Block-ADI Preconditioners for Solving Sparse
Nonsymmetric Linear Systems of Equations *

Sangback Ma and Youcef Saad

Abstract. There is currently a regain of interest in the Alternating Direction Implicit (ADI) algorithms as
preconditioners for iterative methods for solving large sparse linear systems, because of their suitability for parallel
computing. However, the classical ADI iteration is not directly applicable to Finite Element (FE) matrices, tends
to converge too slowly for 3-D problems, and the selection of adequate acceleration parameters, remains a difficult
task. In this paper we propose a Block-ADI approach, which overcomes some of these problems. In particular we
derive a simple inexpensive heuristic for selecting the acceleration parameters. The new approach can be viewed
as a combination of the classical ADI method and a domain decomposition approach.

Key words: Preconditioning; ADI; Block ADI ; Preconditioned GMRES; Domain Decomposition.
AMS (MOS) Subject Classification: 65F10.

1 Introduction

Iterative solutions of large sparse linear systems by Krylov subspace methods, require the use of precon-
ditioning techniques in order to converge in a reasonable number of iterations. When implemented on
parallel computers, standard preconditioners based on incomplete factorization, such as ILU [14] or the
more elaborate versions such as ILUT[17, 24], using a wavefront or level-scheduling approach realize a
reasonable speed-up on vector computers or parallel computers with a small number of processors [1, 2, 5].
However, the lengths of the wavefronts are not uniform, and this contributes to poor load balancing, and
puts a limit to the maximum achievable speed-up due to Amdahl’s law. Alternatively, parallelism can
also be obtained through multicoloring. For example, if the matrix has property A, as is the case for the
standard 5-point matrices obtained from centered Finite Difference (FD) discretizations of elliptic Partial
Differential Equations (PDE’s), there is a partition of the grid-points in two disjoint subsets such that the
unknowns of any one subset are only related to unknowns of the other subset. This enables to produce a
reordered matrix having a block-tridiagonal matrix, where the diagonal blocks are diagonal matrices and
there are several different ways of exploiting this structure. For example, the unknowns associated with
one of the subsets can be easily eliminated, and the resulting reduced system is often well-conditioned.
This ‘two-coloring’ often referred to as a red-black or checkerboard ordering, can be generalized to ar-
bitrary sparse matrices by using multi-coloring and the generalizations of the standard ILU techniques
based on such ideas can be easily derived [19]. Polynomial preconditioners are quite appealing because

*This research was supported by NIST grant 60NANB2D11272 and by The Minnesota Supercomputer Institute.
T University of Minnesota, Computer Science Department, 4-192 EE/CSci Building, 200 Union Street S.E., Minneapolis,
MN 55455

of the requirement that only matrix — vector product operations need to be optimized, a task that is
reasonably straightforward. They can also always be combined with other preconditioners to improve
their overall performance and this may constitute their best possible use, at least in the non-Hermitian
case.

Another standard approach that has been employed in the past is Domain Decomposition. Most
domain decomposition preconditioners rely on an efficient solution technique for the Schur complement.
If we wish to achieve high speed-ups we must increase the number of subdomains, and as a result the
Schur complement will become bigger and more complex. This eventually becomes difficult to program
and, in addition, will yield diminishing returns.

Going back to standard preconditioners, we recall that historically SSOR was used first as a pre-
conditioner to the conjugate gradient methods [3, 4] well before incomplete factorization techniques
became popular. Similarly, standard relaxation or block relaxation techniques have often provided easy-
to-implement and yet reasonably efficient preconditioners. However, insufficient work has been done on
the parallel implementations of these techniques. In [18], SOR and SSOR and multicoloring techniques
were combined and compared with ‘good’ ILUT implementations. The main result in [18] is that these
types of techniques can be quite efficient, and far superior to the standard preconditioners on some prob-
lems, provided a multi-step approach is used, namely provided that k& > 1 steps of SOR or SSOR are
taken at each preconditioning operation instead of just one as is usually done, where k is some parameter.

In this paper we investigate an ADI type iteration viewed from a Domain Decomposition angle. Our
goal is to obtain a method whose computational structure is amenable to parallel computing as is the
ADI iteration. In addition we would like the method to be applicable to Finite Element applications,
possibly for 3-D problems, just as in a domain decomposition approach.

2 Classical ADI Methods

The ADI method was introduced by Peaceman and Rachford [15] in 1955, to solve the discretized bound-
ary value problems for elliptic and parabolic PDEs. The finite difference discretization of the model
elliptic problem

—Au = f, 2=10,1] x[0,1] (1)
u = 0 on 60
with 5-point centered finite difference discretization, with n + 2 mesh-points in the x — direction and
m + 2 points in the y direction, leads to the solution of a linear system of equations of the form
Au=b ()

where A is a matrix of dimension N = n x m. Without loss of generality and for the sake of simplicity,
we will assume for the remainder of this paper that m = n, so that N = n2.
Writing the discretization in z and y direction into matrices H and V respectively, leads to a linear
system of equations
(H+V)u=1» (3)

where both H and V are sparse and possess a special structure. In particular, with suitable reordering,
H and V are tridiagonal.

Starting with some initial guess ug, the Alternative Direction Implicit procedure for solving (3) gen-
erates a sequence of approximations u;,7 = 1,2,... given by the following algorithm

ALGORITHM 2.1. Peaceman Rachford(PR) ADI

(H+pil)uiprs = —(V —pil)u; +b (4)
(V+piDuipr = —(H = pil)uiz12 +b, (5)

where the p;’s are positive parameters. The ADI method, applied to positive definite systems, was
extensively studied in the 1950s and 1960s, see, e.g, the books of Varga [21] and Wachspress [22]. In
this case H and V have real eigenvalues and the following is a summary of the main ADI results in this
situation.

1. Any stationary iteration(p; = ¢ > 0, for all i) is convergent if H and V are symmetric positive
definite.

2. For the model problem the asymptotic rate of convergence of ADI with optimal fixed p is equal to
that of SSOR with optimal w, so the spectral radius is wp — 1. Since each ADI iteration takes more
work than an SSOR iteration, a sequence of parameters p; is often used in order to compete with
SSOR ([21]).

3. The rate of convergence of ADI can be appreciably increased by the application of sequence of
parameters, p;, that are used in cyclic order. The theory of the convergence and the selection of
good parameters when more than one one cycle is used, has not been fully developed. For those
cases when HV = V H, a satisfactory theory does exist [6]. For the model problem with a single
optimal p the time complexity is O(n®). In [15] a procedure is described to reduce the time
complexity to O(n? logn) with a sequence of p parameters.

For 3-D problems Douglas[7] proposed a variant of the classical ADI, which has better convergence
behavior than the classical ADI. Let A = H +V + W, where H, V , and W contains the z-, y-, z-,
directional derivatives, respectively.

ALGORITHM 2.2. Douglas Rachford(DR) ADI

(V+piluive;s = —(H+V+2W = pil)ui — Hujy1/3 +2b (7)
W+ piDuiyn = —(H+V+W —pil)u; — Huiypry3 — Vugyays +2b (8)

The convergence behaviors of this algorithm are different from those of the two-dimensional case. For
example for fixed r > 0, p; = r, Vi, three dimensional mesh regions can be exhibited for which this variant
of ADI fails. Also in practice the convergence is very slow, and as a result it has rarely been used. There
are alternative formulations which sweep through planes as opposed to lines of the domain.

More recently, the focus has turned into the implementation and efficiency issues of ADI methods on
parallel computers. The degree of parallelism of the algorithm is of the order of the grid points, but the
best complexity that can be achieved for each step is O(logn) using cyclic reduction in both directions to
solve the tridiagonal systems [12, 10]. Other strategies exist which combine divide-and-conquer tridiagonal
solvers and cyclic reduction.

3 Block versions of ADI

Since H and V depend on the finite difference discretizations of original PDEs, the classical ADI is not
defined for FE matrices. For example, the piecewise linear shape functions on triangles give rise to 7-point
matrices, for which there is no natural splitting of A into the sum of two matrices H and V that are both
tridiagonal, or defined discretizations of one-dimensional operators. The question then arises as to how
to generalize the classical ADI for Finite Elements applications. There are several options available. In
this paper we will simply use a technique which is based on recasting the Peaceman Rachford ADI in the
framework of Domain Decomposition methods.

3.1 The classical ADI and Domain Decomposition

In Algorithm 2.1 H is the discretization matrix of z-directional derivatives. In terms of domain decompo-
sition the domain is decomposed into horizontal lines. Then H is obtained by applying the original PDE
on the subdomains, while imposing the Neumann boundary conditions on the vertical sides. Similarly
for V. After H and V are found we could write A as

A=H+A-H) =V+(A-V).

These two splittings of A are used in each of two stages of the iteration (4). A parameter p; was added to
the diagonals of H and V' as an acceleration parameter. In other words ADI can be viewed as an extreme
case of domain decomposition in the plane, where the subdomain consists of nonoverlapping horizontal
rectangles consisting of one line each. We can also view ADI as a means of using a domain decomposition
strategy to reduce two-dimensional domains into 1-dimensional subdomains. By alternating between
the x and y directions we can achieve the overlapping between the domains that is desirable in domain
decomposition. As we noted earlier in domain decomposition the convergence deteriorates if the number
of subdomains increases and there is no overlap between the subdomains. By the alternation we hope to
achieve the equivalent effect of overlapping subdomains.

3.2 A Block-ADI Algorithm

We have seen in the previous discussions that the two stages of the classical ADI are characterized by the
way in which the matrix A is split in two additive components. It is natural to think of considering the
subdomains of horizontal/vertical stripes consisting of a few, say k, lines, instead of just one line. The
same procedure as in the classical ADI can then be defined. Let us call ADI(k) this variant of ADI, and
let H®) and V) denote the matrices obtained by applying the original PDE on this decomposition of
the domains. In essence, for each of the two domain partitionings, these matrices are obtained from the
original matrix by neglecting the interactions between grid points across interfaces, or rather replacing
them with Neuman boundary conditions. Then A is split as

A=H® 4 (A—H®)=vH 4 (4 -yHk)
from which we can define our block ADI procedure, denoted by ADI(k).

ALGORITHM 3.1. ADI(k)
(H® + pil)uip1p = —(A—H® — pilu; +b 9)
(V® 4 piluyr = —(A-VH - pil)uit1/2 +b (10)

e Note that ADI(k) is defined for FE matrices as well as for FD matrices.

¢ In a parallel environment the simplest form of parallelism is obtained by processing the domains
independently, which will naturally achieve a speed-up of n/k (in case m = n). Further speed-ups
can also be achieved. Although the matrices H®) and V) are not tridiagonal for k > 1, they are
banded with a bandwidth of 2k + 1 and parallel banded solvers [11] can be used for each subdomain
independently to yield higher speed-ups.

o If we assume an exact LU factorization is used to solve (9), we expect that the cost will be of the
order k times that of the classical ADL. However, since H*) and V*) will be closer to A, or fewer
interfaces are neglected in H*) and V(*), the ADI(k) is likely to converge faster. As a result there
is a tradeoff between the cost due to the number of ADI iterations and the cost of solving each
of the equations (9) and (10). An optimal value of k should achieve a balance between these two
costs.

e For 3-D problems we expect the 3-D equivalent of Block-ADI to perform better than DR ADI for
large k. The main reason why the DR ADI converges so slowly is that H, V, and W are each too
poor approximations to A. In terms of the splitting of A the spectral radius associated with the
ADI iteration will be smaller as each of H, V or W gets closer to A. The matrices H®), V() and
W) are likely to be better approximations to A, for larger k. As in the two-D case the potential
for achievable speed-up is reduced but for 3-D problems we still might have enough parallelism
compared with two-D problems. However, this remains to be verified by numerical tests.

4 The acceleration parameters

As we noted earlier ADI can be efficient when we cycle with a decreasing sequence of parameters {p;,% =
1,...,1}. In fact for the model problem there is a complete theory on how to select the parameters
optimally. This makes the algorithm converge within discretization errors, in a number of steps of the
order of O(n!/!) with a fixed I [15]. If HV = VH, and H and V are symmetric, positive definite, there
exists satisfactory theory based on common eigenvectors [6]. If V and H commute but are not symmetric
with possibly complex eigenvalues, G. Starke derives an algorithm to determine the optimal p values for
l=1and ! =2, and N. Ellner and E. Wachspress propose an algorithm for the case when the imaginary
parts of eigenvalues are small relative to the real part. In all of the previous cases, these algorithms
or formulas require some a-priori knowledge about the spectra of H and V. However, in practice the
condition that H and V' commute is much too restrictive. Actually, it dictates that the underlying PDE
be separable in which case faster techniques may exist. In this paper we are interested in the more
general situation where the PDE is not separable. This implies that there no longer exists a common
set, of eigenvectors, and this makes the analysis difficult. If H and V are symmetric, then we still could
derive an upper bound for the spectral radius [23].*If H and V are not symmetric, which is true in the
presence of convection terms in the underlying PDE, then the above upper bounds no longer hold, since
|A|l, is not equal to the spectral radius of A.

As a result, for the general case, we must turn to heuristics to find optimal or nearly optimal iteration
parameters p;. For convenience we define ADI(k,[) to be the ADI(k) iteration using | parameters.

4.1 Multigrid Motivation

We now go back to the simple case where] = 1, HV = VH, and H and V are symmetric, positive
definite. Also assume that we know a, b such that

a < AH),A(V) 2 b

where A(A) denotes the spectrum of the matrix A. Then the optimal p is given by v/ab [23]. For model
problem a =~ h2,b &~ 2, hence p ~ v/2h. In other words the optimal p is linearly proportional to h. In
general this would be the case when the diffusion term dominates in the discretized matrix(If h becomes
very small, the discretized matrix is more dominated by diffusion terms).

Based on this observation we first find the optimal value of p in a much coarser grid, then we use the
above relationship to predict the optimal p for the current grid. The following algorithm attempts to
find an optimal set of [values, for a combination ADI-GMRES, starting from a coarser grid with ¢ initial
values. Note that these parameters are likely to be optimal only for the combination ADI-GMRES and
not for ADI considered as a separate algorithm. The difference between the two can be quite important.

ALGORITHM 4.1. MG(n,t,k,1)

1. Given N = n? large enough, choose a coarser Grid with h,, = 4h, and N,;, = N/16.

* Actually, for | greater than 1 we need a modified form of the classical ADI formulation.

2. Choose p1 > pa > --- > py > 0, such that py is large enough and p; is small enough.(If the matrix
is properly normalized, p1 =~ 0.1, p; ~ 10,t =~ 6 for model problem.)

3. Run GMRES(m) — ADI (k) t times, each with p; as its single parameter, until convergence.
4. Find p; with the lowest iteration number.

5. Spread | values of p around % (which is the estimated optimal p for the original grid)

In step 1 we even could start from h,, = 8h, depending on the size of N. In step 3 rather than
terminating when the residual norm is reduced by a given €, we could alternately terminate with a fixed
number of iterations and in step 4, find p; with the smallest residual norm.

Regarding the cost of the procedure, it is clearly impossible to predict it exactly. An estimate may
be obtained only by making the assumption that the number of iterations required to reduce the residual
norm by a factor of € is proportional to /N = n. Then the single run of GMRES(m)-ADI(k) in step 3
would be roughly 1617 of the cost for the original size using the same p. Under this assumption, the cost
of MG(n, t, k,1) would be 5/64 of the cost for the full system, when ¢ = 5. For h,, = 8h the cost becomes
basically negligible.

The main feature of the algorithm is that by utilizing a multigrid motivated heuristic we avoid the
otherwise sensitive problem of finding the optimal p, while by choosing a sequence of p parameters we
expect to exploit the full power of ADI. Note that the heuristic is based on the assumption on a simple
growth rule for the optimal parameters when h varies. We do not know whether this rule is valid for the
general problems which we are considering. The heuristics can be still be used in these cases and seems
to perform quite well, according to our numerical tests.

5 Numerical Experiments

We consider three test problems based on elliptic PDE’s on square grids. We discretized the problems
using centered finite difference discretizations in all cases. The mesh sizes vary from test to test and are
reported independently in this section.

e Problem 1 Poisson Equation on a Square

—Au = f, Q=[0,1]x[0,1]

u = 0 on 00
fro= 2(l-2)+y(l-y)
¢ Problem 2 Elman’s problem [9]
—(buz), — (cuy), + (du), + dug + (eu), +euy + fu = g (11)
Q= [0,1] x [0, 1]

u=0 on 60

where b = exp (—ay), ¢ = exp (zy), d = Bz +y),
6:’)/(.Z’+y), f: (14_1—1,1;)7

and g is such that exact solution u = z exp (xy) sin (7z) sin (7y)

e Problem 3 Discontinuous coefficients problem described by Eq. (11) where b and ¢ are given by

b = 100,0<z<0.5
= 001, 05<z<1
¢ = 100,0<y <05
= 001, 05<y<1

First we note that all of the test problems are in two-D geometries. By a suitable reordering H*) and
V*) can be made into matrices of bandwidth 2k + 1. Thus, using the horizontal natural ordering for
V() and the vertical natural ordering for H®) as is illustrated in Figure 1 for the case m = n = 4,
both matrices will be pentadiagonal when k£ = 2. A direct band solver is used for (9). Ignoring the
initial factorization costs, the cost of solving (9) is roughly k times that of ADI(1), the classical ADI. In
our experiments we used k = 2,4,8. For these values of k we expect the cost of solving (9) to remain
reasonable. However, this may not be true for large problems from three-dimensional domains, since
the bandwidth of (9) may become too large for banded solvers to be economical and we may have to
consider iterative methods. As for the MG(n,t, k,1) we set t=5. We chose [to be 6, but depending on
the problems the optimal ! might vary.

4 8 12
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
3 7 11 : I | | : : '
Tty Tt cTTT TTTT1TSO T oottt o Tt
. . . ! ! | | : ; :
1 1 1 I 1 1 1 1 1 1
21 61 10 I I 7 g8+ 91 104 11 12!
S I e S
! ! ! ! ! ! ! ! ! |
! ! ! ! ! ! ! : : I
1! 5' 9! : : 1 2! 3! 4 51 6

Figure 1: Tllustration of H*) in the vertical natural and horizontal natural orderings

The flexible GMRES routine allowing variable preconditioner at each iteration was used with m=10, €
= 1079 for the outer iteration, where m is the dimension of Krylov subspace associated with the GMRES
method. As for the finite element discretizations we used piecewise linear functions on triangles. In two-D
problems they give rise to sparse matrices with 7 diagonals. Experiments were done on a Cray-2 and a
Sun-4. The Timings reported were obtained on the Cray-2.

Table 1 contains the iteration number and CPU time on a Cray-2 of GMRES(10)-ADI(1,6) with a
fixed parameter p taking various values versus those of GMRES(10)-ILU(0) and GMRES(10)-ILU(8). For
the GMRES-ILU(0) and GMRES-ILUT(8) we used level-scheduling and jagged diagonal data structures
for efficient vectorization on Cray-2[16]. For problem 3 with p = 0.1 and p = 0.2 the convergence
was not reached within a reasonable amount of CPU time, so they are listed as "N.A.”. For problem
2 with FDM, ADI(1,6) preconditioning with p = 0.1,0.2,0.5 takes less time than ILU(0) or ILUT(8)
preconditioning. For problem 3 with FDM, ILU(0) or ILUT(8) preconditioning works better. Note that
the MG(n, t, k, 1) heuristic was not adopted. Also with GMRES-ILUT the parallelism on a one processor
Cray-2 is limited to vectorization, the length of vector register, while for ADI(1,6) preconditioning the

mimimum parallelism is n=128.(If we use cyclic reduction the parallelism could much exceed it.) So on
massively parallel machines ADI preconditioning has a bigger potential for parallelism.

Table 2-4 compares the iteration number with the p parameters obtained by the MG(n, 5, k, 6) heuristic
versus the iteration numbers with the optimal p, [=1, obtained empirically. It shows that MG(n, 5, k, 6)
is always superior to the optimal p, [=1.

Table 5-9 lists for various but fixed p the iteration number of GMRES-ADI(k,6) for k=1, 2, 4. Tt is
intended to show the sensitivity to p and the effectiveness of increasing k. The sensitivity of iteration
numbers to p can be easily seen. We also see that the iteration number is decreasing as k increases.
But considering the cost of ADI(k,6) to be roughly & times that of ADI(1,6) we need a drop in iteration
number in the same fraction, to be competitive in total costs. However, the table shows that is rarely
the case. In a quite few cases we even notice stagnation. One possible explanation is that the iteration
number for ADI(1,6) is already quite small.

| FDM Problem 2 with v = 50, =1 |

N =1282 | p=0.1 | p=0.2 | p=0.5| p=1]| p=2| p=3 || ILU(0) | ILUT(8)
Tter # 15 12 13 36 78 | 108 93 14
CPU 3.29 2.61 2.73 7.55 | 15.97 | 22.83 4.28 4.26
FDM Prob 3 with v = 50, 3 = 1
Tter # N.A. N.A. 63 36 49 43 191 42
CPU N.A. N.A. | 13.41 | 10.28 | 10.25 | 9.17 7.46 6.45

Table 1: Tteration and CPU time of GMRES(10)-ADI(1,6) with constant p vs. GMRES(10)-ILU on
Cray-2. N is the dimension of the matrix.

| Problem 1 |
| | Heuristic | Optimal p |
N=64>
k 1=6 I=1
1 7 8
2 6 7
4 4 5
N=1282
1 8 12
2 7 9
4 5 7

Table 2: ADI(k,6) preconditioning with MG(n, 5, k, 6) heuristic vs ADI(k,6) preconditioning with a the-
oretically determined optimal p

6 Conclusion

We have proposed a block version of the ADI algorithm based on a domain decomposition viewpoint.
In addition, we have derived a simple yet effective way of getting optimal acceleration parameters for
the ADI-preconditioned GMRES iteration, based on a multigrid approach. The numerical experiments
reported indicate that the approach holds some promise for the parallel solution of Elliptic PDE’s on
arbitrary domains. Two attractive features of the method are its ease of implementation, and its gener-
ality. Although a full comparison with the best domain decomposition approaches has yet to be made,

| FDM Problem 2 y =50, =1]
| || Heuristic | Optimal p |

N=642
k 1=6 1=1
1 9 9
2 3 4
4 3 3
N=1282
1 9 12
2) 6
4 3)

Table 3: ADI(k,6) preconditioning with MG(n,5,k,6) heuristic vs ADI(k,6) preconditioning with a theo-
retically determined optimal p

FDM Problem 3
vy=50,0=1
| N=642 |

Heuristic | Optimal p

k 1=6 1=1

1 18 23

2 12 16

4 10 11

N=1282

1 32 35

2 17 22

4 13 15

Table 4: ADI(k,6) preconditioning with MG (n,5,k,6) heuristic vs ADI(k,6) preconditioning with a theo-
retically determined optimal p

the method itself can be viewed as a domain decomposition approach and for this reason its performance
may be comparable. However, a distinct feature from a traditional domain decomposition approach is
the use of acceleration parameters.

Acknowledgements. The authors would like to acknowledge the support of the Minnesota Supercom-
puter Institute which provided the computer facilities and an excellent research environment to conduct
this research.

References

[1] E. C. Anderson, “ Parallel implementation of preconditioned conjugate gradient methods for solving sparse
systems of linear equations”, Technical Report 805, CSRD, University of Illinois, Urbana, IL, 1988. MS Thesis.

2]
(3]
[4]
[5]

[6]
[7]
(8]
[9]

Problem 1 with N=1282

p
0.05 [0.1 0.15]0.2]0.25]0.3]0.35] 0.4 [045 | 0.5

k

1 13 14 12| 14 20| 24 29 | 29 32| 35
2 10 9 9 9 10 | 12 12 | 14 18 | 19
4 7 7 8 9 10 | 11 12| 13 17| 19

Table 5: Iteration of GMRES(10)-ADI(k,6) for various values of p and k

FDM Problem 2
with N = 642,y = 50, 3=1

p
0.05 [0.1]0.15]0.2]0.25]0.3]0.35]0.4] 045 | 05

k

1 25 | 15 14 | 13 12 | 11 10 | 10 9 9
2 8) 4 4 4 4 4 5) 5
4) 3 3 3 4 4 4 5))

Table 6: Iteration of GMRES(10)-ADI(k,6) for various values of p and k

E. C. Anderson and Y. Saad, “ Solving sparse triangular systems on parallel computers”, International Journal
of High Speed Computing, 1:73-96, 1989.

O. Axelsson, “ Conjugate Gradient Type-methods for Unsymmetric and Inconsistent Systems of Linear Equa-
tions”, Technical Report 74-10, CERN, Geneva, 1974.

O. Axelsson, “ A Survey of Preconditioned Iterative Methods for Linear Systems of Algebraic Equations”,
BIT, 25:166-187, 1985.

D. Baxter, J. Saltz, M. H. Schultz, S. C. Eisenstat, and K. Crowley, “ An experimental study of methods
for parallel preconditioned Krylov methods”, Technical Report 629, Computer Science, Yale University, New
Haven, CT, 1988.

G. Birkhoff, R. Varga, S. R., and D. Young, “Alternating Direction Implicit Methods”, in Advances in Com-
puters, pp.189-273, Academic Press, New York, 1962

J. Douglas, “Alternating Direction Methods for Three Space Variables”, Numerische Mathematik Vol. 4, 1962,
pp. 41-63.

N. Ellner and E. Wachspress, “Alternating Direction Implicit Iteration for systems with Complex Spectra”,
SIAM J. Numerical Analysis, Vol. 28, No. 3, pp. 859-870, 1991

H. Elman, “Iterative Methods for Large, Sparse, Nonsymmetric Systems of Linear Equations”, Ph. D Thesis,
Yale University, 1982

[10] D. Gannon and J. van Rosendale, “ On the impact of communication complexity in the design of parallel

algorithms”, IEEE Trans. Comp., C-33(12):1180-1194, 1984.

[11] S. L. Johnsson, “ Solving narrow banded systems on ensemble architectures”, ACM, TOMS, 11(3), 1985.
[12] S. L. Johnsson, Y. Saad, and M. H. Schultz. “ The alternating direction algorithm on multiprocessors”, STAM

J. Sci. Statist. Comp, 8:686-700, 1987.

[13] W. J. Layton and P. J. Rabier. “Peaceman Rachford procedure and domain decomposition for finite element

problems”, Technical report, University of Pittsburgh, Pittsburgh, PA, (1991).

[14] J. A. Meijerink and H. A. van der Vorst, “ An iterative solution method for linear systems of which the

coefficient matrix is a symmetric M-matrix”, Math. Comp., 31(137):148-162, 1977.

[15] D. Peaceman and H. Rachford, “The Numerical Solution of Elliptic and Parabolic Differential Equations”,

Journal of SIAM., Vol. 3, pp. 28-41, 1955

[16] Y. Saad, “Krylov Subspace Methods on Supercomputers”, SIAM J. Sci. Stat, Vol. 10, No. 6, pp. 1200-12332,

Nov, 1989

10

FDM Problem 2
with N = 1282,y = 50, =1

p
0.05]01]015[02]025[03[035[04]045]0.5

k

1 19 15 13 | 12 12 | 12 12 | 12 12 | 13
2 8 6 6 7 8 9 10| 11 14 | 17
4)) 6 7 8 9 10| 11 13| 16

Table 7: Iteration of GMRES(10)-ADI(k,6) for various values of p and k

FDM Problem 3
with N = 642,y = 50, 8=1

p
53 4] 5[6] 7] 8] 9[10
25126 |25 25|24 |23 23|23 |25
18 | 18 |17 |16 | 16 | 17 | 19 | 20 | 22
11|11 (12|14 |16 | 18 | 19| 20 | 22

IR NI R

Table 8: Iteration of GMRES(10)-ADI(k,6) for various values of p and k

[17] Y. Saad, “ILUT: A Dual Threshold Incomplete LU Factorization”, UMSI 92/38, 1992

[18] Y. Saad, “Highly Parallel Preconditioners for General Sparse Matrices”, Technical Report —, University of
Minnesota, Army High Performance Computing Research Center, Minneapolis, Minnesota, 1992.

[19] Y. Saad, “ ILUM: A Parallel Multi-elimination ILU Preconditioner for General Sparse Matrices”, Techni-
cal Report —, University of Minnesota, Army High Performance Computing Research Center, Minneapolis,
Minnesota, 1992. In preparation.

[20] G. Starke, “Optimal Alternating Direction Implicit Parameters for Nonsymmetric Systems of Linear Equa-

tions”, SIAM J. Numerical Analysis, Vol. 28, No. 5, pp. 1431-1445, 1991
[21] R. Varga, Matrix Iterative Analysis, Prentice-Hall, New York, 1962
[22] E. Wachspress, Iterative Solution of Elliptic Systems, Prentice-Hall, New York, 1966
[23] D. Young, Iterative Solution of Large Linear Systems, Academic Press, New York, 1971.
]

[24] Z. Zlatev, ¢ Use of iterative refinement in the solution of sparse linear systems”, SIAM J. Numer. Anal.,
19:381-399, 1982.

11

FDM Problem 3
with N = 1282,y = 50, =1

p

1 [15] 2]25] 3[35] 4[45] 5
49148 [48] 4543 38[35] 35]36
26 [24 | 23] 2223] 24|26 27 [29
16 | 15 |16 | 18 [19 [22[27] 30| 33

BN = =

Table 9: Iteration of GMRES(10)-ADI(k,6) for various values of p and k

12

