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Abstract

The standard Incomplete LU (ILU) preconditioners often fail for general sparse
indefinite matrices because they give rise to ‘unstable’ factors L and U. In such
cases, it may be attractive to approximate the inverse of the matrix directly. This pa-
per focuses on approximate inverse preconditioners based on minimizing ||/ —AM ||z,
where AM is the preconditioned matrix. An iterative descent-type method is used
to approximate each column of the inverse. For this approach to be efficient, the
iteration must be done in sparse mode, i.e., with ‘sparse-matrix by sparse-vector’ op-
erations. Numerical dropping is applied to each column to maintain sparsity in the
approximate inverse. Compared to previous methods, this is a natural way to deter-
mine the sparsity pattern of the approximate inverse. This paper discusses options
such as Newton and ‘global’ iteration, self-preconditioning, dropping strategies, and
factorized forms. The performance of the options are compared on standard prob-
lems from the Harwell-Boeing collection. Theoretical results on general approximate
inverses and the convergence behavior of the algorithms are derived. Finally, some
ideas and experiments with practical variations and applications are presented.
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1 Introduction

The incomplete LU factorization preconditioners have been originally developed for M-
matrices which arise from the discretization of very simple partial differential equations of
elliptic type, usually in one variable. For the rather common situation where the matrix A
is indefinite, standard ILU factorizations may face several difficulties. The best known of
these difficulties arises when the algorithm to compute the ILU factorization encounters
a zero pivot leading to a fatal breakdown. However, there are other problems that are
just as serious. Consider an incomplete factorization of the form

A=LU+E (1)

where F is the error. The preconditioned matrices associated with the different forms of
preconditioning are similar to

L7'AU =1+ L7 EU. (2)

What is sometimes missed is the fact that the error matrix £ in (1) is not as important
as the ‘preconditioned’ error matrix L™'EU~" shown in (2) above. When the matrix
A is diagonally dominant then L and U are typically well conditioned, and the size of
L7'EU™! remains confined within reasonable limits, typically with a nice clustering of
its eigenvalues around the origin. On the other hand, when the original matrix is not
diagonally dominant, L=! or U~! may have very large norms, causing the error L' EU 1
to be very large and thus adding large perturbations to the identity matrix. This form of
instability has been studied by Elman [12] who proposed a detailed analysis of ILU and
MILU preconditioners. It can be observed experimentally that ILU preconditioners can
be very poor when L' or U1 are large, and that this situation often occurs for indefinite
problems, or problems with large nonsymmetric parts.

A possible remedy is to try to find a preconditioner that does not require solving a lin-
ear system. For example, we can precondition the original system with a matrix M which
is a direct approximation to the inverse of A. Compared to ILU techniques, approximate
inverse preconditioners have the additional advantage that they are easily constructed
and applied in parallel. Approximate inverses are also useful in two-level preconditioners,
for example, various incomplete block factorizations, and have application to improving
preconditioners.

In this paper, we focus on methods of finding approximate inverses based on minimiz-
ing the Frobenius norm of the residual matrix I — AM, first suggested by Benson and
Frederickson [5, 6]. We look for a right approximate inverse so that practical variations
that use flexible right preconditioning may be used, although left approximate inverses
may be better for certain matrices depending on the structure of the inverse. Considering
right approximate inverses, we seek to minimize

F(M) = ||I = AM|. (3)
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An important feature of this objective function is that it can be decoupled as the sum of
the squares of the 2-norms of the individual columns of the residual matrix I — AM

F(M) =1 —AM|} =} _le; — Am;]; (4)

i=1

in which e; and m; are the j-th columns of the identity matrix and of the matrix M,
respectively. Thus, minimizing (4) is equivalent to minimizing the individual functions

fitm) =|le; — Aml[3, j=1,2,...,n. (5)

This is clearly useful for parallel implementations. It also gives rise to a number of different
options to choose from.

Up to now, the minimization in (5) has been performed directly by prescribing a spar-
sity pattern for M and solving the resulting least squares problems. Grote and Simon [15]
choose M to be a banded matrix with 2p+1 diagonals, p > 0, emphasizing the importance
of the fast application of the preconditioner in a CM-2 implementation. This choice of
structure is particularly suitable for banded matrices.

Cosgrove, Diaz and Griewank [8] select the initial structure of M to be diagonal and
then use a procedure to improve the minimum by updating the sparsity pattern of M.
New fill-in elements are chosen so that the fill-in contributes a certain improvement while
minimizing the number of new rows in the least squares subproblem. In similar and
recent work by Huckle and Grote [11], the reduction in the residual norm is tested for
each candidate fill-in element, but fill-in may be introduced more than one at a time.

In other related work, Kolotilina and Yeremin [18] consider symmetric, positive definite
systems and construct factorized sparse approximate inverse preconditioners which are
also symmetric, positive definite. The preconditioner has the form M = GL(G; where
(i1 is lower triangular, and thus A is preconditioned to become GrAGE. A weighted
Frobenius norm is used in this case, and results in a small linear system for each row for
a given sparsity pattern. The structure of GGy is chosen to be the same as the structure
of the lower triangular part of A. In their more recent work [19], fill-in elements may be
added, but are chosen in a way so that constructing Gy, is not much more expensive, with
the simple hope that the additional degrees of freedom will improve the preconditioner
quality. Preconditioners for general systems may be constructed by approximating the
left and right factors separately.

This paper is organized as follows. In Section 2, we present our approximate inverse
algorithms, describing some implementation details and various options. We derive some
simple theoretical results for approximate inverses and the convergence behavior of the
algorithms in Section 3. In Section 4, we compare and comment on the performance of
the various options on matrices mostly from the Harwell-Boeing collection. Finally in Sec-
tion 5, we present some ideas and experiments with practical variations and applications
of approximate inverses.
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2 Construction of the approximate inverse

In contrast to the previous work described above, to minimize the objective function (3)
we do not prescribe a sparsity pattern for M beforehand. The location and value of
the nonzero elements are determined naturally by using an iterative procedure to either
minimize (3) or (5), the latter as a collection of n individual columns. In addition,
elements in the approximate inverse may be removed by a numerical dropping strategy
if they contribute little to the inverse. These features are clearly necessary for general
sparse matrices. In Sections 2.1 and 2.2 we briefly describe two approaches where M is
treated as a matrix in its entirety, rather than as individual columns. We found, however,
that these methods converge more slowly than if the columns are treated separately. In
the remaining sections, we consider this latter approach and the various options that are
available.

2.1 Newton iteration

As an alternative to directly minimizing the objective function (3), an approximate inverse
may also be computed using an iterative process known as the method of Hotelling and
Bodewig [16]. This method, which is modeled after Newton’s method for solving f(z) =
/2 — a = 0, has many similarities to our descent methods which we describe later. The
iteration takes the form

Mgy = My(21 — AM,), i=0,1,...

For convergence, we require that the spectral radius of I — AMj be less than one, and if
we choose an initial guess of the form My = a AT then convergence is achieved if

2
O<Oé<m.

In practice, we can follow Pan and Reif [22] and use

1
o= ———
|AAT]]s

for the right approximate inverse. As the iterations progress, M becomes denser and
denser, and a natural idea here is to perform the above iteration in sparse mode [21],
i.e., drop some elements in M or else the iterations become too expensive. In this case,
however, the convergence properties of the Newton iteration are lost. We will show the
results of some numerical experiments in Section 4.

2.2 Global iteration

In this section we describe a ‘global” approach to minimizing (3), where we use a descent-
type method, treating M as an unknown sparse matrix. The objective function (3) is a
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quadratic function on the space of n x n matrices, viewed as objects in R™. The actual
inner product on the space of matrices with which the function (4) is associated is

(X,Y) =tr(YTX). (6)

One possible descent-type method we may use is steepest descent which we will describe
later. In the following, we will call the array representation of an n* vector X the n x n
matrix whose column vectors are the successive n-vectors of X.

In descent algorithms a new iterate M,,.,, is defined by taking a step along a selected
direction G| i.e.,

Myew = M + oG

in which « is selected to minimize the objective function associated with M,.,,. This is
achieved by taking
(R, AG) tr(RTAG) ()
a= = )
(AG,AG)Y  tr((AG)TAG)

Note that the denominator may be computed as ||AG||%. After each of these descent
steps is taken, the resulting matrix M will tend to become denser. It is therefore essential
to apply numerical dropping to the new M. However, the descent nature of the step is
now lost, i.e., it is no longer guaranteed that F(M,.,) < F(M). An alternative would be
to apply numerical dropping to the direction of search G before taking the descent step.
However, in this case, the fill-in in M cannot be controlled.

The simplest choice for the descent direction (G is to take it to be the residual matrix
R =1—AM, where M is the new iterate. The corresponding descent algorithm is referred
to as the Minimal Residual (MR) algorithm. It is easy to see that R is indeed a descent
direction for F'. Our global Minimal Residual algorithm will therefore have the following
form:

ALGORITHM 2.1 Global Minimal Residual descent algorithm

Select an initial M
Until convergence do
Compute G :=1 — AM
Compute « by (7)
Compute M := M + oG
Apply numerical dropping to M
End do

NSO N

Another popular choice is to take G to be the direction of steepest descent, i.e., the

direction opposite to the gradient. Thinking in terms of n? vectors, the gradient of F' can

2

be viewed as an n” vector ¢ such that

F(z+e)=F(z)+ (g,¢) + O([le]l*)
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where (-, -) is the usual Euclidean inner product. If we represent all vectors as 2-dimensional
n X n arrays, then the above relation is equivalent to

F(X+E)=F(X)+ (G, E)+O(|E|*).

This allows us to determine the gradient as an operator on arrays, rather than n* vectors,
as is done in the next proposition.

Proposition 2.1 The array representation of the gradient of F' with respect to M is the
matric

G =—2A"R
in which R is the residual matriza R =1— AM.

Proof. For any matrix £ we have

FM+E)—FM) = te(l — AM+ E)'(1 — AM + E))
—te(1 — A(M))"(I — A(M))
= tr|[(R— AE)"(R— AE)— R"R|
= —tr[(AE)'R + RTAE — (AE)"(AE)]
= —2tr(RTAE) + tr(AE)T (AR)
= —2(A"R,E) + (AE, AE).

Thus, the differential of F' applied to E is the inner product of —2AT R with E plus a
second order term. The gradient is therefore simply —2AT R. O

The steepest descent algorithm consists of simply replacing GG in line 3 of the MR
algorithm described above by G = AT R. This algorithm can be a very slow in some cases,
since it is essentially a steepest descent-type algorithm applied to the normal equations.

In either global steepest descent or minimal residual, we need to form and store the
matrix explicitly. The scalars || AG||% and tr(GT AG) can be computed from the successive
columns of AG, which can be generated, used, and discarded. Therefore, we need not
store the matrix AG.

We will show the results of some numerical experiments with this global iteration and
compare them with other methods in Section 4.

2.3 Implementation of sparse MR and GMRES

We now describe column-oriented algorithms which consist of minimizing the individual
objective functions (5). We perform this minimization by taking a sparse initial guess
and solving approximately the n parallel linear subproblems

Am;=e¢;, 7=12,...,n (8)
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with a few steps of a nonsymmetric descent-type method, such as MR or untruncated
GMRES. For this method to be efficient, the iterative method must work in sparse mode,
i.e., m; is stored and operated on as a sparse vector, and the Arnoldi basis in GMRES is
kept in sparse format.

In the following MR algorithm, n; iterations are used to solve (8) approximately for
each column, giving an approximation to the j-th column of the inverse of A. Each initial
m; is taken from the columns of an initial guess, My. In the GMRES version of the
algorithm, we never use restarting since since n; is typically very small.

ALGORITHM 2.2 Minimal Residual iteration

1. Start: set M = M,

2. For each columnj=1,...,n do

3. Define m; = Me;

4. Fori=1,...,n; do

5. rii=e; — Am;

’ % = Uy

7. m; 1= m;j + o;r;

8. Apply numerical dropping to m;
9. End do

10. End do

Thus, the algorithm computes the current residual r; and then minimizes the residual
norm e; — Am; e in the set m; + ar;.

In the sparse implementation of MR and GMRES, the matrix-vector product, SAXPY,
and dot product kernels now all entirely involve sparse vectors. The matrix-vector product
is much more efficient if the sparse matrix is stored by columns since all the entries do
not need to be traversed. Efficient codes for all these kernels may be constructed which
utilize a full n-length work vector [9].

Columns from an initial guess My for the approximate inverse are used as the initial
guesses for the iterative solution of the linear subproblems. There are two obvious choices:
My = ol and My = aAT. The scale factor « is chosen to minimize the spectral radius
p(I — aAM). Denoting the initial guess as My = oM and writing

0

%HI —aAM|% = a—atr[(I — aAM) (I — aAM)] =0

leads to
tr(AM)

a = .
tr(AM(AM)T)

The identity initial guess is cheaper to use because it is sparser than the transpose of

A. However, My = aA” is often a much better initial guess. The quality of the initial
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guess may determine whether or not the approximate inverse is a good preconditioner.
If the identity is a poor initial guess, the approximate inverse may take a long time to
converge toward the inverse. If the transpose is a poor initial guess and a poor dropping
strategy is used, nonzeros in the transpose may never be dropped to allow the necessary
fill-in in other locations. Note that the transpose of A as an initial guess makes the initial
preconditioned system AMy symmetric, positive definite.

2.4 Self-preconditioning

The approximate solution of the linear subproblems (8) using an iterative method suf-
fers from the same problems as solving the original problem if A is poorly conditioned.
However, the linear systems may be preconditioned with the columns that have already
been computed. More precisely, each system (8) for approximating column j may be
preconditioned with M/ where the first j — 1 columns of M{ are the m; that already have
been computed, 1 < k < j, and the remaining columns are the initial guesses for the my,
7 <k<n.

This suggests that it is possible to define outer iterations that sweep over the matrix, as
well as inner iterations which compute each column. On each subsequent outer iteration,
the initial guess for each column is the previous result for that column.

With this approach, the parallelism of constructing the columns of the approximate
inverse simultaneously is lost, but the quality of the preconditioner is often much improved
for the same amount of serial work. We note however that self-preconditioning does not
always help, producing worse performance in many examples.

There is another variant of self-preconditioning that is easier to implement and more
easily parallelizable. Quite simply, all the inner iterations are computed simultaneously
and the results of all the columns are used as the self-preconditioner for the next outer
iteration. Thus, the preconditioner for the inner iterations changes only after each outer
iteration. For general matrices, the performance of this variant lies between full self-
preconditioning and no self-preconditioning. A more reasonable compromise is to compute
blocks of columns in parallel, and some (inner) self-preconditioning may be used.

Algorithm 2.3 implements the Minimal Residual iteration with self-preconditioning.
In the algorithm, n, outer iterations and n; inner iterations are used. Again, M = M,
initially. In the GMRES version of the algorithm, a variant called FGMRES [25] that

allows a flexible preconditioner is actually used.

ALGORITHM 2.3 Self-preconditioned Minimal Residual iteration

1 Start: M = M,

2 For outer =1,2,...,n, do

3. For each column j=1,....,n do
4 Define s := Me;

5 For inner =1,...,n; do
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6. r:=e; —As, 2= Mr

7. q:= Az

8. o= %

9. s:=s+ az

10. Apply numerical dropping to s
11. End do

12. Update j-th column of M: m; :=s
13. End do

14.  End do

In implementing self-preconditioning in FORTRAN 77, two sparse matrices are used
to avoid copying of the columns of the matrix. The columns are appended to one matrix
or the other depending on the parity of the outer iteration number. The matrix-vector
multiplication with the self-preconditioner is done with the first j — 1 columns of one
matrix, and the remaining columns of the second matrix.

In the presence of self-preconditioning, it is not clear in what order the columns should
be computed. It may be possible to choose an ordering of the matrix that will make
effective use of the fill-in. We have conducted some brief experiments with Cuthill-McKee
reordering for this purpose, but found the results inconclusive.

2.5 Numerical dropping strategies

There are many possible alternatives for numerical dropping. There are three issues:

1. which vectors/matrices have dropping applied,
2. when dropping is performed,

3. which elements are dropped.

In the previous algorithms, we have made issues 1 and 2 precise. However, other
alternatives are possible. It was mentioned that dropping may be performed on the
search direction GG in Algorithm 2.1, or equivalently in r; and z in Algorithms 2.2 and 2.3
respectively. In this case, the descent property of the algorithms is maintained, but the
fill-in in M cannot be controlled, and ineffective nonzeros in M cannot be removed.

In all the algorithms, there is the possibility that dropping is only performed after M
or each column of M is computed. Typically this option is too expensive. In the self-
preconditioned case, a compromising option is available: dropping may be performed at
the end of the inner iterations, before M is updated, namely before step 12 in Algorithm
2.3. This makes the algorithm computationally more expensive, since the vectors which
are multiplied with A and M are denser. Interestingly, we found experimentally that this
option is not always better.
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In GMRES, the Krylov basis vectors are kept sparse by dropping elements just before
the multiplication by A, or just after the self-preconditioning step.

To address issue 3, we utilize a dual threshold strategy based a drop tolerance, drop-
tol, and the maximum number of elements per column, /fil, similar to that used in the
ILUT preconditioner [24]. By limiting the maximum number of elements per column, the
maximum storage for the preconditioner is known beforehand.

The drop tolerance may be applied directly to the elements to be dropped: i.e., ele-
ments are dropped if their magnitude is smaller than droptol. However, we found that this
strategy could cause spoiling of the minimization and thus a deterioration of the quality
of the preconditioner.

If dropping small elements in m; is sub-optimal, one may ask the question whether
or not dropping can be performed more optimally. A simple perturbation analysis will
help understand the issues. We denote by m; the current column and by d the sparse
column that is added to m; in the process of numerical dropping. The new column and
corresponding residual are therefore

mj:mj—l—d, T‘Aj:T]’—Ad.

The square of the residual norm of the perturbed m; is given by

A

T

2 = lIrllz = 2(d, ATrj) + || Ad]3. (9)

Recall that —2A%7r; is the gradient of the function (5). As is expected from standard
results in optimization, if d is in the direction opposite to the gradient, and if it is small
enough, we can achieve a decrease of the residual norm. Spoiling occurs when (d, A1r;)
is close to zero so that for practical sizes of ||d||2, ||Ad||3 becomes dominant causing an
increase in the residual norm.

Consider specifically the situation where only one element is dropped, and assume that
all the columns Ae; of A have been pre-scaled so that ||Ae;||2 = 1. In this case, d = myje;
and the above equation becomes

Pillz = llrgll — 2mij(es, ATry) + mi;. (10)
A strategy would therefore be based on attempting to make the function
Pillz = Irilly = —2mij(es, ATrj) + mi) (11)

nonpositive, a condition which is easy to verify. This suggests selecting elements to drop
in m; only at indices ¢ where the selection function (11) is zero or negative. However,
note that this is not entirely rigorous since in practice a few elements are dropped at the
same time. Thus we do not entirely perform dropping via numerical values alone. In a
two-stage process, we first select a number of candidate elements to be dropped based
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only on the numerical size as determined by a certain tolerance. Among these, we drop
all those that satisfy the condition

Pij = _Qmij(ei)ATrj) + m?] < tOZQ

or we can keep those [fil elements that have the largest p;;.
An alternative which we tried was based on attempting to achieve maximum reduction
in the function (11). Ideally, we wish to have

mij = (es, ATr;)

since this will achieve the ‘optimal’ reduction in (11)

Fillz = llrills = —mi;.

This leads to the alternative strategy of dropping elements in positions ¢ of m; where
m;; — (e;, ATr;) are the smallest. We found, however, that this strategy produces poorer
results than the previous one.

2.6 Factorized forms of the approximate inverse

Probabilistically, the product of two sparse matrices has more nonzeros than the total
number of nonzeros in the individual factors, given that the factors have at least a certain
small density depending on their size. This suggests that factorized forms of sparse
matrices contain more information for the same storage than if a single product was
stored. If multiple outer iterations are used in computing an approximate inverse, each
outer iteration can be considered to contribute a factorized update to it. Suppose that one
outer iteration has produced the approximate inverse M;. Then a second outer iteration
tries to find M;, an approximate inverse to AM;. In general, after ¢ outer iterations, we
are looking for the update M;,; which minimizes

i+l

It is also possible to construct factorized approximate inverses of the form

]\r};}ﬁ |1 — My; - MyMyAMyMs - - - Moz ||7 (13)
which alternate from left to right factors. This latter form is reminiscent of the symmetric
form of Kolotilina and Yeremin [18]. However, we only did experiments with the first
factorized form (12), which we consider from here on.

Since the product M;M;--- M; is never formed explicitly, the factorized approach
effectively uses less memory for the preconditioner at the cost of multiplying with each
factor for each matrix-vector multiplication. This approach may be suitable for very
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large problems, where memory rather than solution time is the limiting factor. The
implementation, however, is much more complex, since a sequence of matrices needs to
be maintained.

The initial guess for each M; is also an issue, and we choose between a scaled identity
matrix and a scalar multiple of (AM;M; - -- Mi_l)T. Of course, the latter is much more
expensive since it must be computed and has immediately more nonzeros. The comments
in Section 2.3 also apply.

2.7 Cost of constructing the approximate inverse

The cost of computing the approximate inverse is relatively high. Let n be the dimension
of the linear system, n, be the number of outer iterations, and n; be the number of inner
iterations.

Let us approximate the cost by counting the number of matrix-vector multiplications
in the sparse implementation of MR and GMRES. Profiling for a few problems shows that
this operation accounts for about 75 percent of the time when self-preconditioning is used.
The remaining time is used by the sparse dot product and sparse SAXPY operations, and
in the case of GMRES, the additional work within this algorithm.

The cost is simply nn,n; matrix-vector multiplications, or twice this amount if self-
preconditioning is used. If we assume that dropping is performed on each column at each
inner iteration, then the cost of the matrix-vector multiplication with A is approximately
n.lfil mult-add flops, where n. is the average number of nonzeros per column, typically a
small constant, and Ifil is the maximum number of nonzeros per column in M allowed by
the dropping strategy. The cost of matrix-vector multiplication by M is more expensive
since M is often allowed to be denser: [fil* flops are required in this case. Thus self-
preconditioning is expensive, especially if Ifil is large. Self-preconditioning may also make
the columns denser much more quickly.

In summary, the number of flops for all the matrix-vector multiplications is

nnon; (il + Ifil?)

with the second term present for self-preconditioning. For n, = 5,n; = 2,n. = 5, lfil =
20, this is 1000 flops in the nonself-preconditioned case, and 5000 flops in the self-
preconditioned case.

In both Newton and global iterations, two sparse matrix-matrix products are required
in each iteration, although the convergence rate of Newton iteration may be doubled with
a form of Chebyshev acceleration [23]. The cost is thus comparable to the cost of the
column-oriented, self-preconditioned MR algorithm, where 2n sparse matrix-sparse vector
products are used per iteration, or simply n products if self-preconditioning is not used.
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3 Theoretical considerations

Theoretical results regarding the quality of approximate inverse preconditioners are diffi-
cult to establish. However, we can prove a few rather simple results for general approxi-
mate inverses and on the convergence behavior of the algorithms.

3.1 Nonsingularity of M

An important question we wish to address is whether or not an approximate inverse
obtained by the approximations described earlier can be singular. It cannot be proved
that M is nonsingular unless the approximation is accurate enough. More specifically,
the following general result is easy to show.

Proposition 3.1 Assume that A is nonsingular and that the residual of the approximate
inverse M satisfies the relation

11 — AM||<1 (14)

where || - || is any consistent matriz norm. Then M is nonsingular.
Proof. The result follows immediately from the equality
AM=1—(I-AM)=1-N (15)
and the well-known fact that if | V|| < 1, then I — N is nonsingular. O

We note that the result is true in particular for the Frobenius norm, which, although not
an induced matrix norm, is consistent.

It may sometimes be the case that AM is poorly balanced and as a result I — AM
can be large. Then balancing AM can yield a smaller norm and possibly a less restrictive
condition for the nonsingularity of M. It is easy to extend the previous result as follows.

Corollary 3.1 Assume that A is nonsingular and that there exist two nonsingular diag-
onal matrices Dy, Dy such that

1l — Dy AM D, <1 (16)
where || - || is any consistent matriz norm. Then M is nonsingular.

Proof. Applying the previous result to A" = DA and M’ = M D,, implies that
M' = M Dy will be nonsingular from which the result follows. O

Of particular interest is the 1-norm. Each column is obtained independently by re-
quiring a condition on the residual norm of the form

lej — Amj| < 7. (17)
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We typically use the 2-norm since we measure the magnitude of the residual I — AM
using the Frobenius norm. However, using the 1-norm for a stopping criterion allows us
to prove a number of simple results. We will assume in the following that we require a

condition of the form
le; — Amjlls < 7 (18)

for each column. Then we can prove the following result.

Proposition 3.2 Assume that the condition (18) is imposed on each computed column
of the approximate inverse and let T = max; 7;, 3 =1,...,n. Then,

1. Any eigenvalue \ of the preconditioned matrix AM 1is located in the disc

A —1]<7. (19)

2. If T <1, then M is nonsingular.

3. If any k columns of M, with k < n, are linearly dependent then at least one residual
e; — Am; assoctated with one of these columns has a 1-norm > 1.

Proof. To prove the first property we invoke Gershgorin’s theorem on the matrix
AM =1—-R

each column of R is the residual vector r. ; = e;—Am; . The column version of Gershgorin’s
theorem, see e.g., [26, 14], asserts that all the eigenvalues of the matrix I — R are located
in the union of the disks centered at the diagonal elements 1 — r;; and with radius

’I’L

> il

i=1,ij

In other words, each eigenvalue A must satisfy at least one inequality of the form

A= (L =ri)] < D0 rijl

i=1,i#]
from which we get i
A—1] < z; Irij] < 75
Therefore, each eigenvalue is located in the disk of center 1, and radius 7. The sec-

ond property is a restatement of the previous proposition and follows also from the first
property.
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To prove the last point we assume without loss of generality that the first £ columns
are linearly dependent. Then there are k scalars «a;, not all zero such that

k
Z a;m; = 0. (20)
=1

We can assume also without loss of generality that the 1-norm of the vector of a’s is equal
to one (this can be achieved by rescaling the o’s). Multiplying through (20) by A yields

k k
0 = Z aiAmi = Zozi(ei — TZ')
=1 =1

which gives
k k
Z o€, = Z ;T;.

Taking the 1-norms of each side, we get

k k k
L= lairills < 3 lasfllrills < 3 les| max |Irily = max [[r]fs.
=1 =1 =1 i=1,....k i=1,....k
Thus at least one of the 1-norms of the residuals r;,2 = 1,..., k must be > 1. a

We may ask the question as to whether similar results can be shown with other norms.
Since the other norms are equivalent we can clearly adapt the above results in an easy
way. For example,

el < Vllells and [zl < nfl2]l. (21)

However, the resulting statements would be too weak to be of any practical value. We
can exploit the fact that since we are computing a sparse approximation, the number p of
nonzero elements in each column is small, and thus we replace the scalar n in the above
inequalities by p [11].

We should point out that the result does not tell us anything about the degree of
sparsity of the resulting approximate inverse M. It may well be the case that in order to
guarantee nonsingularity, we must have an M that is dense, or nearly dense. In fact, in
the particular case where the norm in the proposition is the 1-norm, it has been proved
by Cosgrove, Diaz and Griewank [8] that the approximate inverse may be structurally
dense, in that it is always possible to find a sparse matrix A for which M will be dense if
Il — AM]|; < 1.

Next we examine the sparsity of M and prove a simple result for the case where an
assumption of the form (18) is made.

Proposition 3.3 Let B = A~ and assume that a given element b;; of B salisfies the
inequality
[bij| > 7; max [byl, (22)

then the element m;; is nonzero.
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Proof. From the equality AM =1 — R we get

M=A"1—-A"'R.

Thus,
n
mi; = bj; — Z birrr;
k=1
and
n
Imajl = Jbij — Y il
k=1
n
> byl = > [birrsjl
k=1
= bij] = max [bi|rll:
2 |bij| — max |bie|7;.
Thus, if the condition (22) is satisfied, we must have |m;;|>0. 0

This tells us that if R is small enough, then the nonzero elements of M are located in
positions corresponding to the larger elements in the inverse of A. The following negative
result is an immediate corollary.

Corollary 3.2 Let 7 de defined as in Proposition 3.2. If the nonzero elements of B = A™1
are T-equimodular in that

b;; b

[bij] > 7 k:1r,2,a}i1,n| 1|
, then the nonzero sparsity pattern of M includes the nonzero sparsity pattern of A=t. In
particular, if A7! is dense and its elements are T-equimodular, then M is also dense.

The smaller the value of 7, the more likely the condition of the corollary will be satisfied.
Another way of stating the corollary is that we will be able to compute accurate and
sparse approximate inverses only if the elements of the actual inverse have variations in
size. Unfortunately, this is difficult to verify in advance.

3.2 Case of a nearly singular A

Consider first a singular matrix A, with a singularity of rank one, i.e., the eigenvalue 0
is single. Let z be an eigenvector associated with this eigenvalue. Then, each subsystem
(8) that is being solved by MR or GMRES will provide an approximation to the system,
except that it cannot resolve the component of the initial residual associated with the
eigenvector z. In other words, the iteration may stagnate after a few steps. Let us denote
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by P the spectral projector associated with the zero eigenvalue, by mg the initial guess to
the system (8), and by rq = e; — Amyg the initial residual. For each column j, we would
have at the end of the iteration an approximate solution of the form m = mg + 6, whose
residual is

e; —Am = (ej — Amg) — A
o — Ad
= aPro+ (I — P)ro — Ad.

The term Prg cannot be reduced by any further iterations. Only the norm of (I—P)ro— Ad
can be reduced by selecting a more accurate 6. The MR algorithm can also break down
when Ar; vanishes, causing a division by zero in the computation of the scalar «; in step
6 of Algorithm 2.2, although this is not a problem with GMRES.

An interesting observation is that in case A is singular, M is not too well defined.
Adding a rank-one matrix zv? to M will indeed yield the same residual

]—A[M—I-Z'UT] — [ — AM

R=Ry—AD.

Assume now that A is nearly singular, in that there is one eigenvalue € close to zero
with an associated eigenvector z. Note that for any vector v we have

I—A [M—{-Z‘UT] =] — AM — ezv?.

If z and v are of norm one, then the residual is perturbed by a magnitude of €. Viewed
from another angle, we can say that for a perturbation of order € in the residual, the
approximate inverse can be perturbed by a matrix of norm close to one.

3.3 Eigenvalue clustering around zero

We observed in many of our experiments that often the matrix M obtained in a self-
preconditioned iteration would admit a cluster of eigenvalues around the origin. More
precisely, it seems that if at some point an eigenvalue of AM moves very close to zero, then
this singularity tends to persist in the later stages in that the zero eigenvalue will move
away from zero only very slowly. These eigenvalues seem to slow-down or even prevent
convergence. In this section, we attempt to analyze this phenomenon. We examine the
case where at a given intermediate iteration the matrix M becomes exactly singular. We
start by assuming that a global MR iteration is taken, and that the preconditioned matrix
AM is singular, i.e., there exists a nonzero vector z such that

AMz = 0.
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In our algorithms, the initial guess for the next (outer) iteration is the current M, so the
initial residual is R = [ — AM. The matrix M’ resulting from the next self-preconditioned
iteration, either by a global MR or GMRES, will have a residual of the form

R =1— AM' = p(AM)R = p(AM)(I — AM) (23)

in which p(t) = 1 — ts(¢) is the residual polynomial. Multiplying (23) to the right by the
eigenvector z yields

(I —AM"z = p(AM)(I — AM)z

= p(AM)z
= [ — AMs(AM))z
= z.
As a result we have
AM'z =0

showing that z is an eigenvector of AM’ associated with the eigenvalue zero.

This result can be extended to column-based iterations. First, we assume that the
preconditioning M used in self-preconditioning all n inner iterations in a given outer loop
is fixed. In this case, we need to exploit a left eigenvector w of AM associated with the
eigenvalue zero. Proceeding as above, let m’ be the new j-th column of the approximate
inverse. We have

ej — Amj = p;(AM)(e; — Am;) (24)
where p; is the residual polynomial associated with the MR or GMRES algorithm for the

J-th column, and is of the form p;(t) = 1 — ts;(¢).
Multiplying (24) to the left by the eigenvector w? yields

wh(ej — Am}) = w!p;(AM)(e; — Amy)
= w!'[l — AMs;(AM)](e; — Am;)

= 'wT(ej — Am;).

As a result wl Am! = wlAm; for : = 1,2,...,n which can be rewritten as w? AM' =
wl AM. This gives
wl AM' =0,

establishing the same result on the persistence of a zero eigenvalue as for the global

iteration.
We finally consider the general column-based MR or GMRES iterations, in which the
self-preconditioner is updated from one inner iteration to the next. We can still write

€; — Am; = p;(AM)(e; — Am;).
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Let M’ be the new approximate inverse resulting from updating only column j. The
residual associated with M’ has the same columns as those of the residual associated with
M except for the j-th column which is given above. Therefore

I—AM'" = (I-AM)(I - eje?) + pi(AM)(e; — Am]-)e;-r
= (I —AM)(I—eje}) + pj(AM)(I — AM)eje;
= I —AM — (I — p;(AM))(I — AM)ejel
= [—AM — AMs;(AM)(I — AM )eje. .

If w is again a left eigenvector of AM associated with the eigenvalue zero, then multiplying
the above equality to the left by w’ yields

wl AM' = wl AM =0,

showing once more that the zero eigenvalue will persist.

3.4 Convergence behavior of self preconditioned MR

Next we wish to consider the convergence behavior of the algorithms for construct-
ing an approximate inverse. We are particularly interested in the situation where self-
preconditioning is used, but no numerical dropping is applied.

We consider first the case where each column is updated individually by exactly one
step of the MR algorithm. Let M be the current approximate inverse at a given sub-
step. The self-preconditioned MR iteration for computing the j-th column of the next
approximate inverse is obtained by the following sequence of operations:

1. rj:=e —Amj;=¢; — AMe;

2. t; = Mr;

. L (r;,At;)

3. aj:= (A;WA;])

4. m;i=m; + ojt;

Note that a; can be written as

o = \riAMr;) - (rj, Brj)
= _

(AMT]',AM?“]') (BT]',BT]')

where we define

B=AM
to be the preconditioned matrix at the given substep. We now drop the index 5 to simplify
the notation. The new residual associated with the current column is given by

" = r—aot

= r—aAMr

= r—aBr.
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We use the orthogonality of the new residual against AMr to obtain
Irllz = lIrllz — o1 Br*.

Replacing « by its value defined above we get

(Brr) \*
e 2 = 2 1—(7 .
2= e 1= (i

Thus, at each inner iteration, the residual norm for the j-th column is reduced according

to the formula
[r*“|l2 = |[Ir||2sin £(r, Br) (25)

in which Z(u,v) denotes the acute angle between the vectors u and v. Assuming that
each column converges, the preconditioned matrix B will converge to the identity. As a
result of this, the angle /(r, Br) will tend to Z(r,r) = 0 and therefore the convergence
ratio sin Z(r, Br) will also tend to zero, showing superlinear convergence.

We now consider equation (25) more carefully in order to analyze more explicitly the
convergence behavior. We will denote by R the residual matrix R = I — AM. We observe
that

. |lr —a Br||2

sinZ(r,Br) = min T
a r|lq
[r = Bril2 _ [|Brl2
I P 7]}
< [I&]..

This results in the following statement.

Proposition 3.4 Assume that the self-preconditioned MR algorithm is employed with one
inner step per iteration and no numerical dropping. Then the 2-norm of each residual
e; — Am; of the j-th column is reduced by a factor of at least ||[ — AM]||2, where M is the
approximate inverse before the current step, t.e.,

Ir7lls < M= AM ||z il (26)

J

In addition, the Frobenius norm of the residual matrices R, = [ — AM} obtained after
each outer iteration, satisfies

[Resrllr < IRl (27)

As a result, when the algorithm converges, it does so quadratically.

Proof. Inequality (26) was proved above. To prove quadratic convergence, we first
transform this inequality by using the fact that || X||2 < || X||F to obtain

77l < N Reslle 752
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Here the k index corresponds to the outer iteration and the j-index to the column. We
note that the Frobenius norm is reduced for each of the inner steps corresponding to the
columns, and therefore

| Rrillr < || Ril| 7
This yields

1515 < IRl [Irsl

which, upon summation over j gives

[ Risi ]l < [ Rill-
This completes the proof. a

It is also easy to show a similar result for the following variations:

1. MR with an arbitrary number of inner steps,
2. GMRES(m) for an arbitrary m,
3. The global MR algorithm.

The first two cases follow from the fact that they deliver an approximate column which has
a smaller residual than what we obtain with one inner step MR. The third case requires
a proof which is very similar to the one above.

We emphasize that quadratic convergence is guaranteed only at the limit and that the
above theorem does not prove convergence. In the presence of numerical dropping, the
proposition does not hold.

4 Numerical experiments and observations

Experiments with the algorithms and options described in Section 2 were performed with
matrices from the Harwell-Boeing sparse matrix collection [10], and a few matrices from
computational fluid dynamics extracted from solving the Navier-Stokes equations with
the FIDAP [13] package. The matrices were pre-scaled so that the 2-norm of each column
is unity, as described in Section 2.5. In each experiment, we report the number of GM-
RES(20) steps to reduce the initial residual of the right-preconditioned linear system by
1073, A zero initial guess was used, and the right-hand-side was constructed so that the
solution is a vector of all ones. A dagger (1) in the tables below indicates that there was
no convergence in 500 iterations. In some tables we also show the value of the Frobenius
norm (3). Even though this is the function that we minimize, we see that it fails to be a
reliable measure of GMRES convergence in many cases. Most of the results are shown as
the outer iterations progress from 1 to 5. One inner iteration was used unless otherwise
indicated. The codes were written in both FORTRAN 77 and Matlab, and were run on
a Sun 4 workstation and a CRAY-XMP supercomputer.
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We begin with a comparison of Newton, ‘global” and column-oriented iterations. Our
early numerical experiments showed that in practice, Newton iteration converges very
slowly initially and is much more adversely affected by numerical dropping. Global itera-
tion was also worse than column-oriented iterations, perhaps because a single « defined by
(7) is used, as opposed to one for each column in the column-oriented case. Table 1 gives
some numerical results for the WEST0067 matrix from the Harwell-Boeing collection; the
number of GMRES iterations is given as the number of outer iterations increases. Drop-
ping based on numerical values was performed on a column-by-column basis, although in
Newton and global iteration this restriction is not necessary. In the presence of dropping
(Ifil = 10), we did not find much larger matrices where Newton iteration gave convergent
GMRES iterations. Scaling each iterate M; by 1/||AM;||; did not alleviate the effects
of dropping. The superior behavior of global iterations in the presence of dropping in
Table 1 was not typical.

No dropping

1 2 3 4 5
Newton 71414 | 158 | 100 | 41
Global || 228 | 102 | 25| 16| 11
MR 130 | 35| 13| 10 6

Dropping: Ifil = 10, droptol = 0.001
1 2 3 4 5
Newton || 463 71435 T | 457

Global || 241 | 87| 46| 35| 26
MR 281 | 120 | 86 | 61 | 43

Table 1: WEST0067: Newton, global, and column MR iterations.

Next we show some results on matrices from computational fluid dynamics extracted
using the FIDAP package. These are relatively dense matrices that are nonsymmetric,
but have symmetric structure. We chose matrices that we could not solve using an
incomplete LU preconditioner called ILUT [24] using an equivalent [fil of about 100. Our
experience also showed that ILU preconditioners on these matrices produce unstable L
and U factors in (2). The matrices are from 2-dimensional finite element discretizations
using quadrilateral elements with 9 nodes. We show the order and number of nonzeros
of these matrices in Table 2. In Table 3, numerical dropping based on (11) was used,
with [fil of 20. Convergent GMRES iterations could be achieved even with Ifil as small as
10, showing that an approximate inverse preconditioner much sparser than the original
matrix is possible. No self-preconditioning was used; the initial guess was a scaled identity
matrix.
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Matrix n nnz
EX3 1821 | 52685 | Flow past a circular cylinder

EXT7 1633 | 54543 | Natural convection in a square cavity
EX9 3363 | 99471 | Jet impingement in a narrow channel

Table 2: FIDAP example matrices.

Matrix 1 2 3 4 5)
EX3 144 | 135 | 146 | 146 | 146
EX7 63| 50| 43| 35| 30
EX9 406 | 297 | 280 | 321 | 298

Table 3: Number of GMRES iterations vs. n,.

We now show our main results in Table 4 for many standard matrices in the Harwell-
Boeing collection. Again, we show the number of GMRES iterations to convergence
against the number of outer iterations used to compute the approximate inverse. Dropping
was based on numerical values.

The results are poorer than those for the ILUT preconditioner, but as seen with the
FIDAP matrices, approximate inverses can be used to solve some problems that cannot
be solved with ILU-type preconditioners. Note that many of the above results used a
much smaller [fil than ILUT, or used very few inner iterations. The convergence rates can
be improved in many cases with additional cost.

We have shown the best results after a few trials with different parameters. The
method is sensitive to the widely differing characteristics of general matrices, and there
is no general strategy that works best for constructing the approximate inverse. The
following two tables illustrate widely different behavior for three very different matrices.
LAPL0324 is a standard Laplacian matrix of order 324. The initial guess My was also
varied in these experiments. Table 5 shows the number of GMRES(20) iterations and
Table 6 shows the Frobenius norm of the residual matrix against the number of outer
iterations that were used to compute the approximate inverse.

For problems SHERMAN2, WEST0989 and GRE1107, the results become worse as
the outer iterations progress. This spoiling effect is due to numerical dropping. In Figures
1 to 3, we show the trends in the number of iterations to convergence as a function of [fil,
n; and n, for the PORES2 matrix. Dropping based on numerical values was used. These
figures show the effect of spoiling with increasing number of inner and outer iterations.
Increasing Ifil is not entirely robust either. Note that the top edge of the graphs indicates
no GMRES convergence.
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Number of iterations
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Figure 1: Variation of Ifil.

PORES2, no=3, Ifil=20, MINRES, self-precon
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Figure 2: Variation of n;.
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| Matrix | nilut [g/m | p/u | lfil | n, 1] 2] 3] 4| 5]
PORES2 12441 11| m p 30| 2 T T1 521 30 19
PORES3 532 7| m u 10| 1 T T 1421 | 150 | 112
SHERMANT1 | 1000 5| m u 10 1224 [ 187 | 96| 74| 60
SHERMAN2 | 1080 6| m p 50 | 1 T 71147 | 46 | 136
SHERMAN3 | 5005 | 16 | m u 10| 11499 | 363 | 239 | 192 | 148
SHERMAN4 | 1104 | 11| m u 10| 1 87| 69| 43| 42| 41
SHERMANS5 | 3312 | 11 g p 20| 2 71148 | 107 | 70 | 60
WEST0497 497 T g p 50 | 5 T T 71 80| 20
WEST0989 989 7|1 m p 50 | 2 T 71303 T T
GRE1107 1107 7|1 m p 50 | 2| 421 T T T T
GRE216B 216 7|1 m p 51 1 3 3 3 3 3
NNC261 261 7|1 m p 20| 2 T1 39 20 17| 14
Notes:

n = order of matrix

ilut = number of ILUT iterations to convergence, using equivalent [fil of about 25
g/m = FGMRES or MR

p/u = self-preconditioned or unself-preconditioned

SHERMAN2 was reordered with RCM

Table 4: Number of GMRES(20) iterations vs. n,.

The eigenvalues of the preconditioned WEST0067 matrix are plotted in Figure 4, both
with and without dropping, when the number of outer iterations was 2 and 4.

As the iterations proceed, the eigenvalues of the preconditioned system become closer
to 1. Numerical dropping has the effect of spreading out the eigenvalues. When dropping
is severe and spoiling occurs, we have observed two phenomena: either dropping causes
some eigenvalues to become negative, or some eigenvalues stay clustered around the origin.

5 Practical variations and applications

Approximate inverses can be expensive to compute for very large and difficult problems.
However, the best potential is to combine them with other techniques. In essence, we
would like to apply these techniques to problems that are either small, or for which we
start close to a good solution in a certain sense. We saw in Table 4 that approximate
inverse preconditioners work well with small matrices, for example n = 200. We first
comment on a popular application, incomplete block tridiagonal factorizations, as applied
to general sparse matrices.
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‘ Matrix ‘ Ifil ‘ init ‘ p/u H 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘

WEST0067 | none | AY | p ||[130| 35| 13| 10 6
none | AT | u || 484 | 481 T 1472 T

none | [ | p (1 A A O R O

10 AT | p || 281|120 86| 61 | 43

LAPL0324 |none | AT | p [466[200] 50| 21| 12
none | AT | u 20 17 12| 12| 10

none | [ p 16 15| 11| 11 9

10| AT | u 30 22 17| 17| 17

PORES3 none | AT | p T T T T T
none | AT | u T 712741174 | 116

10| AT | u T 71421 | 150 | 112

Table 5: Number of GMRES(20) iterations vs. n,.

| Matrix | lfil it [p/uf 1] 2] 3] 4] 5|

WEST0067 | none | AT | p 443 | 321 240 | 1.87| 0.95
none | AT | u 6.07| 6.07| 6.07| 6.07| 6.07

none | [ p 8.17 | 817 | 817 | 817 | 8.17

10 AT | p 4771 426 | 442 | 4.92| 6.07

LAPL0324 |none | AT | p 791 | 5.69 | 4.25| 3.12 | 2.23
none | AT | u 6.62 | 493 | 4.00| 3.41 | 3.00

none | [ p 5.34 | 421 | 3.53 | 3.08 | 2.75

10| AT | u 6.54 | 481 | 4.07| 3.82| 3.92

PORES3 none | AT | p [10.78] 9.30 | 825| 7.66 | 7.16
none | AT | u | 12.95|12.02 | 11.48 | 10.82 | 10.20

10| AT | u | 12.94 | 12.02 | 11.48 | 10.82 | 10.23

Table 6: || — AM||z vs. n,.
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PORES2, ni=2, Ifil=20, MINRES, self-precon

Number of iterations
N
S

Variation of no

Figure 3: Variation of n,.

5.1 Incomplete block tridiagonal factorizations

There has been much work in the area of two-level implicit-explicit preconditioners, es-
pecially incomplete block factorizations [1, 2, 3, 4, 7, 17, 20] for matrices arising from
the discretization of PDE’s. These methods utilize approximate inverses when diagonal
blocks need to be inverted.

This application of approximate inverses, however, is much more difficult for general
sparse matrices. Tools are required to extract the block tridiagonal structure of a matrix.
Cuthill-McKee ordering may be used to initially reduce the profile of the matrix. A
constant block-size partitioning may be found using the maximum half-bandwidth as the
block-size. We can generally do better with a greedy approach, where a symmetrized
profile is scanned and the smallest possible block-size is taken at each step. Simple
heuristics, such as a minimum block-size, may be used to improve the greedy approach
especially on pathologically bad cases. Finding a good block tridiagonal partitioning
which has a small ratio of total block area to nonzeros is a challenging problem in itself.

The blocks themselves are stored in sparse format and a hyper-matrix data structure
is required. The blocks may be variable sized, and the off-diagonal blocks may not be
square. The implementation of this factorization for sparse matrices requires sparse-
matrix by sparse-matrix subtraction and sparse-matrix by sparse-matrix multiplication,
the latter with possibly nonsquare matrices.

A major difficulty with applying these ideas to general sparse matrices is that the
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diagonal blocks may be singular. In fact, it is very common for blocks to contain many
rows or columns that are entirely zero. We have added arbitrary, small diagonal elements
to remove the singularity. However, the choice of the size of this element is difficult:
adding large elements reduces the accuracy of the factorization; adding small elements
may make the factorization unstable. These drawbacks show that this popular application
of approximate inverses is infeasible for general sparse matrices.

5.2 Improving a preconditioner

In all of our previous algorithms, we sought a matrix M to make AM close to the identity
matrix. To be more general, we can seek instead an approximation to some matrix B.
Thus, we consider the objective function

F(M) =||B— AM|]; (28)

in which B is some matrix to be defined. Once we find a matrix M whose objective
function (28) is small enough, then the preconditioner for the matrix A is defined by

P=MB™".

This implies that B is a matrix which is easy to invert, or rather, that solving systems
with B should be inexpensive. At one extreme when B = A, the best M is the identity
matrix, but solves with B are expensive. At the other extreme, we find our standard
situation which corresponds to B = I, and which is characterized by trivial B-solves but
expensive to obtain M matrices. In between these two extremes there are a number of
appealing compromises, perhaps the simplest being the block diagonal of A.

Another way of viewing the concept of approximately minimizing (28) is that of im-
proving a preconditioner. Here B is an existing preconditioner, for example, an LU
factorization. If the factorization gives an unsatisfactory convergence rate, it is difficult
to improve it by attempting to modify the L and U factors. One solution would be to
discard this factorization and attempt to recompute a fresh one, possibly with more fill-in.
Clearly, this may be wasteful especially in the case when this process must be iterated a
few times due to persistent failures.

For a numerical example of improving a preconditioner, we use approximate inverses to
improve the block-diagonal preconditioners for the ORSREG1, ORSIRR1 and ORSIRR2
matrices. The experiments used dropping on numerical values with {fil = 10, and droptol
= 0.001. In Table 7, block size is the effective size of the blocks in the inverse of the
preconditioner, and block precon is the number of GMRES iterations to convergence when
the block-diagonal preconditioner is used alone. The number of GMRES iterations is
shown against the number of outer iterations used to improve the preconditioner.
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block | block
n size | precon 1 2 31 4] 5
ORSREGI1 | 2205 21 7 49 59| 95|73 |71
ORSIRRI1 | 1030 8 253 || 98 | 104 | 108 | 85 | 88
ORSIRR2 833 8 253 || 136 | 99| 98 | 92 | 81

Table 7: Improving a preconditioner.

5.3 Use of approximate pseudo-inverses

There are instances where A is extremely ill-conditioned and possibly very indefinite. In
such cases, one is tempted to get an approximate pseudo-inverse matrix, for example,

M =~ (ATA)AT,

One could obtain the approximate inverse of AT A using one of the approaches described
earlier. However, this approach will fail because as for A, we are likely to find a cluster of
eigenvalues of AT A around the origin. The simplest remedy is simply to shift them away
from the origin. Thus, we consider the algorithm:

ALGORITHM 5.1 Approximate pseudo-inverse

Select a positive a and compute B = ATA 4+ ol
Apply numerical dropping to B
Compute an approximate inverse C' of B

Compute M = CAT

e N~

The choice of the scalar o impacts the performance in the following way. A large o will
make step 3 very easy to perform, not only because the descent algorithms will converge
quickly but also because for larger «, the more there are small elements in the actual
inverse. On the other hand a large a will lead to a poor approximate inverse. Note that
without dropping, and if the inversion in Step 3 is done exactly, then the eigenvalues of

M A are given by

Oy

o, + «
where the o,’s are the squares of the singular values of A. Thus, the largest singular
values are mapped close to unity whereas the smallest ones are roughly divided by a. For
example, we can say that all o;’s that are greater than or equal to a will be mapped into
the interval [1/2,1]. Similarly, all o;’s satisfying

Oé2

o; >
l -«
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will be mapped into the interval [a, 1].

We show the results of a few numerical experiments with the WEST0067 matrix. One
inner iteration was used, with a scaled identity initial guess to approximate the inverse
of ATA+ al. Table 8 shows the results with no dropping. As clearly seen, the ultimate
quality of the preconditioner decreases as a increases. However, the approximate inversion
of ATA + ol is much easier, as seen by the faster convergence of the residual norm. In
Table 9, dropping is applied using {fil = 10.

6 Conclusion

Approximate inverse preconditioners can provide a good alternative to incomplete LU
preconditioners for indefinite and highly nonsymmetric matrices. They do not suffer from
instability and offer a high degree of parallelism. Another significant advantage is that,
unlike ILU factorizations, previously computed preconditioners can be easily improved
upon. On the negative side, approximate inverse preconditioners often demand more
memory than standard ILU preconditioners. They are also more sensitive to numerical
dropping and it is practically difficult to guarantee that will they produce a nonsingular
preconditioner. It is possible that the best potential for approximate inverses is in com-
bining them with other preconditioning techniques, e.g., to produce an improvement of a
given block-diagonal preconditioner.

There are a few issues which need further investigation. First, is the issue of provid-
ing a good practical dropping strategy. Although we cannot avoid spoiling altogether if
we want to preserve sparsity, we can define more robust and economical strategies that
dynamically change in the outer iterations. Another issue which we have not fully in-
vestigated here is the factorized form of the approximate inverse preconditioner briefly
discussed in Section 2.6. This form of the approximate inverse is more complex to imple-
ment but may offer an alternative that is less demanding in memory usage.

Acknowledgements The authors wish to acknowledge the support of the Minnesota
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Number of GMRES iterations

« 1 2 3 4 5
0.00 || 252 75 18 12 8
0.01 || 267 67 19 14 11
0.05 || 259 65 26 19
0.10 || 254 65 30 25 25
I — (ATA +al)C||F

« 1 2 3 4 )
0.00 || 4.53 |3.34 | 250 1.92 ] 1.06
0.01 || 447 | 3.12 | 1.83 | 0.64 | 0.06

0.05 | 4.22 | 2.37 | 0.75 | 0.06 | 0.00
0.10 || 3.94 | 1.76 | 0.35 | 0.01 | 0.00

Table 8: WEST0067, Approximate pseudo-inverse, no dropping.

Number of GMRES iterations

« 1 2 3 4
0.00 || 302 | 261 | 340 T
0.05 || 305 | 320 | 436 T
0.10 || 280 | 209 | 377 | 481
0.25 || 225 | 148 T | 387 | 47
Il — (ATA +al)C||F

« 1 2 3 4 5
0.00 || 4.68 | 6.30 | 7.59 | 8.20 | 8.71
0.05 || 443 | 6.01 | 7.05 | 7.76 | 8.12

0.10 || 4.18 | 5.68 | 6.57 | 7.34 | 7.91
0.25 || 3.48 | 4.21 | 4.93 | 5.31 | 5.57

-~ —- —- —| Ot

Table 9: WEST0067, Approximate pseudo-inverse, Ifil = 10.
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