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Abstract

Standard preconditioning techniques based on incomplete LU (ILU) factorizations of-
fer a limited degree of parallelism, in general. A few of the alternatives advocated so far
consist of either using some form of polynomial preconditioning, or applying the usual ILU
factorization to a matrix obtained from a multicolor ordering. In this paper we present an
incomplete factorization technique based on independent set orderings and multicoloring.
We note that in order to improve robustness, it is necessary to allow the preconditioner
to have an arbitrarily high accuracy, as is done with ILUs based on threshold techniques.
The ILUM factorization described in this paper is in this category. It can be viewed as a
multifrontal version a Gaussian elimination procedure with threshold dropping which has a
high degree of potential parallelism. The emphasis is on methods that deal specifically with
general unstructured sparse matrices such as those arising from finite element methods on
unstructured meshes.
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1 Introduction

In this paper we address the problem of developing preconditioners for solving a linear system
of the form
Az =b (1)

where A is a general sparse matrix of dimension N. The incomplete LU factorization with
no fill-in, or ILU(0) [36], is one of the most popular preconditioners currently available. TIts
implementation on high-performance computers can be optimized by a technique referred to as
‘level-scheduling’, or ‘wavefront ordering’, see, e.g., [3]. A notable disadvantage of ILU(0) is
that it is a rather crude approximation and for this reason it is unreliable when used to solve
problems arising from certain applications, such as computational fluid dynamics. To improve
the efficiency and robustness of ILU factorizations, many alternatives which allow higher levels
of fill-in in the ILU factorizations have been developed [24, 38, 13, 12, 53, 52, 45]. Although these
alternatives are more robust than the low-accuracy ILU(0) or SSOR, they are often intrinsically
sequential.

A number of different approaches have been advocated to remedy the ‘sequential nature’
of the preconditioners developed in the 1970’s and later, see for example the survey papers
[14, 42]. The first of these approaches were motivated by vectorization and consisted mainly
in replacing occurrences of matrix inverses by polynomials in these matrices. For example, the
solutions of bidiagonal systems that arise in the forward and backward solutions on the ILU(0)
preconditioning for model problems were replaced by low degree polynomial expansions in the
matrices [47]. The paper [27], and subsequently a few others, advocated using polynomials in A
as preconditioners. A second class of methods that has been developed consists of introducing
parallelism by exploiting ‘graph coloring’, or multicoloring as we will refer to it here. The
unknowns are colored in such a way that no two unknowns of the same color are coupled by
an equation. In the simplest case of the 5-point matrix arising from the centered difference
discretization of the Laplacian in two or three-dimensional spaces, only two colors are needed
and they are commonly referred to as “red” and “black”. When the unknowns of the same
color are numbered consecutively, and a standard ILU factorization is applied to the reordered
system, then a large degree of parallelism is available in both the preprocessing phase and
in the preconditioning operations, during the iteration phase. A well-known drawback of this
approach is that the number of iterations to achieve convergence may increase substantially, when
compared with that required for the original system [19, 18, 20]. More generally, preconditioners
that allow a large degree of parallelism such as, in the simplest case, diagonal scaling, tend to
necessitate a much larger number of iterations to converge when compared with their sequential
counterparts, e.g., the standard Incomplete LU factorization (ILU).

However, experience suggests that a good remedy for regaining an acceptable level of con-
vergence rate is to increase the accuracy of the underlying preconditioning. For example, ILU
preconditioners with more fill-in, or multi-step SSOR or SOR preconditioners, may be used.
Experiments in [44] reveal that an approach based on SOR(k) preconditioning, in which each
preconditioning operation consists of k steps of SOR sweeps, is superior to the best optimized
ILU preconditioning on some problems. Unfortunately, for the standard ILU factorization the
use of higher level of fill-in destroys the structure obtained from the multicolor reordering.

In this paper we consider a technique which is based on exploiting the idea of successive
independent set orderings [33], a simpler form of multicoloring. This technique is very closely
related to multifrontal elimination [15, 40], a classical method that is employed in the parallel



implementations of sparse direct methods. Both multifrontal elimination and ILUM rely on the
fact that at a given stage of Gaussian elimination, there are many rows that can be eliminated
simultanously. The set that consists of such rows is called an independent set. The idea then is
to find this set, and then eliminate the unknowns associated with it, to obtain a smaller reduced
system. This reduction process is applied recursively a few times to the consecutive reduced
systems until the system can be solved by a direct solver (multifrontal) or by an iterative
technique (ILUM). In ILUM, we perform the reductions approximately, with the help of a
standard threshold strategy, in order to control the sparsity of the L and U factors.

We start by describing the ideas of multicoloring and independent set orderings. Then we
briefly show how these ideas can be exploited to develop direct solution methods and, finally,
we derive incomplete factorization techniques by introducing numerical dropping strategies.

2 Independent set ordering and multicoloring

Graph theory provides numerous useful tools in sparse matrix computations and can be helpful
in unraveling parallelism in standard algorithms [25, 15]. We recall that the adjacency graph of
a sparse matrix is a graph G = (V, E), whose N vertices in V represent the N unknowns and
whose edges represent the binary relations established by the equations in the following manner:
there is an edge from node j to node ¢ when a;; # 0. This edge will therefore represent the binary
relation equation i involves unknown j, or equivalently the unknown z; depends on unknown z;.
Note that the graph is directed, except when the matrix has a symmetric pattern (a;; # 0 iff
aji #0forall 1 <i,j < N). Parallelism in the Gaussian elimination process can be obtained by
finding unknowns that are independent at a given stage of the elimination, i.e., unknowns that
do not depend on each other according to the above binary relation. The rows corresponding
to such unknowns can then be used as pivots simultaneously. Thus, in one extreme, when the
matrix is diagonal all unknowns are independent. On the other extreme, when a matrix is dense,
each unknown will depend on all other unknowns. Sparse matrices lie somewhere in between
these two extremes. Multicoloring techniques attempt to find sets of independent equations by
coloring the vertices of a graph so that neighboring vertices have different colors. Independent
set ordering can be viewed as a less restrictive form of multicoloring, in which a set of vertices
in the adjacency graph is found so that no equation in the set involves unknowns from the same
set. Multicoloring is best known in the partial differential equation context for 2-dimensional
finite difference grid (5-point operator), which is our starting point in this discussion.

2.1 Red-black ordering for finite difference grids

For simple 2-dimensional centered finite difference grids, we can easily separate the grid points
in two sets, Red and Black, so that the nodes in one set are adjacent only to nodes from the
other set. This 2-color (red-black) ordering is illustrated in Figure 1 for a 6 x 4 grid.

If we reorder the unknowns in such a way as to list the red unknowns first together and then
the black ones, as is illustrated in Figure 1, we will obtain a system of the form

D F x f
= 2
(5 o) ()= (5) )
where D and C are diagonal matrices. Matrices that can be permuted into the above form are
said to have property A, [51]. Several techniques have traditionally been used to exploit the



Red-Black ordering

B—O—B—O—a—0
7\ Q) ) 50\ ) 16)
(O—9——0——=2)
A N A7) =) A Q) (7
(o——)—10—E——18——©)
O—B——1—06—

u . [
[ ] mE =
[ ] T
[ ] m Em =
[ ] B EE ®m
[ ] [N - |
n H [ ] n [ ]
[ ] | " EE =
| 1 " EER ®m
. ! = Em
m = Em
_______________ N _________m__m
L] m
aE |
" o
"= E = ! [ ]
m EEm n H n
" ER ®m H [ ]
= Em m ]
" mm m! ]
= = m u
= = [ ]
" EE ! [ ]
m mm | ]

Corresponding Matrix

Figure 1: Red-black labeling of a 6 x 4 rectangular mesh and associated matrix.

above convenient structure see, e.g., [23, 41, 21].

Perhaps the simplest of these approaches is to use a conjugate gradient type technique
combined with the standard ILU(0) preconditioner on the block system (2). Here, the degree
of parallelism, i.e., the maximum number of arithmetic operations which can be executed in
parallel, is of order N. A drawback is that often the number of iterations is higher than with the
natural ordering but the approach may still be competitive for problems for which the natural
ordering requires a relatively small number of steps, e.g., less than 30, to converge.

We have observed [44] that the number of iterations can be reduced back to a competitive
level by using a more accurate ILU factorization on the red-black system, e.g., ILUT [45]. In
fact the situation may be improved in that for the same level of fill-in p, the red-black ordering
will outperform the natural ordering preconditioner for p large enough, in terms of number of
iterations required for convergence. However, the fill-in introduced in the “black” part of the
system with such high level ILUs ruin the degree of parallelism achieved from the red-black
ordering. A remedy is to resort to similar high-level SOR or SSOR preconditioners instead
of ILUT [44]. These consist of performing several SOR or SSOR steps in each preconditioning
operation, instead of just one, as is traditionally done. A significant advantage of relaxation type
preconditioners is that these higher level preconditioners do not lose their degree of parallelism
as the accuracy increases.



A second method that has been used in conjunction with the red-black ordering is to eliminate
the red unknowns by forming the reduced system which involves only the black unknowns,
namely,

(C—ED™'F)y=g— ED™'}.

This linear system is again sparse and has about half as many unknowns. It has been observed
that for easy problems, i.e., problems for which the natural ordering requires a relatively small
number of steps to converge, this reduced system can often be efficiently solved with only
diagonal preconditioning. The preprocessing to compute the reduced system is highly parallel
and inexpensive. In addition, the reduced system is usually well-conditioned and has some
interesting properties when the original system is highly nonsymmetric [21].

A general sparse matrix rarely has property A and as a result the application of the red-black
ordering is quite limited. Fortunately, many of the above techniques can be generalized by using
less restrictive forms of reorderings. For example, to exploit the reduced system approach, all
we need is to reorder the original matrix into a matrix of the form,

D F
(7 o) ®)
where D is diagonal but C can be arbitrary. There are three ways of generalizing the standard
red-black ordering.

1. Independent set orderings, which lead to the form (3) above;

2. Multicolor orderings, which lead to block matrices in which the diagonal blocks are point-
wise diagonal;

3. Full-block versions of the above techniques which allow the diagonal matrices to be block
diagonal instead where each block is dense.

In the remainder of this paper we will consider the first and second generalizations. The block
versions arise naturally in the solution of partial differential equations (PDEs) when each mesh
point involves several unknowns. We also note that a further generalization would consist of
allowing these diagonal blocks to be sparse matrices.

2.2 Independent set orderings

We now consider generalizations of the red-black ordering which consist of transforming the
matrix into the block form (3), where D is diagonal. Let G = (V, E) denote the adjacency graph
of the matrix, and let (z,y) denote an edge from vertex x to vertex y. An independent set S is
a subset of the vertex set V such that

ifr €S then {(z,y) €E or (y,z) €EE}—y¢S.

In words, elements of S are not allowed to be connected to other elements of S either by incoming
or outgoing edges. An independent set is maximal if it cannot be augmented by elements in its
complement to form a larger independent set. Note that a maximal independent set is by no
means the largest possible independent set that can be found. In fact, finding the independent set
of maximum cardinality, is N P-hard [32]. Independent set orderings have been used mainly in
the context of parallel direct solution techniques for sparse matrices [33, 34, 11], and multifrontal



techniques [15] can be viewed as a particular case. One of the goals of this paper is to show how
to exploit these ideas in the context of iterative methods.

There are a number of simple and inexpensive heuristics for finding large maximal indepen-
dent sets. For our purposes simple greedy algorithms such as the ones to be described next
are inexpensive and yield enough parallelism in general. In the following we will use the term
independent set to always refer to mazimal independent set.

A simple greedy procedure for finding an independent set S is to traverse the graph and
accept each visited node as a new member of S, if it is not already marked. We then mark this
new member and all of its nearest neighbors. Note that by nearest neighbors of a node z we
mean the adjacent nodes, linked to z by incoming or outgoing edges.

ALGORITHM 2.1 Greedy algorithm for independent set ordering

Let S = 0.
For 5 =1,2,...,n Do:
If node j is not marked then

S=Su{j}
Mark j and all its nearest neighbors.
endif
enddo
In the above algorithm, the nodes are visited in the natural order 1,2, ...,n but we can also
visit them in any permutation {i1,...,i,} of {1,2,...,n}. In what follows we denote by |S| the

size of S, i.e., its cardinal. Since the size of the reduced system is n — |S| it is reasonable to
attempt to maximize the size of S in order to obtain a small reduced system, although the size
is not all that matters.

We would like to give a rough idea of the size of S. Recall that the degree of a vertex v is
the total number of edges that are adjacent to v. Assume that the maximum degree of each
node does not exceed v. Whenever the above algorithm accepts a node as a new member of
S it potentially puts all its nearest neighbors, i.e., at most v nodes, in the complement of §.
Therefore, the size n — |S| of its complement is such that n — |S| < v|S| and as a result,

n
1+v’

|S| >

This lower bound can be improved slightly by observing that we can replace v by the maximum
degree vg of all the vertices that constitute S, resulting in the inequality

n

S| >
1812 7,

which suggests that it may be a good idea to visit first the nodes with smaller degrees. In fact
this observation leads to a general heuristic regarding a good order of traversal. We can view the
algorithm as follows. Each time a node is visited, we remove it and its nearest neighbors from
the graph and then visit a node from the remaining graph and continue in the same manner
until exhaustion of all nodes. Every node that is thus visited is a member of S and its nearest
neighbors are members of the complement S of the set S. As a result, if we call v; the degree
of the node visited at step i, adjusted for all the edge deletions resulting from the previous



visitation steps, then the number n; of nodes that are left at step ¢ satisfies the relation
nizni_l—ui—l .

The process adds a new element to the set S at each step and stops when n; = 0. In order to
maximize |S| we need to maximize the number of steps in the procedure. The difficulty in the
analysis comes from the fact that the degrees are updated at each step 7 because of the removal
of the edges associated with the removed nodes. All we can say is that if we wish to lengthen
the process, a rule of thumb would be to visit the nodes that have the smallest degrees first.

ALGORITHM 2.2 Independent set ordering with increasing degree traversal

Let S = (. Find an ordering i1, ..., 1, of the nodes by increasing degree.
For j =1,2,...n Do:
If node i; is not marked then

S =Su{i}.
Mark i; and all its nearest neighbors.
endif

enddo

A refinement to the above algorithm would be to update the degrees of all nodes involved in
a removal and dynamically select the one with smallest degree as the next node to be visited.
This can be efficiently implemented using a min-heap data structure [9]. A different heuristic
is to attempt to maximize the number of elements in S by a form of local optimization that
determines the order of traversal dynamically. In the following the action of removing a vertex
from a graph consists of deleting the vertex and all edges incident to/from this vertex.

ALGORITHM 2.3 Locally optimal algorithm for independent set ordering

Set S =0 and niepr = n.

While nye ¢y > 0 do
Select the vertex with minimum degree in current graph.
Add this vertex to S, then
Remove it and all of its nearest neighbors from graph
Update degrees of all vertices
Nyeft = Nyeft— number_of_removed_vertices.

endwhile

There is a striking similarity with the minimal degree ordering algorithm used in sparse
Gaussian elimination. The only difference is that the elimination of a node does not introduce
what is referred to as fill-in in Gaussian elimination, i.e., the edges of the removed nodes are
simply deleted.

There are other similar techniques for generating independent sets. The method described
in [33] for an alternative ordering for Gaussian elimination, starts with the observation that
constructing a large independent set is equivalent to building a small complement S to S. One
observes that all the edges of the graph are edges between vertices in S, i.e., the vertices in S
form a vertex cover of the graph. To find a small vertex cover, Leuze suggests a locally optimal
technique which can be viewed as the dual of the previous algorithm. At each step of the
procedure, the vertex of mazimum degree is found and this vertex together with all the incident
edges are removed. The process is continued until exhaustion of all edges.



ALGORITHM 2.4 Vertex Cover Algorithm

Set S =0
While (there are still edges left in G) Do
Select the vertex with maximum degree in current graph.
Add this vertex to S, then
remove it and all its adjacent edges from the graph.
EndWhile

One drawback with this type of ‘local minimization’ techniques illustrated by the last two
algorithms is their cost. The fact that the improvements over the simpler procedures 2.1 and
2.2 are likely to be small suggests that it is probably preferable to use these less expensive
algorithms in practice. This will be confirmed by our experiments in Section 4.

We now illustrate these algorithms with the help of a little comparison. We consider two test
matrices. The first is a 9-point matrix obtained simply by squaring the 5-point discretization of
the Laplacian on a 25 x 25 grid. This matrix of size N = 625 has 7629 nonzero elements and
it pattern is symmetric. The second matrix is taken from the Harwell-Boeing collection and is
called JPWH_991, see [16, 17]. It is of dimension N = 991, has a total of 6,027 nonzero elements
and its pattern is nonsymmetric.

First reduction || Second reduction
Method N1 NZl N2 NZ2
Alg. 2.1 | 514 10800 || 460 15920
Alg. 2.2 | 523 10414 || 462 13842
Alg. 2.3 | 511 10826 || 454 14868
Alg. 2.4 | 530 10260 || 469 13386

Table 1: Performance of 4 different Independent Set Ordering algorithms for first test problem.

Tables 1 and 2 show the results for two reduction steps (see Section 3). In addition, Table 2
illustrates a simple dropping strategy by showing the effect of adding a drop tolerance, called tol
in the table. When forming the reduced system, a row a; will be modified by linear combinations
of rows corresponding to adjacent nodes in the graph. If ||g;|| is the 2-norm of a;, then every
element obtained in this transformation is dropped if its magnitude is less than tol X ||a;||. In
the table N; is the size of the reduced system obtained at the i-th level reduction, and N Z; its
number of nonzero elements. As can be seen from the tables the difference in the performances
is rather small. An interesting observation is that Algorithm 2.3 seems to be best at minimizing
the size of the reduced system, i.e., maximizing the size of S, whereas Algorithm 2.4 seems to
be better at reducing the amount of fill-in generated in the reduced system. This is somewhat
expected because of the nature of the heuristics used. Overall, Algorithm 2.2 seems to perform
remarkably well given the simplicity of the underlying heuristic.

2.3 Multicoloring for arbitrary sparse matrices

Multicoloring techniques have often been used in the context of PDEs as a means of introducing
parallelism [39, 37, 1, 30, 31, 28]. The goal here is to color the vertices of an arbitrary adjacency



First reduction | Second reduction

Method | N | NZ || N | N Z,
With tol = 0.0

Alg. 2.1 | 630 7902 || 512 12820

Alg. 2.2 | 603 5640 || 439 7084

Alg. 2.3 | 583 6121 || 433 8381

Alg. 2.4 | 594 5995 || 438 7783
With tol = 0.05

Alg. 2.1 | 514 8183 || 455 6481

Alg. 2.2 | 523 7820 || 462 6185

Alg. 2.3 | 511 8209 || 452 6513

Alg. 2.4 | 530 7675 || 465 6734

Table 2: Performance of 4 different Independent Set Ordering algorithms for Matrix JPWH_991.

graph in such a way that two adjacent nodes do not have a common color. In terms of graphs,
this means that we must find a partition S1,Ss,...,S; of the vertex set V, such that

if (z,y) € E with z € S;andy €5; theni # j.

Clearly, the red-black ordering is just a particular case with k = 2.

As for independent set orderings, finding a multicolor ordering is inexpensive, provided we
do not seek to achieve optimality. Multicoloring ideas have been employed in particular to
understand the theory of relaxation techniques [51, 49] as well as for deriving efficient alterna-
tive formulations of some relaxation algorithms [49, 23]. More recently, they have emerged as
useful tools for introducing parallelism in iterative methods, see for example [2, 1, 39, 20, 37].
Multicoloring is also commonly employed in a slightly different form — coloring elements (or
edges) as opposed to nodes — in finite elements (or finite volume) techniques especially when
using the element-by-element approach [6, 50, 26, 22, 46]. Note that ‘multicoloring’ is generally
based on a graph coloring of some sort and that there are numerous other applications of these
techniques which are unrelated to parallel computing. Thus, in a quite different context, a form
of multicoloring has also been used in [7] to extract independent columns in a sparse matrix for
the purpose of numerically evaluating Jacobians with difference formulas.

There is a rich literature on graph coloring and we refer to [7, 28] for references and a few
algorithms that attempt to achieve optimality by some heuristics similar to the ones introduced
earlier for independent set orderings. In this paper we will only consider a simple greedy tech-
nique for obtaining a multicoloring of an arbitrary graph. Initially, the algorithm assigns a color
of zero to each node 7. Then, it traverses the graph in the natural order and assigns the smallest
positive admissible color to each node ¢ visited. Here, an admissible color is a color not already
assigned to any of the neighbors of node 7. In the following description of the greedy algorithm,
we use the notation Adj(7) to represent the set of nodes that are adjacent to node i.



ALGORITHM 2.5 Greedy multicoloring algorithm

Set Color(i) =0,i=1,...,N.
Fori=1,2,...,N Do:

Color(z) = min{k > 0 | k # Color(j),V j € Adj(7))}-
EndDo

At the end of the algorithm, each node 7 will be assigned the color Color(i). This procedure
is illustrated in Figure 2.

Figure 2: The greedy multicoloring algorithm. The node being colored is indicated by an arrow.
It will be assigned color number 3, the smallest positive integer different from 1, 2, 4, 5.

In a manner similar to that for independent set orderings we can traverse the nodes in any
order {i1,1%2,...%,} and this initial order of traversal may be important in reducing the number
of colors. However, the difference between a poor ordering and a good one is usually small. Here
are a few additional properties concerning this greedy algorithm.

e If a graph is bipartite (i.e., two-colorable), the algorithm will find the optimal 2-color
(Red-Black) ordering for breadth-first search traversals.

e Any chain traversal, i.e., a traversal following a path through all the nodes in the graph,
will also find the optimal 2-color ordering for any bipartite graph.

e The number of colors needed does not exceed v + 1 where v is the maximum degree of all
nodes.

Here, we recall that a breadth-first search traversal starts from an arbitrary node and visits its
nearest neighbors which form the first level. Then it visits the nearest neighbors of all the nodes
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in level 1, which have not been visited. These will constitute the the second level. The algorithm
continues in this fashion until all nodes have been visited. The proofs of the above properties
are straightforward and are omitted. In [7] it is proved that a different ordering referred to as
the “Incidence Degree” ordering also achieves optimality for bipartite graphs.

For the natural traversal ordering, we can parallelize this graph coloring algorithm in one
of several ways. A simple mechanism implemented in [35] is to impose a local order in which
the coloring is to be done. For example, a given node can wait until all its nearest neighbors
whose processor numbers are less than its own, have colored their nodes. Once this is done the
processor assigns colors to each of its nodes and then sends the color information needed by the
nearest neighbors with higher processor number. Several other alternative algorithms exist, see
for example [29].

3 ILUM: a Multi-elimination ILU factorization

A parallel direct solver based on performing several successive levels of independent set orderings
and reduction was suggested in [33] and in a slightly more general form in [10]. Although the
ideas were presented differently, their essence is that when we eliminate the unknowns associated
with an independent set we obtain another system, which is a smaller sparse linear system. We
can then find an independent set for this reduced system and repeat the process of reduction.
We refer to the resulting second reduced system as the second-level reduced system. The process
can be repeated recursively a few times. As the level of the reduction increases, the reduced
systems gradually lose their sparsity. A direct solution method would consist of continuing the
reduction until the reduced system is small enough or dense enough that we can resort to a dense
Gaussian elimination to solve it. A sparse direct solution method based on a similar argument
was suggested in [33]. In [44] we suggested performing a small number of reduction steps and
then switching to a traditional iterative solver, preferably one that has a high level of parallelism
such as multicolor SOR, accelerated with GMRES. ILUM is a form of block preconditioning
[8, 4] in which reordering is used to ensure that the diagonal blocks to be inverted during the
factorization remain diagonal matrices.

After a brief review of the direct solution method based on independent set ordering, we will
show how to exploit this approach to derive Incomplete LU factorization strategies based on a
drop tolerance.

3.1 Multi-level Reduced Systems

We start by a brief discussion of an ezact reduction step. Let A; be the matrix obtained at
the j-th step of the reduction, j = 0,...,nlev with Ay = A. Assume that an independent set
ordering is applied to A; and that the matrix is permuted accordingly as follows,

D; F;
par = (3 &) @)

where D; is a diagonal matrix. We can now reduce the system by eliminating the unknowns of
the independent set to get the next reduced matrix via the formula,

Aj1=Cj— E;D}'F; . (5)

11



Note that we have implicitly performed the block LU factorization

o pr _ (Dj Fj\ _ I 0 D; F;

FiAFy = (Ej Cj>_(Eij_l I)X<0 Aj-l—l) (6)
with A, defined above. As a result, in order to solve a system with the matrix A; we need
to perform a forward and backward substitution with the block matrices on the right hand side
of (6). The backward solution involves solving a system with the matrix A;;; and the forward
solution can be performed with a diagonal scaling and a matrix-vector product.

We can use this block factorization approach recursively until we obtain a system that is
small enough to be solved with a standard method, e.g., a dense Gaussian elimination. We
must save the transformations used in the elimination process, i.e., the matrices E]-DJT1 and the
matrices F;. The permutation matrices P;, can also be saved, or we can explicitly permute the
matrices involved in the factorization at each new reordering step.

3.2 ILUM

Clearly, the successive reduced systems obtained in the way described above will become more
and more expensive to form and store as the number of levels increases. This is due to the fill-in
introduced by the elimination process. A common cure for this in developing preconditioners
is to neglect some of the fill-in introduced by using a simple dropping strategy as we form the
reduced systems. For example, we can drop any fill-in element introduced, whenever its size is
less than a given tolerance 7 times the 2-norm of the original row. Thus, an ‘approximate’ version
of the successive reduction steps can be used to provide an approximate solution M v, to A~ 1w
for any given v. This can be used to precondition the original linear system. Conceptually, the
modification leading to an ‘incomplete’ factorization consists of replacing (5) by

Aji1 = (C; — E;D}'Fj) — R; (7)

in which R; is the matrix of the elements that are dropped in this reduction step. Globally, the
algorithm can be viewed as a form of block incomplete LU [8, 5], with permutations.
Thus, we have a succession of incomplete block-LU factorizations of the form

o= (8 D)(ae Do(3 £+ (2 8)
PiAFy = (Ej ¢;) ~\gpt 1)*\o 4a5) T \o g ®)

with A;1; defined by (7). We can now recursively find an independent set ordering for the new
matrix A;; and reduce it again in the same manner. Note that we need not save the successive
A; matrices but only the last one that is generated. We must also save the sequence of sparse

matrices D 7
Bin=(ppt ) (9)
J Eij 0

which contain the transformation needed at level j of the reduction. We can discard the suc-
cessive permutation matrices P; if we apply them to the previous B; matrices as soon as these
permutation matrices are known. We then need only the global permutation which is the prod-
uct of all these successive permutations. The successive B; matrices without the diagonal D;
are stored as a succession of sparse matrices in a sparse row format. The diagonals D; are all
stored in an N-dimensional array.
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An illustration of the matrices obtained after three reduction steps is shown in Figure 3.
The algorithm used for the independent set ordering in the illustration is Algorithm 2.3. The
original matrix is a 5-point matrix associated with a 15 x 15 grid and is therefore of size N = 225.
Here the matrices B, By, B3 (with permutations applied) are shown together with the matrix
Az occupying the location of the 0 block in (9).

We refer to this incomplete factorization as ILUM (ILU with Multi-elimination). The pre-
processing phase consists of a succession of nlev applications of the three steps: (1) Finding the
Independent Set Ordering, (2) Permuting the matrix, and (3) Reducing it.

ALGORITHM 3.1 ILUM: preprocessing phase

Set AO = A.
For j =0,1,...,nlev — 1 Do:
Find an independent set ordering permutation P; for Aj;
Apply Pj to A; to permute it into the form (4);
Apply P; to By,...,Bj;
Apply P; to Py, ..., Pj_y;
Compute the matrices Aj1 and Bj;1 defined by (7) and (9).
Enddo

In the backward and forward solution phases we must solve the last reduced system but we
need not solve it accurately. We can for example solve it according to the level of tolerance that
we have allowed in the dropping strategy during the preprocessing phase. Observe that since
we would like to solve the linear system inaccurately, we should only use an accelerator that
allows variations in the preconditioning. Such methods have been developed in [43] and [48].
Alternatively, we can use a fixed number of multi-color SOR or SSOR steps. The implementation
of the ILUM preconditioner corresponding to this strategy is rather complicated and involves
several parameters.

In order to describe the forward and backward solution we need to introduce some notation.
We start by applying the ‘global permutation’, i.e., the product Pyjey—1Ppiey—2 - - - Po to the right
hand side. We overwrite the result on the current solution vector, an N-vector which we call
9. We now partition this vector into

- (2)
T

according to the partitioning (4). The forward step consists of transforming the second compo-
nent of the right-hand-side as
Il = T1 — E()Do_ly() .

Now z; is partitioned in the same manner as zy and the forward elimination is continued the
same way. Thus, at each step we partition each z; as

o w
K (%‘H)'

A forward elimination step defines the new ;1 using the old ;41 and y; for 7 =0, ..., nlev—1
while a backward step defines y; using the old y; and z;1, for j = nlev —1,...,0. Algorithm
3.2 describes the general structure of the forward and backward solution sweeps. Because we
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apply the global permutation at the beginning, we need not apply the successive permutations.
However, we need to permute the final result obtained back into the original ordering.

ALGORITHM 3.2 ILUM: forward and backward solutions

1. Apply global permutation to right-hand-side b and copy into xg.
For 5 =0,1,...,nlev — 1 do: [Forward sweep]
i1 = zj11 — E;jD;j ly;
EndDo
3. Solve with a relative tolerance e:
AnlevTnlev *= Tnlev-
4. For j=mnlev—1,...,1,0 do: [Backward solution]
yj = D; '(y; — Fjzjq1).
EndDo
5. Permute the resulting solution vector back to the original ordering
to obtain the solution x.

A major source of difficulty with the use of ILUM lies in its implementation. The implemen-
tation issues are similar to those that arise when implementing parallel direct solution methods
for sparse linear systems. Some of the issues have been briefly discussed above. Here are some
of the important questions that arise, along with some comments or solutions.

1. Should we permute the matrices A; explicitly or is it preferable to avoid step 3 in Algorithm
3.17 There are two additional burdens if we do not permute the matrices. First, we must
store the successive permutations and second, we must apply the permutations during
the forward and backward solutions when passing from one level to the other. As was
mentioned, in our implementation we explicitly permute the matrices.

2. How to store the successive matrices B;? In our implementation these are stored in
sequence one after the other in a single data structure. As a result the data structure used
for storing the successive matrices has two levels of pointers. It is also possible to store all
the B; matrices as a single sparse matrix — the upper part in row format and the lower
part in column format. We would then need two sparse data structures and an additional
pointer.

3. What number of levels should we use? How do we relate the number of levels to the
tolerance used in the factorization? These are difficult questions to answer in a rigorous
way. The number of levels is left as a parameter in our implementation.

4 Numerical tests

In this section we provide a few experimental results to: help (i) give an idea of the performance
of the ILUM preconditioner when compared with similar techniques and (ii) examine how these
performances vary with respect to the type of independent set ordering used. All experiments
have been performed on a Cray-2 in single precision (64-bit arithmetic) and the times are in
seconds. Although parallelism is not exploited our implementation of the iterative phase, which
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Figure 3: Illustration of the processed matrices obtained from three steps of independent set
ordering and reductions.
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excludes the preprocessing required to compute the ILU factorization itself, takes advantage of
vectorization.

In all tests, we construct the right-hand sides artificially to be of the form b = Ae, where
the solution e is the vector whose components are all ones. The initial guess is taken to be a
random vector. Although some of the test matrices used in these experiments are associated
with regular grids, this was not exploited, i.e., the matrices are considered as general sparse.
The iterations were stopped as soon as the 2-norm of the residual was reduced by a factor of
e=10".

4.1 An elliptic problem

We consider the partial differential equation:

0e*¥y Qe Ty

_Au+7< o + By )—I—au:fa

with Dirichlet boundary conditions and v = 10, @ = —60; discretized with centered differences
on a 27 x 27 x 27 grid. This leads to a linear system with N = 252 = 15,625 unknowns. We
refer to the linear system associated with this matrix as Problem 1.

Method Performance

Algorithm | nlev || tot_T | its_ T | Memory | its-out | its-tot
1 3.52 | 1.54 7.9 4 56

Multicolor 2 7.30 | 3.69 142.6 4 52
3| 11.41 | 5.58 166.5 5 65

1 3.26 | 1.49 7.9 4 56

Alg-2.1 2 7.41 | 4.00 142.9 4 55

3| 10.94 | 5.64 173.5 5 68

1 3.91 | 1.78 9.3 4 60

Alg-2.2 2 7.56 | 3.77 127.4 4 55

3| 11.29 | 5.61 161.1 5 68

1 4.46 | 1.52 7.9 4 57

Alg-2.3 2 8.95 | 3.59 143.9 4 51

3 || 14.04 | 5.56 176.4 5 68

1 4.05 | 1.59 5.4 4 55

Alg-2.4 2 8.28 | 3.53 138.1 4 51

3 || 14.00 | 6.17 165.1 5 67

Table 3: Performance of GMRES(10)-ILUM preconditioning for first problem, using different
independent set ordering algorithms.

The results obtained with a drop tolerance of 7 = 0.0001 in ILUM are shown in Table 3. The
last reduced system is solved with GMRES(20) preconditioned by SOR(1) and using a tolerance
of € = 0.01 for the stopping criterion. Note that in all the SOR preconditioning operations
we use w = 1 as relaxation parameter. The reordering algorithms tested are indicated on the
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left column, in which Multicolor refers to taking the first set (color) obtained from the greedy
multicoloring algorithm 2.5. The column ‘its_T’ shows the time required to solve the system
excluding the preprocessing phase required to compute the incomplete factorization. The total
time, including preprocessing, is shown in the column ‘tot_T’. The column ‘memory’ shows the
total memory requirement in thousands of words to store the real values (excluding integer
indices) of the incomplete factorization. The numbers ‘its-out’ refer to the number of outer
iterations required, i.e., the number of ILUM preconditioned GMRES steps needed to achieve
convergence. The numbers ‘its-tot’ refer to the total number of inner iterations required, i.e.,
the overall total number of matrix vector products in the calls to GMRES(20)-SOR(1) needed
to solve all the reduced systems occurring throughout the solution of the linear system under
consideration.

Method Performance
Algorithm | nlev || tot_T | its_T | memory | its-out | its-tot
1 144 1.17 194 6 232
2 2.68 | 2.21 25.6 7 194
Multicolor 3 294 | 2.25 30.3 8 171
10 3.64 | 1.56 53.3 11 90
20 4.71 | 1.03 71.8 10 43
1 1.57 | 1.33 19.5 6 261
2.70 | 2.27 254 7 185
Alg-2.1 3 2.73 | 2.13 30.3 8 167
10 3.22 | 1.31 55.9 10 73
20 4.41 | 1.03 75.2 11 39
1 2.54 | 2.22 15.7 7 394
3.70 | 3.16 22.3 7 318
Alg-2.2 3 2.90 | 2.16 27.9 9 190
10 3.14 | 1.09 51.8 9 68
20 4.43 | 0.89 70.5 9 35
1 2.06 | 1.60 20.5 7 329
2 3.25 | 2.52 25.7 8 232
Alg-2.3 3 3.36 | 2.29 30.5 8 190
10 4.13 | 1.14 54.2 10 67
20 || 5.762 | 0.76 72.4 9 31
1 217 | 1.84 19.7 7 363
3.37 | 2.74 24.9 7 241
Alg-2.4 3 3.69 | 2.73 29.6 8 218
10 447 | 1.24 52.3 9 78
20 6.49 | 0.80 70.3 8 33

Table 4: Performance of GMRES(10)-ILUM preconditioning for matrix Sherman 3, using dif-
ferent independent set ordering algorithms.
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4.2 Experiments with Harwell-Boeing matrices

We first consider a linear system made up from the matrix Sherman-3 of the Harwell-Boeing
collection [16, 17]. This matrix is of dimension N = 5,005 and has nz = 20,033 nonzero
elements. It arises in a IMPES (IMplicit Pressure, Explicit Saturation) simulation of a black-oil
reservoir on a 35 X 11 x 13 grid. We refer to the linear system associated with this matrix as
Problem 2. Results similar to those of the previous example are shown in Table 4.

ILUT time | GMRES time | tot. time | its
Problem 1 12.1 2.70 14.8 | 25
Problem 2 1.69 0.761 2.45 | 20

Table 5: Performance of GMRES(10)-ILUT(p,7), with p = 10 and 7 = 0.0001 using level
scheduling for the triangular system solutions.

The number of outer iterations is roughly the same in all cases but the number of inner
iterations varies rather substantially. We should point out that the preprocessing to build
the incomplete factorization has not been optimized. It is possible to improve performance by
exploiting parallelism in the elimination since the main operation in forming the reduced systems
consists of a sparse matrix-matrix product. In addition, even if the preprocessing costs remain
high, this technique may be appealing for solving linear systems with several right-hand sides
on parallel or vector computers. It is worth noting that if we ignore the preprocessing times
then for Problem 2, some of the best performances, in term of execution time, are obtained with
larger numbers of reductions, a situation which is opposite to that of Problem 1. This depends
largely on the parameters used in the factorization.

For comparison, we show in Table 5 typical execution times using an optimized ILUT precon-
ditioned GMRES approach. The ILUT(p, 7) preconditioner described in [45] is a dual-threshold
based incomplete LU factorization which performs numerical dropping based on a relative toler-
ance 7 and which retains at most the p largest fill-in elements in L and in U. The optimization
of ILUT on the CRAY consists of using level scheduling [3] as well as jagged diagonal data
structures to optimize matrix-vector products. Note that if we ignore preprocessing times, the
best times achieved with ILUT and ILUM are comparable but the degree of parallelism in ILUM
is much higher that in ILUT.

Finally, we show the performance of ILUM and an optimized ILUT preconditioned GMRES
approach, both with various parameters, on eight matrices from the Harwell-Boeing collection.
The two methods are not comparable for similar values of their parameters. However, the
results will give an indication of how the two methods may compare for reasonable choices
of the parameters and for unstructured matrices. The sizes (N) of these matrices and their
number of nonzero elements (Nz) are shown in the first column of Table 6. Of these matrices,
only ORSREG1, SHERMAN1, and SHERMANS5 are regularly structured.

Here, the ILUT(p, 7) preconditioner was used with 7 = 10~* and the level-of-fill parameter
p takes the values 0, 5, 10, 15. For ILUM we took the same value for 7 and retained at most
20 elements in each row of the reduced system. Since the size of the reduced matrices decreases
at each level, it is difficult to compare the number of nonzero elements obtained with a given
value of p for ILUM and ILUT. The reduced systems are solved with GMRES(10) with diagonal
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preconditioning. Only one outer GMRES(10) iteration is performed for each different system.
The algorithm used for obtaining the independent sets was Algorithm 2.4. The results are shown
in Table 6. In most cases the best iteration times with ILUM are achieved for larger values of the
level number. In addition, these times are often better than the level-scheduling implementation
of ILUT. The preprocessing times are not optimized for both algorithms so it is difficult to
give a comparison with the current implementations of the overall process. These experiments
do indicate, however, that a good implementation of ILUM may be a competitive approach on
vector supercomputers.

5 Conclusion

The ideas of graph coloring and independent set ordering can be exploited to derive highly
parallel incomplete LU factorizations. We have developed such incomplete factorizations and
tested them on a Cray computer, exploiting only vectorization. However, the implementation of
these techniques on massively parallel computers is likely to be complex. In most cases a good
compromise may well be to perform a small number of ILUM reductions, perhaps one or two,
and then solve the last reduced system with a multicolor multi-step SOR preconditioned Krylov
subspace iteration [44]. Nevertheless, the general idea of independent set orderings is powerful
and can certainly be exploited in many other ways than those described in this paper.
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ILUM ILUT

Matrix nlev | tot_T | its_T | its p | tot T | its_T | its
FS7602 2 1.84 | 1.73 | 85 0| 058 | 047 | 95
N =760 8| 043 | 017 | 12 5 0.27 | 0.10 | 17
Nz = 5976 14 | 0.40 | 0.06 6 | 10| 0.29 | 0.06 9

20| 045 | 0.05 5| 15| 0.33| 0.07 9
ORSIRR1 2| 066 | 053 | 26 0| 019 | 0.08] 15
N=1030 8| 0.41| 0.13 9 5 0.18 | 0.06 8
Nz= 6858 14 | 0.45 | 0.09 7 10| 0.18 | 0.05 7

20 | 0.50 | 0.09 7 15| 0.18 | 0.06 7
ORSIRR2 2| 059 | 048 | 28 0 017 | 0.07| 15
N= 886 8| 038 014 ] 11 5 0.17 | 0.05 8
Nz= 5970 14 | 0.39 | 0.08 7 10| 0.17 | 0.05 7

20 | 0.44 | 0.08 7 15| 0.17 | 0.05 7
ORSREG1 21 091 | 062 16 0| 042 017 | 16
N= 2205 8| 0.78 | 0.19 7 5 0.36 | 0.08 6
Nz= 14133 14 | 0.89 | 0.18 7 10| 035 0.08 6

20| 1.03 | 0.18 71 15| 035 0.08 6
PORES2 2| 4.08 | 3.93 | 200 0 117 | 1.06 | 171
N=1224 8| 1.19| 0.92 0.62 | 047 | 47

(@)
e
Ut

Nz= 9613 14| 111 | 0.77| 52| 10| 0.55| 039 | 33

20| 114 | 0.73| 51| 15| 0.52| 0.36 | 27
PORES3 2| 054 | 048 | 46 0| 012 | 0.07| 22
N=532 8 0.20 | 0.06 8 5| 014 | 0.05| 10
Nz=3474 14 | 0.21| 0.04 10 | 0.18 | 0.05 8

20| 0.24 | 0.04
SHERMAN1 2| 021 0.12

15 0.22 | 0.06 7
0 022 0.15| 31

N=1000 8| 034 0.07 5 0.24 | 0.09 8
Nz= 3750 14 | 0.48 | 0.06 0.32 | 0.11 6

20| 0.57 | 0.05 15| 038 | 0.15 6
SHERMANS3 2 124 | 085 | 1 0 125 | 0.74 | 45
N=3312 8 162 | 061 | 1 ) 140 | 044 | 19
N2z=20793 14 1.86 | 0.33 10 1.81 | 046 | 15

f= RN QS T N N NN K= =)
—
o

20| 217 | 0.25 15| 2.22| 052 | 14

Table 6: Comparison of ILUM and ILUT on a few matrices from the Harwell-Boeing collection
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