymmetric parts, an ILU factorization often
produces unstable L and U factors, i.e., |[(LU)™!|| can be extremely large, caused by the
long recurrences in the forward and backward triangular solves [11]. To illustrate this
point, we computed for a number of factorizations the rough lower bound

ILU) Moo 2 N(LU) €]l

where e is a vector of all ones. For the FIDAP example matrix EX07 modeling natural
convection with order 1633 and 46626 nonzeros, we see in Table 4 that the norm bound
increases dramatically as nfil is decreased in the incomplete factorization. GMRES could
not solve the linear systems with these factorizations as the preconditioner. This matrix
we chose is a striking example because it can be solved without preconditioning.

nfil 10] 20] 30] 40] 50 60| 70| 80| 90 [ 100
Togyo I(LU) Tello || 132 | 174 [ 203 | 175 | 277 | 359 | 231 | 31| 27| 22

Table 4: Estimate of ||(LU)™}||s from ILUT factors for EX07.

To illustrate the difficulty of solving the FIDAP problems with ILUTP, we progres-
sively allowed more fill-in until the problem could be solved, incrementing nfil in multiples
of 10, with no drop tolerance. The results are shown in Table 5. For these types of prob-
lems, it is typical that very large amounts of fill-in must be used for the factorizations to
be successful. An iterative solution was not attempted if the LU condition lower bound
was greater than 10%°. If a zero pivot must be used, ILUT and ILUTP attempt to com-
plete the factorization by using a small value proportional to the norm of the row. The
matrices were taken in their original banded ordering, where the degrees of freedom of a
node or element are numbered together. As discussed in the next subsection, this type of
ordering having low bandwidth is often essential for an ILU-type preconditioning—many
problems including these cannot be solved otherwise.

We should note that ILUTP is occasionally worse than ILUT. This can be alleviated
somewhat by using a low value of mbloc, a parameter in ILUTP that determines how
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Matrix ‘ nfil ‘
EX04 20
EX06 50
EX12 70
EX14 | >100
EX20 30
EX23 10
EX24 10
EX26 | >100
EX28 20
EX31 10
EX32 | >100
EX36 10
EX40 10

Table 5: nfil required to solve FIDAP problems with ILUTP.

far to search for a pivot. In summary, indefinite problems such as these arising from the
incompressible Navier-Stokes equations may be very tough for ILU-type preconditioners.

4.3 Domain decomposition reordering considerations

Graph partitioners subdivide a domain into a number of pieces and can be used to give the
domain decomposition reordering described in Section 1. This is a technique to impose
a block-partitioned structure on the matrix, and adapts it for parallel processing, since
B is now a block-diagonal matrix. This technique is also useful if B is highly indefinite
and produces an unstable LU factorization; by limiting the size of the factorization, the
instability cannot grow beyond a point for which the factorization is not useful. For
general, nonsymmetric matrices, the partitioner may be applied to a symmetrized graph.

In Table 6 we show some results of ILUT(40) on the Driven cavity problem with
different matrix reorderings. We used the original unblocked ordering where the degrees
of freedom of the elements are ordered together, the blocked ordering where the continuity
equations are ordered last, and a domain decomposition reordering found using a simple
automatic recursive dissection procedure with four subdomains. This latter ordering found
3680 nodes internal to the subdomains, and 882 interface nodes.

The poorer quality of the incomplete factorization for the Driven cavity problems in
block-partitioned form is due to the poor ordering rather than instability of the L and U
factors; in fact, zero pivots are not encountered. For the problem with Reynolds number
0, the unblocked format produces 745,187 nonzeros in the strictly lower-triangular part
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‘ Re. H Unblocked ‘ Blocked ‘ DD ordered ‘

0 24 18 60
500 27 ; 51
1000 78 i 51

Table 6: Effect of ordering on ILUT for Cavity problem:s.

during the incomplete factorization (which is then dropped down to less than nx nfil =
182,480 nonzeros) while the block-partitioned format produces 2,195,688 nonzeros, almost
three times more.

The factorization for the domain decomposition reordered matrices encounters many
zero pivots when it reaches the (2,2) block. These latter orderings do not necessarily
cause ILUT to fill-in zeros on the diagonal. Nevertheless, the substitution of a small pivot
described above seems to be effective here. The domain decomposition reordering also
reduces the amount of fill-in because of the shape of the matrix (a downward pointing
arrow). Combined with its tendency to limit the growth of instability, the results show
this reordering is advantageous even on serial computers.

In Table 7 we compare the difficulty of solving the B and S subsystems for the blocked
and domain decomposition reorderings of the Driven cavity problems. S was computed
as S = C' — EY, where Y was computed using the approximate inverse technique with Ifil
of 30. Here we used ILUT(30) and only solved the linear systems to a tolerance of 107°.
Solves with these submatrices in the block-partitioned preconditioners usually need to be
much less accurate. In most of the experiments that follow, we used unpreconditioned
iterations to a tolerance of 107! or 100 matrix-vector multiplications to solve with B and
S. Other methods would be necessary depending on the difficulty of the problems. The
table gives an idea of how difficult it is to solve with B and S, and again shows the
advantage of using domain decomposition reorderings for hard problems.

Re. Blocked DD ordered
B S B S
0 6 3 9 T
500 180 4 7 26
1000 T T 7 45

Table 7: Solving with B and S for different orderings of A.
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4.4 Test results for the Laplacian problem

In Tables 8 and 9 we present the results for the Laplacian problem with three different grid
sizes, using no preconditioning, approximate block diagonal, partial approximate inverse,
approximate block LU, and approximate block Gauss-Seidel preconditioners. Note that
in Table 9, an Ifil of zero for the approximate block LU and Gauss-Seidel preconditioners
respectively indicate the preconditioners

-1
(BN EEY e w= (B0 )
Grid NOPRE | ABJ PAR
5110 [15]20
32 by 32 135 3321|1816 | 15
48 by 48 367 50 (129 |21 | 19 | 17
64 by 64 532 57 |36 | 33|25 | 20

Table 8: Test results for the Laplacian problem.

Grid ABLU ABGS
0] 5[10]15]20] O] 5]10[15]20
32by 322317151515 15|17 |15[15 15
48 by 48 || 17 | 18 | 16 [ 15 [ 15 || 18 | 19 | 19 | 18 | 18
64 by 64 | 19|20 | 18 | 18 | 17 |/ 20 | 23 | 21 | 20 | 20

Table 9: Test results for the Laplacian problem.

4.5 Test results for the FIDAP problems

For the block-partitioned factorization preconditioners, unpreconditioned GMRES, restarted
every 20 iterations, was used to approximately solve the inner systems involving B and S
by reducing the initial residual norm by a factor of 0.1, or using up to 100 matrix-vector
multiplications. Solves with the matrix B are usually not too difficult because for most
problems, it is positive definite. A zero initial guess for these solves was used. The results
for a number of the preconditioners with various options are shown in Table 10. The best
preconditioner appears to be ABLU_y; using Y for B~1F is better than solving a system
with B very inaccurately. The number of nonzeros in S is small, as illustrated by Table
11 for two values of [fil.
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PAR [ ABLUss | ABLU | ABLU.y | ABGS
Matrix 20 5] 20] 40 20 40 20[ 40
EX04 7 78]t 9r[227] 100 t]126
EX06 f 1N R N N S A
EX12 61 72| 53| 36| 48| 34| 61| 41
EX14 i t| 75| 35| 83| 40| 72| 48
EX20 141 f| | 60246 90| 178
EX23 i 90 | | ot Tt 269 f|
EX24 i Pl T 93 | 91207136
EX26 i 17|t 91| 104 | 63| 209 | 163
EX28 289 214 67| 105 | 67 | 144 | 104
EX31 101 49 | 122 74 120 | 162
EX32 136 P 38| 21| 39| 29| 63| 37
EX36 54 70| 80| 52| 47| 36| 69| 54
EX40 205 tl T 96 84 75119102

Table 10: Test results for the FIDAP problems.

4.6 Test results for the Driven cavity problems

The driven cavity problems are much more challenging because the B block is no longer
positive definite, and in fact, acquires larger and larger negative eigenvalues as the Reynolds
number increases. For these problems, the unpreconditioned GMRES iterations with B
were done to a tolerance of 1072 or a maximum of 100 matrix-vector multiplications.
Again, ABLU_y appears to be the best preconditioner. The results are shown in Table
12.

5 Conclusions

We have presented a few preconditioners which are defined by combining two ingredients:
(1) a sparse approximate inverse technique for obtaining a preconditioner for the Schur
complement or a part of the inverse of A, and (2) a block factorization for the full sys-
tem. The Schur complement S which appears in the block factorization is approximated
by its preconditioner. Approximate inverse techniques [6] are used in different ways to
approximate either S directly or a part of A7

As can be seen by comparing Tables 5 and 10, we can solve more problems with the
block approach than with a standard ILU factorization. In addition, this is typically
achieved with a far smaller memory requirement than ILUT or a direct solver. The better
robustness of these methods is due to the fact that solves are only performed for small
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lfil

Matrix 20 ‘ 40
EX04 | 13377 | 20796
EX06 | 15077 | 23533
EX12 | 30851 | 48940
EX14 | 33144 | 49932
EX20 | 21759 | 33119
EX23 | 12463 | 19084
EX24 | 18966 | 29010
EX26 | 13395 | 21468
EX28 | 25181 | 38716
EX31 16551 | 24452
EX32 6775 | 11390
EX36 | 13621 | 21063
EX40 | 49729 | 93330

Table 11: Number of nonzeros in S.

ABLU [ ABLU.y | ABGS
Re. || 20| 40| 20] 40| 20| 40

0 62] 42 59 42 84] 58
500 | f | T 182 92| 130 103
1000 | 1| t] 164|118 f] 7§

Table 12: Test results for the Driven cavity problems.

matrices. In effect, we are implicitly using the power of the divide-and-conquer strategy
which is characteristic of domain decomposition methods. The smaller matrices obtained
from the block partitioning can be preconditioned with a standard ILUT approach. The
larger matrices use a block-ILU, and the glue between the two is the preconditioning of
the Schur complement.
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