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Abstract

We describe a Krylov subspace technique based on incomplete orthogonalization of the
Krylov vectors which can be considered as a truncated version of GMRES. Unlike GMRES
the parent algorithm from which it is derived, DQGMRES does not require restarting. It
seems also to be less prone to stagnation. In addition, the algorithm allows flexible precon-
ditioning, i.e., it can accomodate variations in the preconditioner at every step. A number
of numerical tests are reported which show that the algorithm often performs better than

GMRES and FGMRES.
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1 Introduction

There has been a flurry of activity in the general area of iterative methods for solving large
sparse linear systems of equations in the recent years, much of which motivated by the increased
demand for efficient solvers for three-dimensional problems. Among the methods of choice are
the Krylov subspace techniques which find approximate solutions to a linear system Az = b,
that are of the form ., = zg + ¢m—_1(A)ro, where ¢,,_1 is a polynomial of degree < m — 1, zg
is an initial guess and rqg = b — Azg is the corresponding residual vector.

The GMRES algorithm is a method which minimizes the residual norm over such approx-
imations and is, at least in its standard non-restarted form, optimal in some sense. There are
also a number of Krylov subspace methods that do not obey any optimality property but that
seem to do well in practice. These are methods such as the bi-conjugate gradient methods and
techniques derived from it such as BiCGSTAB and TFQMR. In this paper we will present a
technique in this category which combines quasi-minimization concepts and incomplete orthog-
onalization. To be specific, the Arnoldi vectors are only orthogonalized against a small number
of previous vectors, a technique which we refer to as incomplete orthogonalization. In addition,
we will attempt to get an approximate smallest-residual norm solution, which is obtained by a
process that assumes that the Arnoldi vectors are orthogonal.

Since the algorithm to be presented is closely related to some of techniques already described
in the literature, we will start by recalling in Section 2 some of the main ideas in this context.
Section 3 and 4 describes the idea of incomplete orthogonalization methods and the DQGMRES
variant. Section 5 reports on some numerical experiments. A tentative conclusion is drawn in
Section 6.

2 Methods based on full Arnoldi orthogonalization

Given an initial guess zg to the linear system
Az = b, (1)

a general projection method seeks an approximate solution z,, from an affine subspace zg + K,
of dimension m by imposing the Petrov-Galerkin condition

b— Az, L L, (2)

where L,, is another subspace of dimension m. A Krylov subspace method is a method for
which the subspace K, is the Krylov subspace

K. (A, 1) = span{rg, Aro, Alrg, .. .,Am_lro}, (3)

in which rq = b — Azqg. The different versions of Krylov subspace methods arise from different
choices of the subspaces K,, and L,,, and from the different ways of building bases for these
subspaces. Among these methods, an important sub-class relies on orthogonal bases. We will
begin this section by describing the well-known Arnoldi process for generating orthogonal bases
of Krylov subspaces. A few variations of these techniques are based on what is referred to as
incomplete orthogonalization which will be discussed in Section 3.



2.1 Arnoldi orthogonalization

Arnoldi’s algorithm introduced in 1951 builds an orthogonal basis of the Krylov subspace K,,.
In exact arithmetic, the basic variant of the algorithm is as follows.

ALGORrRITHM 2.1 Arnoldi -(Modified Gram-Schmidt)
1. Start. Choose a vector v; of norm 1.
2. Iterate.
3. Forj=1,2,...,m do:
o Compute w; := Av;

. . Bii = (w:. v:
e fori=1,...,5—-1do ij = (w5, )
w; 1= w; — hiv;
o Compute hjyq1; = ||w;||2. If hj+1,; = 0 stop.
o Compute vj41 = w;/hjy1 ;.
If we denote by V,, the nxm matrix with column vectors vy, .. .,v,, and by H,, the (m+1)xm

Hessenberg matrix whose nonzero entries are defined by the algorithm, and H,, the matrix
obtained from H,, by deleting its last row, then the following relations hold:

AV,, = VyH, +wyel (4)
= Vi1 Ho, (5)
vHaAy, = H, . (6)

The algorithm will break down in case the norm of w; vanishes at a certain step j. In fact,
it can be shown that Arnoldi’s algorithm breaks down at step j (i.e., w; = 0 in algorithm (2.1))
if and only if the minimal polynomial of v; is of degree j. In this situation, the subspace K; is
invariant.

2.2 FOM and GMRES

Using an orthogonal projection method onto the Krylov subspace consists of imposing the con-
dition that the residual vector be orthogonal to the subspace K,,. Several methods based on this
approach have been developed in the past, one of which we refer to as the Full Orthogonalization
Method (FOM) [5]. Given an initial guess zg to the linear system (1) we consider the choice

vi=ro/B B =|roll2 (7)
in the Arnoldi procedure. Then from (6) we have V,.L AV,, = H,,, and by (7)

VErg = VI(Bv1) = b
As aresult, writing the sought approximate solution as z = zg+V,,,y, the orthogonality condition

b— Alzg + Vyy] L span{V,,}



immediately yields

V. [ro — AV,,y]l = 0

and as a result the approximate solution using the above m-dimensional subspaces is given by

Ym = H,'(Per) . (9)

The Generalized Minimum Residual Method (GMRES) [8] is a projection method which
minimizes the residual norm over all vectors in the affine subspace zg+ K,,. The implementation
of an algorithm based on this approach is very similar to that of the FOM algorithm. We start by
describing the main idea and then we will discuss some practical variations. To derive GMRES
we write again any vector z in zg + K, in the form z = zo + V,,y, where y is an m-vector and
define,

J(y) = b= Alls = b= A(zo + Vy) |z (10)

Exploiting the relation (5), we can easily show that

J(y) = [|[Ving1 (Ber — Hpy) |2

and since the column-vectors of V41 are orthonormal then

J(y) = [1b = Ao+ Viuy) [l2 = [|Ber — Hpnyl|- (11)

As a result of the above formula, the GMRES approximation from the m-th Krylov subspace

can be obtained quite simply as zo + Vinyn where y,, minimizes the function J(y) = [|Be1 —
H,.9|z2, ie.,

Tym = g+ ViuYm where (12)

Ym = argmin,||Be; — Hyyllz . (13)

The minimizer y,, is inexpensive to compute since it requires the solution of an (m + 1) X m
least squares problem and m is typically small.

In order to solve the least squares problem min ||3e; — H,,y/|, it is natural to transform the
Hessenberg matrix into upper triangular form by using plane rotations. We define the rotation

madtrices
1

0 — ¢S — TOW © 7 (14)

—8; ¢ —rowt+1

1

with ¢? 4+ s? = 1. If we are dealing with the GMRES approximation from K,,, then these
matrices are of size (m + 1) x (m + 1).



We can multiply the Hessenberg matrix H,, and the corresponding right-hand-side gy = 3,
by a sequence of such matrices from the left, at each time choosing the coefficient s;, ¢; so as to
eliminate %;4q ;. Thus if m = 5 we would have,

hii hiz hiz his ks B

hor  hay haz has  hos 0

o hay hss hzg has _ 0
Hs = has has has | =10 (15)

hsa  hss 0

Then we first premultiply Hs by €4 with
ha o = h1
VPP + Tha? VIh11]? + [ha1[?

to obtain the matrix and right hand side

81 =

1 1 1 1 1
hgl) h§2) h§3) h§4) h§5) 1
o nly) A% AL Y 510
- 0
gt — hsz  hss  hsa  hss . g = (16)
’ his  has  has 0
hsy  hss 0
hes 0

We can now premultiply the above matrix and right hand side again by a rotation matrix Q3 to
eliminate hgzy. This process of eliminating the subdiagonal elements is continued this way until
we apply the m-th rotation which transforms the problem into,

)
14 ga!
=(5 h h h
i - S R (1)
o
hss )
0 Ve

The scalars ¢; and s; of the ¥ rotation Q; are defined by
_ iy, o — ng Y ‘
VIRED1 4 o VIRED1 4 ol

We now define @, to be the product of the matrices €;,

5;

Qm = Qo1 ... Oy, (19)

and
Ry = HY =QuH, (20)
In = QuBer) = (1, 1ms) (21)



Then, @,, is unitary and as a result we have
min Hﬁel - HmyHQ = min ”gm - Rmy”Q .

The solution to the above least squares problem is obtained by simply solving the triangular
system resulting from ignoring the last row of the matrix R,, and right-hand-side g,, in (17). In
addition, it is clear that for the solution y. the ‘vesidual’ ||3e; — H,,y.|| is nothing but the last
element of the right-hand-side, i.e., the term 74 in the above illustration.

Consider the residual vector associated with a generic vector in zg + K, of the form z =

xo + Viny. We have

b— Az

b—A (.fo + "[my)
= 10— AVpy
ﬁvl - "[m—}—lﬁmy

Vint1 (Ber — Hpy)
= Vu41QL Qu (Ber — Hyy)
= Vm—l—lQ?n (gm - Rmy) .

Thus, because of the fact that the last row of R,, is zero, the 2-norm of g,, — R,y is minimized
when y annihilates all components of the right hand side g,, except the last one, which is equal
t0 V1. As a result,

b— Amm = Vm+1erj;(7m—|—1€m+1) (22)

and, as a consequence,
16— Az |2 = [yl - (23)

We point out that this approach with plane rotations can also be used to solve the linear
system (9) for the FOM method. The only difference is that the last rotation €,, must be
omitted. In particular, a single program can be written to implement both algorithms using a
switch for selecting the FOM and GMRES options.

In practice, this procedure is implemented in in a progressive manner, i.e., at each step
of the GMRES algorithm. This allows in particular to have the residual norm at every step,
with virtually no additional arithmetic operations. The idea is simply to save the previous
rotations, then apply them on each newly computed column of H,,. Once this is done we can
then determine the last rotation needed to eliminate 41 . For details see [8].

3 Methods based on incomplete Arnoldi orthogonalization

In the previous algorithms, the dimension m of the Krylov subspace increases by one a each step
and this makes the procedure impractical for large m. There are two typical remedies for this.
The simplest remedy is to restart the algorithm. The dimension m is fixed and the algorithms
is restarted as many times as necessary for convergence, with an initial vector defined as equal
to the latest approximation obtained from the previous outer iteration.

A popular alternative is to resort to a truncation of the vector recurrences. In this context
we would like to truncate the Arnoldi recurrence to obtain a procedure which is described next.



3.1 Incomplete Orthogonalization

Assume that we select an integer k and that we perform the following ‘incomplete’ Gram-Schmidt
orthogonalization process.

ALGORITHM 3.1 Incomplete Arnoldi Process:
1. Forj=1,2,..,m do:
(a) Compute w := Avj;

(b) Fori=max{l,j—k+1},...,7J do{ hij = (w,vi),

wi=w — hv;
(c) Compute hjsr; = [Jullz and vjsr = w/hjsr,.
The only difference with the full Arnoldi orthogonalization is that at each step the current vector

is orthogonalized only against the k previous ones instead of all of them. The vectors generated
by the above algorithm are known to be ‘locally’” orthogonal to each other, in that

(1)2',1)]') = (52']' for |Z —j|<k
In addition, the relations (4) — (5) are still valid, but the matrix H,, now has a particular
structure, namely, it is banded Hessenberg since h; ; = 0 for ¢ < j — k.

3.2 DIOM

The IOM algorithm [5, 4] is defined similarly to the FOM algorithm except that the Arnoldi
vectors obtained are not orthogonal but locally orthogonal. The Hessenberg matrix H,, obtained
from the incomplete orthogonalization process has a band structure with a bandwidth of k& + 1.
For example when k£ = 3 and m = 5 we obtain the following matrix:

hi1 hi2 his
hor  haa haz  hay
H, = hsza hss hss hss (24)
haz  hag  hys
hsq  hss

We need to keep only the k previous w»;’s in the Arnoldi process, and we wish to be able to
discard the others. However, if we implement the IOM algorithm, we still face the difficulty
that when we compute the solution by formula (8) we will again need all the vectors v;. One
option would be to recompute them at the end, but this will essentially double the cost of the
algorithm. This raises the question of developing a formula whereby the approximate solution
can be easily computed from the previous approximation z,,_1 and a small number of vectors
that are being updated at each step. A procedure of this type called DIOM (Direct version of
IOM) was presented in [5] and we would like describe it briefly for the sake of completeness.
DIOM is derived by writing the LU factorization of H,, as H,, = L, U,. Assuming no
pivoting is used, the matrix L,, is unit lower bidiagonal and U, is band-upper triangular, with



k diagonals. Thus, for the above matrix, we will have a factorization of the form

1 uyy w1z U3
lpp 1 Uy U3 Ugg
H, = I35 1 X u33  U34 U35
lyz 1 Ugq  Ugs
ls4 1 Uss

The approximate solution is then given by,
T = To+ Vi UL L ey

If we define
P,=V, Ul and z,= L;}ﬁel ,

m

then we have,
T, = To + Pz, .

Because of the structure of U,, we can update P,, very easily via the formula,

1 m—1
Pm = —"|Un — Z Uim Pi

u .
mm i=m—k+1

In addition, because of the structure of L,,, we have
¥ = Zm—-1
" Cm

Cm = _lm,m—ICm—l .

in which

From (25) we have

o
“m—1

o = P [

:| =Pr_12m—1 + CubPm = Tt + Cubm

showing that the approximation z,, can be updated at each step from the previous iterate.
We note that a simple formulation of the algorithm which exploits Gaussian Elimination

with partial pivoting when solving the Hessenberg system was also developed in [5]. We can also

use plane rotations to implementation DIOM, based on a similar observation to the one made

earlier regarding the relation between GMRES and FOM.

4 DQGMRES: a Truncated version of GMRES

We can also implement an Incomplete GMRES algorithm which we call Quasi GMRES (QGM-
RES) for the sake of notational uniformity with other existing algorithms developed in the
literature. It is also possible to implement a Direct version called (DQGMRES) using exactly

the same arguments as in Section 3 for DIOM.



4.1 QGMRES and DQGMRES

First, we define the QGMRES algorithm, in the simplest terms, by replacing the Arnoldi Algo-
rithm with the Incomplete Orthogonalization Algorithm 3.1. This technique was first described
by Brown and Hindmarsh [1] who reported some numerical tests with it in the context of systems

of ODE’s.

ALGORITHM 4.1 Quasi-GMRES Algorithm
Run a modification of GMRES algorithm in which the Arnoldi process is replaced by the In-
complete Orthogonalization process and every other computation remains unchanged.

Similarly to IOM, we now need to keep only the k previous vectors so this version of GMRES
will potentially save computations but not storage, since when we will need to compute the
solution by the formula (12) we must again access all the vectors v;. Fortunately we can again
update the approximate solution in a progressive manner, as was done with DIOM.

The implementation is quite similar to DIOM. We first note that if H,, is banded as for
example when m = 5,k = 2,

hii hag B
ho1 hay  has 0
= hay has  hszg 0
Hs = L g= 26
> haz  has  has J 0 (26)
hsa  hss 0
h65 0

then the premultiplications by the rotations matrices 2; as described in the previous section,
will only introduce an additional diagonal, in this case we will get,

11 Ti12 T13 ga!

T22 T23 T4 72

=(5 T3z T34 T35 | _ 3
i = e g = |7 (27)

44 T45 .

Ts55 .

0 e

The approximate solution is given by,
Ty = 20+ Vi R g -

where R,, and g, are obtained by removing the last row of R, and §,, respectively. If we define
P, similarly to DIOM,
P, =V, R}

then,
Ty = 29+ Prgm -

We also note that similarly with DIOM, we have

9m = l ?m—l ]
fm+1



in which

Tm = Cm%(nm_l)v TYm+1 = _Smﬁf/ézm_l)
where 'yT(nm_l) is the last component of the vector g,,_1, i.e., the right-hand-side before the m-th

rotation is applied. As a result, z,, can be updated at each step, via the relation,
T = Tm—1 + YmPm
ALGORITHM 4.2 DQGMRES
1. Start: Choose an initial guess zg then compute ro = b — Azg and vg := ||ro||2, v1 := ro/71-
2. Loop: Form = 1,2,..., until convergence do,
1. Compute hjy, t = max{l,m —k+1},...,m — 1, and v,,41 as in Steps 1-a, 1-b, 1-c
of Algorithm 3.1.

2. Update the QR factorization of H,,, i.e.,

e Apply the rotations ;, i = m — k,...,m — 1 to the m-th column of H,, just
computed;

o Compute the rotation coefficients ¢,,, s;, by (18);
3. Apply rotation Q,,, to H,, and g,,, i.e., compute

® Vm+1 = —SmVYm>
® Vim i= CmYm, and,

° hmm = thmm + Smhm—i—l,my (: \/ h72n+1,m + h%nm)
4. pm = (vm - Z?;:nl_k+1 hzmpz) /hmm

5. Tm = Tm_1+ TYmPm

6. If |ym+1]| is small enough then stop.

The above algorithm does not minimize the norm of the residual vector over zg + K, but
attempts to perform an approximate minimization. Indeed, the formula (22) is still valid since
orthogonality is not used to derive it. If the v;’s were orthogonal to each other then, we are
back in the situation of GMRES and the residual norm is minimized over all vectors of the
form zg + V,,y. Since we are only using an incomplete orthogonalization process then the w;s
are only locally orthogonal and as a result we will obtain an approximate minimization. In
addition, we no longer have (23) which had been derived from the above equation by exploiting
the orthogonality of the v;’s. It turns out that in practice |y,,41| remains a reasonably good
estimate of the actual residual norm in general because of the fact that the v;’s are nearly
orthogonal. The following inequality which is easy to show

1= Azl < Vi F Ll (28)

provides an actual upper bound of the residual norm in terms of computable quantities. The
proof of this inequality is an immediate consequence of (22). If we call ¢ = (7;);_; .., the

10



unit vector ¢ = QL e, 41 then

m+1
16— Azl = Pl Virrdllz = vmsal | D vimillz
1=1
m+1
< mtl Y Noill2lmil
=1
< |YmgrlVm+1 (29)

The last relation is due to the Cauchy-Schwartz inequality. As a result, using |y,,4+1| as a
residual estimate, we will be making an error by a factor of \/m + 1 at most. In general, this is
an overestimate and |y,,+1| tends to give enough accuracy as an estimate for the residual norm.

It is also interesting to observe that if we are willing to sacrifice a little bit of arithmetic, we
can actually compute the exact residual vector and norm. This is based on the observation that,
according to (22), the residual vector is 7,,4+1 times the vector z,,41 which is the last column of
the matrix

_ T
Zm+1 = ‘/m—l—l Qm

It is an easy exercise to verify that this last column can be updated from v,,41 and z,,. Indeed,

D1 = [Vmavm-kl]Qﬁ—ng
= [Vngv,—l?vm‘}'l]le
= [Zm7%n+ﬂ9£

and as a result, we get,
Zm+1 = —SmZm + CrmnUm+1- (30)

The z;’s can be updated at the cost of one extra vector in memory and 3n operations at each
step. The norm of 2,41 can be computed at the cost of 2n operations and the exact residual
norm for the current approximate solution can then be obtained by multiplying this norm by
|Vm1]-

This is a little expensive so we may elect to just ‘correct’ the estimate provided by v,,4+1 by
exploiting the above recurrence relation and writing,

[Zmt1ll2 < [smlll2mll2 + |em]-

If we set (, = ||zm]|2 , then we have the recurrence relation,

C’m—l—l S |3m|Cm + |Cm| (31)

Note that the above relation which costs virtually nothing to update provides an upper bound
that is sharper than (29).

An important characteristic of DQGMRES is that it is flezible in that it can allow variable
preconditioners without requiring additional storage. Specifically, when right preconditioning
is used, the preconditioner M is allowed to vary at each step. The idea is similar to that of
FGMRES [7]. In both cases we must compute the vectors J\/I;lvj’s and in the case of FGMRES,
we need to save these vectors which requires extra storage [7]. In the case of DQGMRES, this

11



is no longer required since the preconditioned vectors only affect the update of the vector p; in
the formula,

1 . =
p; = o M; v — Z hijpi | -
13 i=j—k+1
Thus, j\/lj_lvj can be discarded immediately after it is used in the above formula. In fact, we can
simply overwrite it onto the space used for p; and modify step 4 of algorithm 4.2 accordingly.
We note that DQGMRES is similar in nature to the GMRESR family of algorithms introduced
by Van der Vorst and Vuik [9].

Finally, we would like to mention that convergence results identical to those of the QMR

algorithm [2, 3] hold. For example, it is easy to prove that the norms of the residuals % and r&
obtained after m steps of the DQGMRES and GMRES algorithms respectively are related by

Ir2ll2 < F2(Vins) I3 12, (32)

assuming that Vi, 41 is of full rank, an assumption that is valid when the degree of the minimal
polynomial of g is not less than m + 1.

4.2 A variation

When comparing DIOM and DQGMRES, we observe that these two algorithms only differ by
their last rotation angles. We can choose freely this last rotation angle and this gives us an extra
degree of freedom. We may for example think of minimizing the residual norm with respect to
this angle. We will now explore this option.
With an arbitrary rotation in the last step of DQGMRES, the residual of the linear system
can be expressed as:
b— Ay, = Vii1QL (G — Rny)

After we have applied all the previous rotations in step 2.2 of the algorithm 4.2, the variables
that will directly influence the selection of the final rotation angle and the residual norm are:

hmm7 hm—}—l,ma Tms Um+1, Zm -

If instead of computing the last rotation by equation (18), we use an arbitrary angle of rotation,
say 0,,, then it can be shown that the residual norm is given by the following equation:

Il = 1o = Azall3 = l2m41ll37m/ co8*($m = Om) (33)

where 1, is the rotation angle defined by equation (18). Given this rotation angle 6,,, the
vector z can be updated via equation (30) where ¢,,, = cos(8,,) and s,, = sin(6,,). The norm of
Zm+1 can be computed recursively without computing the vector explicitly, since we have

Gt = Nlzm4allz = cos®(0) — 1 sin(26,) + (7, sin® (6, ) (34)

where 7, = zgvmﬂ.

The equations (33)-(34) for computing the residual norm have only one free variable, 6,,.
Though we cannot compute the exact value of #,, which minimizes ||r,,||2 algebraically, we
can numerically approximate it. This minimization process can be easily integrated into the
algorithm 4.2 to form a new variant of DQGMRES. We will simply use equation (33) to find the

12



BiCGSTAB | TFQMR | GMRES(m) | FGMRES(m) | DQGMRES(k)
space 9n 11n (m+2)n (2m+2)n (2k+1)n
time 6n 14n (m+4)n (m+1)n (3k+1)n

Table 1: Complexity of the four iterative solvers, excluding operations with the matrix.

optimal ,,, then compute the ¢,, = cos(6,,) and s, = sin(6,,) instead of using equation (18).
At step 2.6 of the algorithm, the exact residual norm can be used.

The main advantage of this new variant of GMRES over DQGMRES or DIOM is that the
residual norm is guaranteed not to increase from step to step. Since the residual norm of the
previous step can be achieved by letting 6,, = 7/2, the minimum residual norm achieved at a
given step by this method should be no greater than the residual norm of the previous step.
This variant requires one more inner-product than the version of DQGMRES which computes
the exact residual vector at each step. Compared with Algorithm 4.2, this variant will require
an extra vector of storage of size n, and Tn additional floating-point operations. In most of the
experiments we have performed with this variant, we found that it does not perform significantly
better than DQGMRES and that overall the slight gain in performance does not warrant the
additional complexity and computational work.

5 Numerical Experiments

For testing purposes we have implemented a version of DQGMRES along with several other
iterative linear system solvers. In this section we will present results showing how these methods
compare with one another in some matrices arising from real applications. We will be comparing
the performance of DQGMRES with BICGSTAB, TFQMR, GMRES and FGMRES, and will
explore some aspects of the flexible preconditioning features of the new algorithm. In our
implementation, TFQMR uses slightly more memory than GMRES(8), i.e. the restarted version
of GMRES with m = 8. Table 1 shows the exact amount of spaces used by each of the five
solvers. Note that for both GMRES(m) and DQGMRES(k), we assume m,k << n. The time
complexity shown in the table is the number of floating-point operations — excluding those
for matrix-vector multiplications and the preconditioning operations — required to update the
solution averaged over the number of matrix-vector multiplications called (assuming the number
of iteration is much larger than m and k). In most real applications, the cost of the matrix-
vector multiplications together with the preconditioning operations can be much higher than
that related with the other costs, i.e. the operations shown in table 1. For this reason and partly
for simplicity, we will use the number of matrix-vector multiplications as the indicator for the
time used by each of the iterative solvers that are compared in our discussions later.

We experimented with the four matrices nonsymmetric desribed below, the first three of
which are from the Boeing/Harwell sparse matrix collection,

1. JPWH991 is contributed by J.P. Whelan from Philips LTD. It is a relatively small, only
991 rows and 6027 non-zero elements.

2. SHERMANS is generated by a fully implicit black oil simulator. The matrix size is 3312.
It has 20793 non-zero elements.

13



3. SHERMANZ2 is from a thermal simulation of steam injection on a 6 x 6 x 5 grid. The
matrix has 1080 rows and 23094 non-zero elements.

4. FVOL is a matrix arising from a volume technique applied to a Navier Stokes equation. It
corresponds to the first step in Newton’s iteration for solving the Navier-Stokes equation.
It has 7160 rows and 112048 non-zero elements.

Roughly speaking the above matrices are listed from ‘easiest’ to ‘hardest’ to solve. Thus, the
system constructed from the first matrix can be solved by all four methods in a small number
of iterations. The others will cause some problems if no preconditioner or a poor preconditioner
is applied.

All the right hand-sides are constructed artificially so that the solution to the original linear
systems is known. In our tests this known solution is always a vector with all its elements equal
to 1. The initial guesses are random vectors, but we always use the same ‘pseudo’-random initial
guess for the different methods compared on the same linear system.

All experiments have been performed on SPARC workstations. Most of them are on a
SPARC-10, a small number of tests are run on SPARC-2 and SPARC-IPX workstations.

We used a number of different preconditioners in our tests, including the standard m-step
SOR (Successive Over-Relaxation) and SSOR (Symmetric Successive Over-Relaxation) precon-
ditioners, ILU(0), and ILUT(k,¢€) [6]. Our version of DQGMRES was implemented with the
variable right preconditioning option, to enable us to exploit various types of iterative linear sys-
tem solvers as preconditioners. Thus, for DQGMRES we also tested using a number of iterative
solvers as preconditioners including, BCG, CGNR, etc..

In our experiments, the convergence test used is

||7:]| < rtol x ||rol| + atol (35)

where rtol = 107% and atol = 10719, In all of our experiments, we terminate any iteration when
the number of steps exceeds 500.

This first pair of graphs (see figure 1) shows the variation of the residual norm with the
number of matrix-vector multiplications. Here the iterative solvers preconditioned only with the
diagonal of the matrix. We can see that only the linear system with JPWH991 can be solved
in a reasonable number of steps. It is also interesting that for SHERMANS, TFQMR stagnates
in the first 170 steps, while the four GMRES variants stagnate after the first 30 iterations.

Figures 2 and 3 show the convergence process of the iterative solvers with SOR(2) and SSOR
as preconditioners. For simplicity, the w for both SOR(m) and SSOR are chosen to be 1 in our
experiments. Only one inner SSOR step is used for preconditioning. The SOR(m) preconditioner
has been tested with different m values. What is shown in the figure 2 is the results of using
SOR(2). For the linear system with matrix JPWH991, the SOR(2) preconditioning is not
as effective as SSOR. However, for SHERMANS5, the two preconditioners have a very similar
performance. In figure 2(b), GMRES(8) converges in nearly 490 iterations. In both figure 2(b)
and 3(b), DQGMRES(8) did not satisfy our convergence criterion, equation (35), within 500
iterations.

In solving the linear system of JPWH991, SSOR preconditioning reduces the number of
iterations required by GMRES(16) and DQGMRES(16) to about 20, which is roughly one third
of the number of iterations required if only diagonal preconditioning is applied. For the two
‘hard’ problems, SOR(m) and SSOR have some effect in helping reducing the residual norm
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on one of them, namely FVOL. However, the convergence is still very slow with all iterative
methods for both linear systems. When increasing m for SOR(m) and SSOR(m), the number
of iterations taken by the iterative solvers decreases for the two ‘easy’ matrices, JPWH991
and SHERMANS. However increasing m does not improve the convergence rate for the ‘hard’
problems SHERMAN2 and FVOL.

Figure 4 shows the results of preconditioning with the Incomplete LU factorization with
no fill-in (ILUO). This preconditioner is very effective for SHERMAN2. (see figure 4). It is
also slightly more effective on SHERMANS. In figure 4(b), DQGMRES(8) converges in 308
iterations. For the two other linear systems tested, the effectiveness of the ILUO preconditioning
is comparable with that of SSOR. Next, we test a more sophisticated version of ILU, called
ILUT(p, €), discussed in [6]. This is an incomplete LU factorization with a dual dropping
strategy, where pis the maximum number of fill-ins allowed per row, € is a relative drop tolerance.
In our tests, ILUT(3,10™2) appeared to be sufficiently robust for most of the test matrices (see
figure 5), but the result of this preconditioner on the matrix FVOL is still unsatisfactory. After
we increase the p to 7 and decrease the € to 107°, most of the iterative solvers can achieve
convergence in no more than 100 iterations (see figure 6).

An appealing feature of the DQGMRES algorithm is that variable preconditioning can be
applied at no extra cost. This allows one to choose from a much wider range of preconditioning
strategies. The next set of experiments (see figure 7) illustrates the use of some of the common
iterative solvers as preconditioners to DQGMRES(16). Such combinations are also commonly
referred to as ‘inner-outer iterations’, where here the outer iteration is DQGMRES(16), and the
inner iteration is the iterative preconditioner. In our experiments, each time an inner iterative
solvers is called, it will try to solve the linear system given to it using the same convergence
test as before (see equation (35)) with rtol set to 0.1 and the maximum number of iterations set
to 16. In figure 7, the vertical axis of the plot shows the residual normal. The horizontal axis
shows the total number of the matrix-vector multiplications used by both the outer iterations
(DQGMRES(16)) and the inner iterations. In terms of the number of outer iterations used, this
scheme is very competitive with some of the conventional preconditioners such as SOR, SSOR,
ILUO, etc. For example when solving JPWH991 using DQGMRES(16) as the outer iteration,
GMRES(8) as the inner iteration, only 7 outer iterations are needed to satisfy the convergence
criterion (see equation (35)), far fewer than with any one of the conventional preconditioners.
However, this may be misleading since the preconditioner in the inner-outer iteration scheme
is more expensive than some of the simpler preconditioners, such as SOR(2), SSOR. In our
experiments the inner iterations may use up to 16 matrix-vector multiplications. In terms
of floating-point operations, one SSOR, preconditioning operation costs about as much as two
matrix-vector multiplications.

We observe that the inner-outer iteration preconditioning scheme is robust, although it is
also expensive compared with conventional preconditioners such as SSOR. One possibility for
reducing the number of matrix-vector multiplications is to precondition the inner iterations. We
have tested this idea, and some of the results are shown in figure 8. Similarly to figure 7, the
horizontal axis is the total number of matrix-vector multiplications. Comparing figure 8 with
figure 7, we can see that applying the preconditioner to the inner iteration reduces the total
number of matrix-vector multiplications. Comparing figure 8 with figure 2, we notice that this
inner-outer iteration scheme with SSOR as preconditioner to the inner iterations requires more
matrix-vector multiplications than simply using DQGMRES(16) with SSOR as preconditioner.
However, in some other cases, we have observed that this inner-outer iteration scheme can
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be as effective as DQGMRES(16) with a more conventional preconditioner. We should point
out that these ‘inner-outer’ iteration schemes bear some similarity with the idea of polynomial
preconditioning. The only difference is that here the iteration polynomial changes at each outer
step.

To further demonstrate the advantages of the flexibility feature provided by DQGMRES,
we experimented with a combination of different types of preconditioners, specifically, we run
some experiments consisting of alternating between different preconditioners at each outer loop.
Figure 9 shows the results of alternating between SSOR and one of the iterative solvers when
solving SHERMANS5. Comparing this with the results of the inner-outer schemes, this option
uses fewer matrix-vector multiplications. Comparing it with using only SSOR as a precondi-
tioner, this scheme uses fewer outer (DQGMRES(16)) iterations. For example, when alternating
between GMRES(8) and SSOR preconditioners, DQGMRES(16) used 31 iterations, while when
using only SSOR as the preconditioner to DQGMRES(16), 65 iterations were required. However,
in 31 iterations, the alternating preconditioner scheme used 271 matrix-vector multiplications
and called SSOR 15 times, while in its 65 iterations, the simpler preconditioning scheme only
used 65 matrix-vector multiplications and 65 SSOR calls. On sequential computers one SSOR
step is roughly equivalent to one matrix-vector multiplication, so the alternating preconditioner
approach is not as effective. However, the situation may be not be the same for parallel com-
puters.

In all the inner-outer iterations tests, we also experimented with using FGMRES as the outer
iteration. In figure 7, we plotted the results of using FGMRES as well. The difference between
using DQGMRES and FGMRES is small. This was to be expected, since the two methods
are closely related. Clearly, the first 16 iterations of DQGMRES(16) and FGMRES(16) should
be exactly the same, and the number of the outer iterations in all our experiments are less
than or close to 16. Even though the differences are generally small, DQGMRES consistently
outperforms FGMRES when the number of outer iterations required for convergence is high.

6 Conclusion

The DQGMRES algorithm compares well with the best iterative techniques available for solving
linear systems. One exception is that when the number k against which a given Arnoldi vector is
orthogonalized is too small, DQGMRES tends to perform poorly. One advantage of DQGMRES
over GMRES, TFQMR and BiCGSTAB, is that it is ‘flexible’. It allows the preconditioner to
vary at each step — without requiring extra storage as is the case for GMRES [7]. Generally
speaking the algorithm often does better than GMRES for the same k&, the number of vectors
that are mutually orthogonal in the Arnoldi sequence at any given step. However for the same
k, DQGMRES requires twice as much storage as GMRES, but the same storage as FGMRES.
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Figure 1: Residual norms of the first two linear systems solved with only diagonal precondition-
ing.
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Figure 4: Residual norms of two linear systems solved with ILUO preconditioning.
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Figure 5: Residual norms of two linear systems solved with ILUT(3,107%) preconditioning.
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Figure 6: Residual norms of two linear systems solved with ILUT(7,107%) preconditioning.
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