
BASIC SPARSE MATRIX COMPUTATIONS
ON MASSIVELY PARALLEL COMPUTERS ∗

W. Ferng†, K. Wu ‡, S. Petiton §, Y. Saad ¶

February 8, 2010

Abstract

This paper presents a preliminary experimental study of the performance of
basic sparse matrix computations on the CM-200 and the CM-5. We concentrate on
examining various ways of performing general sparse matrix-vector operations and
the basic primitives on which these are based. We compare various data structures
for storing sparse matrices and their corresponding matrix – vector operations. Both
SPMD and Data parallel modes are examined and a comparison of the two modes
is made.

1 Introduction

As parallel processing is progressively gaining ground it is becoming commonplace to port
a standard sequential code into a massively parallel computer. Among the types of com-
putations encountered in scientific computing, few are more challenging to implement on
high performance computers than sparse computations. One reason is that sparse matri-
ces are often irregularly structured and this implies that costly irregular communications
will be needed between processors. A secondary reason is that in sparse matrix computa-
tions, the number of floating point operations to be performed is often of the same order
of magnitude as that of the number of data movements. As a result, it is often the case
that computation times are bound by communication speeds rather than the arithmetic
speeds. It is therefore far more important to keep communication costs down than it is
in the dense matrix case.

One of the most common and basic operations in sparse matrix techniques is the
matrix-by-vector product which arises, for example, in iterative methods for solving large
linear systems and in eigenvalue algorithms. Analyzing performance of such operations

∗This work was supported by Army Research Office contract number DAAL03-89-C-0038
†Army High Performance Computing Research Center, University of Minesota
‡Computer Science Department,University of Minnesota
§Site Experimental en Hyperparallélisme, Etablissement Technique Central de l’Armement, France,

and Yale University, Computer Science Dept.
¶Computer Science Department, University of Minnesota

1

is important not only for the numerical methods just mentioned but also because it will
give a good indication of the performance that one should expect to achieve in other
related types of computations. For example, finite element or finite volume techniques
on unstructured grids share basically the same computational kernels as general sparse
matrix techniques. They are dominated by computational constructs that involve indirect
addressing. Because these types of computations are so common in scientific computing,
it is our view that a high performance computer should not be deemed satisfactory if
it does not deliver a reasonable performance on the important class of irregular compu-
tations. In the past the performance of a computer has often been stated in terms of
its achievable performance on dense computations. Unfortunately, this may give a view
that is biased towards dense computations, and can be quite misleading considering that
the two types of computations have completely different characteristics. Thus, the early
CRAY machines which did not provide hardware instructions for scatter and gather op-
erations, were quickly found lacking by users of sparse matrix techniques and the missing
instructions were added within a short time by the manufacturer. In [14] a benchmark
code specifically designed for testing the performance of computers on sparse matrix com-
putations, was proposed and used to compare a number of shared memory computers.
We believe that there is a need for designing a similar benchmark code for distributed
memory computers in order to avoid that massively parallel computers be benchmarked
by their performance on dense matrix computations.

Thinking Machines Corporation’s new line of Connection Machines offers the distinct
advantage that we can experiment with two significantly different modes of parallel com-
puting, namely a particular SIMD mode referred to as the data-parallel mode, and a
particular MIMD mode referred to as the Single Program Multiple Data (SPMD) mode.
One of our goals in this paper is to compare the two models specifically for sparse matrix
computations. Roughly speaking, the SPMD mode gives us the flexibility of programming
communication by means of message passing between the nodes. The SIMD mode is far
simpler to program but allows fewer choices regarding the organization of data transfers.

We should stress that the CM-5 available to us for the experiments is an α machine
and that it is not equipped with vector processors. Nevertheless, as will be seen, some
of the performances can be extrapolated quite easily. In addition, it is quite important
to still examine the performance of the machine equipped with SPARC floating point
arithmetic units in order to better understand the relations between arithmetic hardware
and communication hardware and their impact on the overall speed. We will examine
these relations more fully when the vector chips will be installed.

We start by describing the CM-5 and will briefly introduce the data parallel and SPMD
programming paradigms. Then the formats used to store sparse matrices will be outlined
as well as the various kernels for implementing matrix-by-vector multiplications. We will
then describe a number of experiments in data parallel and then in SPMD mode.

2

2 Overview of the CM-2 and CM-5 Computers

In this section, we summarize the main architecture features and communication models
for the Connection Machines CM-200 and CM-5. The different execution models will also
be described and compared from the software point of view.

2.1 Connection Machine Model CM-2/CM-200

Architecture. The Connection Machine model CM-2 is an SIMD computer sometimes
refered to as data parallel computing system. A Connection Machine system consists of a
front-end computer, a large number of data processors, a few sequencers that control the
data processors, an interprocessor communication network, and I/O controllers [1]. The
system may be configured with up to 64K physical processors. Here, and throughout this
paper, “K” stands for 1024.

Parallel processing instructions issued by the front-end computer are received by one of
the sequencers, which interprets them to produce a series of single-cycle nanoinstructions.
The nanoinstructions are then broadcast over the instruction bus to the data proces-
sors. Each data processor contains an arithmetic-logic unit (ALU), 64K or 256K bits of
bit-addressable memory, communication and I/O interfaces, and optional floating-point
accelerator. The floating-point accelerator consists of a floating-point interface chip and a
floating-point execution chip, and is shared by every 32 data processors. Therefore, a fully
configured CM-2 may contain 2K floating-point processors and 2 gigabytes of memory [1].

Communication Model. Each data processor of the CM-2 system has its own memory
and the memory is bit-addressable. Each data processor can access its local memory at
a rate of 5 Megabits per second [1]. Thus, a fully configured CM-2 has 2 gigabytes of
memory that can in theory be accessed at about 300 gigabits per second.

The CM-2 system provides three forms of communication within the parallel process-
ing unit: routing, NEWS, and scanning [1]. The router which allows any processor to
communicate with any other processor is the most general communication mechanism.
The NEWS grid is a faster but more structured communication mechanism. It allows pro-
cessors to pass data in a multi-dimensional rectangular topology. Special hardware and
the inherent hypercube topology of the CM-2 make this type of mechanism significantly
faster than the general routing. Scanning is a more powerful operation on the NEWS grid
that combines communication and computation, to perform certain ”prefix” operations
such as the computation of an inner product in all processors simultaneously.

To move data from their initial locations in local memories to specified locations in
local memories of other hypercube nodes, the communication operations are decomposed
into a number of memory to memory swap operations. Between swaps, data must be
buffered in the local memories of intermediate nodes.

The communication hardware in the Connection Machine CM-2 comprises a large
number of single bit data paths plus various mechanisms for writing data to and reading
data from these paths. The architechure can be viewed in two different ways: the CM

3

chip model and the Sprint chip model. In the CM chip model, a CM-2 with p processors
is regarded as a (log2 p− 4) dimensional hypercube. Each CM chip has (log2 p− 4) data
paths attached to it. And there are p/16 such chips. In the Sprint chip model, a CM-2
with p processors is regarded as a (log2 p− 5) dimensional hypercube and has p/32 such
chips [4].

The CM-200 at AHPCRC. The Connection Machine Model CM-200 available to us
for the experiments at the Army High Performance Computing Research Center (AH-
PCRC) is an upgraded version of the CM-2 which has a clock rate that is higher than
that of the CM-2. It is configured with 32K data processors, 1K 64-bit floating-point
processors, 1 Mbyte memory, and 4 sequencers.

2.2 Connection Machine Model CM-5

In the Fall of 1991, the Thinking Machines Corporation announced its latest massively
parallel computer: the Connection Machine Model CM-5. One significant feature of the
CM-5 is that it has been designed to support both SIMD and MIMD models. The basic
components of the CM-5 include hundreds or thousands of parallel Processing Nodes
(PNs), each with its own memory, one or more Control Processors (CPs), two global
communication networks, high bandwidth I/O subsystems, and mass storage devices,
e.g., the DataVault. In this section, we briefly summarize some of the most important
aspects of this new massively parallel architecture from the Connection Machine CM-5
Technical Summary by Thinking Machine Corporation [2].

Processors. A CM-5 computer may consist of hundreds or thousands of processors.
A system administrator may divide these processors into groups, known as partitions.
There is a seperate processor, called Control Processor (CP), for each partition. A control
processor is essentially like a standard high-performance workstation computer. It consists
of a standard RISC microprocessor (a Sun SPARC microprocessor in the current release),
associated memory and memory interface, a Network Interface (NI) providing access to
the communication networks, and other devices and interfaces. A control processor acting
as a partition manager (PM) controls each partition and communicates with the rest of
the system through the communication networks. It runs a version of the UNIX operating
system which allows multiple users to access the partition in a time sharing mode.

The basic components of a Processing Node include a RISC microprocessor (SPARC
chip from Sun microsystems), a memory subsystem, and a Network Interface (NI) all
connected to a standard 64-bit bus. The RISC microprocessor is responsible for the
instruction fetch and execution, for processing data, and for controlling the NI. The
memory subsystem consists of a memory controller, 2 Kbyte boot ROM, and either 8, 16,
or 32 Mbyte of DRAM. The path from each memory to the memory controller is 72-bit
wide. The microprocessor also has a 64 Kbyte cache that holds both instruction and
data. Finally, the Network Interface connects a PN to the rest of the system through the
Control Network and Data Network as is explained later in this section.

4

A PN may optionally contain an arithmetic accelerator. In this configuration, each
PN has a full 32 Mbyte of memory, four banks of 8 Mbyte each. The memory controller
is replaced by four vector units (VU), each with a dedicated 72-bit path to its associated
memory bank, providing peak memory bandwidth of 128 Mbytes/sec per vector unit. The
vector units execute vector instructions issued by the RISC microprocessor. Each vector
unit has 32 Mflops peak 64-bit floating-point performance and 32 Mflops peak 64-bit
integer performance. Together, each PN provides 512 Mbyte/sec memory bandwidth and
a peak performance of 128 Mflops in 64-bit floating-point operations. However, we would
like to emphasize that these vector units are not available in the current release of CM-5.

Communication Networks. Every control processor and parallel processing node in
the CM-5 is connected to two scalable interprocessor communication networks, the Control
Network (CN) and the Data Network (DN). In general, the Control Network is used
for operations that involve all the processors at once, for example operations such as
synchronization and instruction broadcasting. The Data Network is used for bulk data
transfers where data has a single source and destination. A third network, called the
Diagnostics Network, which keeps tabs on the status of the running hardware, is visible
only to the system.

The Control Network also contains integer and logical arithmetic hardware for carry-
ing out reduction operations, where every processor provides a value and all values are
combined by the CN to produce a single result. CN operations may be overloaoed with
the opertions by the processors themselves.

In theory, the Data Network provides enough bandwidth for every Network Interface
to sustain data transfer rates of 20 Mbytes per second to any other NI within its group of
4; 10 Mbytes per second to any other NI within its group of 16; and 5 Mbytes per second
to any other NI in the system. Thus, the best-case to worst-case performance ratio is a
factor of at most 4.

At any time, any processor may send a message to any processor in the user task. This
is done by first writing the destination processor number, and then the data to be sent,
to the control registers in the Network Interface. Once the Data Network has accepted
the message, it assumes all responsibility for delivery of the message to its destination.
Moreover, the operation of the Data Network is independent of the PNs, which may carry
out unrelated computations while the message are in transit.

The CM-5 at AHPCRC. The Connection Machine CM-5 available to us for the
experiments at AHPCRC is an α-site machine with a total of 544 PNs each having 16
Mbyte of local memory. It can be configured into two partitions consisting of 512 and 32
PNs respectively, or three partitions consisting of 256, 256, and 32 PNs respectively.

2.3 SIMD versus SPMD

The CM-2 is a Single Instruction Multiple Data (SIMD) computer. The user program
is compiled on the front-end computer, the data is mapped onto and resides in the data

5

processors. Each processor must execute the same instruction issued by the front-end and
broadcast to all the processors at the same time. The user can write a program in low level
language, e.g., Paris, to carry-out desired data mappings and interprocessor communica-
tions. However, it may be preferable and far more convenient to use the manufacturer’s
early version of FORTRAN-90, called CM-FORTRAN with a few communication primi-
tives to achieve the same goal without sacrifing too much performance.

The CM-5 provides a similar programming environment and can also be viewed as a
data parallel computer. In addition, it provides a Single Program Multiple Data (SPMD)
execution model, which in essence is a restricted Multiple Instruction Multiple Data
(MIMD) model. Next, we describe and compare the different execution models avail-
able on each machine.

Slicewise Execution Model on the CM-2 Beginning with version 1.0, the CM-
FORTRAN compiler offers an alternative execution model called slicewise model, as op-
posed to the so-called Paris or fieldwise model [3]. The slicewise model takes full advantage
of the registers and vector-processing capabilities of the 64-bit floating-point accelerator
unit (FPU). All CM processors are organized into Processing Elements (PEs), each con-
taining 32 bit-serial processors, some memory, one optional FPU chip, and other asso-
ciated hardware. Thus, a Connection Machine executing in the slicewise model is using
machine-size/32 PEs, or, 1-K PEs for a 32K CM.

When invoked for the slicewise mode, the compiler views the CM as a set of vector
processors. Data is stored in memory in 32-bit words, with the memory of each of a
node’s 32 bit-serial processors holding a one-bit slice of a word, rather than the whole
word. The compiler itself does not perform CM memory management or interprocessor
communication. Instead, it calls the functions of a run-time library. The run-time system
lays out arrays in CM memory differently depending on the number of PEs available to
execute the program. The total number of memory locations allocated is a multiple of 4
times the number of PEs executing the program.

Under the Paris model, where all array operations are memory-to-memory, floating-
point operations on double-precision numbers are twice as expensive as operations on
single-precision numbers. In slicewise computations, double-precision floating-point arith-
metic does not cost any more than single-precision arithmetic. However, loads and stores
to/from memory of double-precision numbers will still cost twice as much as single-
precision loads and stores [3].

Message-Passing Model on the CM-5. In the SPMD model on the CM-5, each
PN holds an identical copy of the same program, called the node program, and executes
its own copy concurrently. The host (control) processor can execute a seperate program
independently. Access to the node program is possible via subroutine calls from the host
program. Data can be exchanged among processors through the Data Network. There is
no global synchronization necessary since the execution is data driven.

The CM-5 provides a message-passing library, called CMMD, for interprocessor com-
munications. The current release of CMMD supports primarily blocking message sending

6

and receiving. It permits concurrent processing in which synchronization takes place be-
tween matched pairs of sends and receives among processors. When not communicating,
computing on each node processor proceeds asynchronously.

As was already mentioned, one advantage of the SPMD model over the SIMD model
is that the node can be programmed to handle the communications among processors
explicitly. In the SIMD model, the choice is limited (Paris is not available on the CM-5),
and the data mappings and communications are not visible to the users. However, the
SIMD model has the advantage of simplicity. One can essentially use the FORTRAN-
90 like constructs with a few communication primitive routines to achieve a reasonable
performance. There are currently a number of ongoing discussions regarding the future
generations of FORTRAN, labelled under the generic name HPF FORTRAN, and it is
quite conceivable that standards for such communication primitives will appear in the
near future. The SPMD model may make the communication more efficient and flexible,
but puts the burden of managing communications on the user.

3 Basic Sparse Matrix Computations

3.1 Storage formats for Sparse Matrices

There are perhaps as many ways of storing sparse matrices as there are scientific applica-
tions involving such matrices. However, we have elected to restrict our attention to just
a few of them that have the best potential for delivering good performance on massively
parallel computers. We consider six basic different storage formats and some variants of
them. Using some of the terminology of SPARSKIT [13] these are the banded format
(BND), the Compressed Sparse Row/Column (CSR/CSC) formats, the diagonal format
(DIA), the Ellpack-Itpack generalized diagonal format (ELL), the Sparse General Pattern
format (SGP), and the Coordinate format (COO) used by the CMSSL library.

Banded format(BND) Many matrices can be put in a banded form. Since the original
matrix is rarely banded it is often necessary to pad the matrix with zero elements. Thus,
we represent all the elements of a few super/subdiagonals that include all the nonzero
elements in the matrix. The nonzero elements are usually stored in a rectangular array,
either row-wise or column-wise as is done in Linpack.

Diagonal format(DIA) This scheme is motivated by the fact that the nonzero ele-
ments of many matrices are located in a small number of diagonals. As a result we can
store those diagonals in a rectangular array together with their offsets with respect to
the main diagonal. As with the banded format, a two-dimensional array is used to store
nonzero diagonals. A separate array offset is used to store the offset of each diagonal.

Ellpack-Itpack format (ELL) This is a straightforward generalization of the diagonal
storage scheme. We use a real array aa(i, j), i = 1, n; j = 1, ncol to store the nonzero

7

elements aij of row i, for i = 1, . . . , n. Thus, the maximum number of nonzero elements
per row must not exceed ncol. If there are fewer than ncol elements in a row, the row
V AL(i, ∗) must be padded with zeros. We need an integer companion array ja(i,j) to store
the column indices of the each nonzero element. This is clearly a more general scheme
than the two prevous ones. However, it may be inefficient if many rows have fewer than
ncol elements. A column-based scheme can also be defined similarly.

Sparse General Pattern format (SGP) This is a variation of the Ellpack-Itpack
format introduced in [10] for distributed memory massively parallel machines using a
data parallel programming model. It can be viewed as an augmented version of the row-
oriented Ellpack-Itpack format which allows to transpose an N×nc Ellpack-Itpack matrix
on N ∗nc processors without communication to obtain the address of the virtual processor
where each element is to be sent. This is useful if we need the pattern of both A and
its transpose. In addition to the two 2-D arrays used for the Ellpack-Itpack row-wise
format (i.e. aa(1 : n, 1 : nc) and ja(1 : n, 1 : nc)), we use an additional 2-D integer
array ic(1 : n, 1 : nc) in which ic(i, j) holds the index of a nonzero element in column
i of the matrix, i.e., an element in the corresponding compressed column-oriented data-
structure. In other words, SGP is the union of a full row-oriented ELL data structure for
A together with a pattern only (real array omitted) column oriented ELL data structure
for A. In a parallel programming model it is assumed that on each virtual processor will
hold the element aa(i, j) along with ja(i, j) and ic(i, j). As a result we only need to send
the value stored in aa(i, j) to the virtual processor (ja(i, j), ic(i, j) to perform a matrix
transposition operation. A minor restriction of this data structure is that we need to
assume that the maximum number of nonzero elements in the rows is of the same order
as that of the maximum number of nonzero elements in the columns. Note that when the
matrix has a symmetric pattern, the additional array ic is not needed. We can also define
similarly a column oriented SGP format but we omit the details.

Compressed Sparse Row/Column(CSR/CSC). In the row-based CSR format, an
array aa(i) is used to store the nonzero elements of a matrix, from row 1 to row n, in
succession. We also need to store the column indices of each entry corresponding to the
element aa(i) in the integer array ja(∗). Finally, we need a pointer array ia(i) which
points to the beginnings of each row in aa, ja. Thus, the i-th row starts in position ia(i)
in the arrays aa, ja and ends in position ia(i + 1) − 1. This scheme is quite efficient
in terms of storage. It is also very general and quite popular. The Compressed Sparse
Column scheme is a similar scheme that is column oriented.

The Coordinate Format (COO) The coordinate format (COO) consists of three
one-dimensional arrays: a real array aa(1 : nnz) containing the non-zero elements of the
sparse matrix in any order, where nnz is the number of non-zeros, and two integer arrays
ia(1 : nnz) and ja(1 : nnz) containing the corresponding row indices and column indices,
respectively. This scheme is as general as the CSR format, but not quite as efficient from
the memory requirement point of view. On the other hand, it is attractive because of its

8

simplicity and the fact that it is very commonly used in software packages. In particular,
the sparse matrix-vector product routine in the CMSSL library adopts a slight variant of
the COO format.

3.2 Multiplication Algorithms

The computational kernels for performing sparse matrix operations such as matrix vector
products are intimately associated with the data structures used. However, there are
a few general approaches that are common to different algorithms for matrix - vector -
products which we now consider. In the case of a dense matrix, the operation y = Ax can
be performed in many different ways, two popular schemes being (1) the inner product
form described in Algorithm 3.1 and (2) the SAXPY form described by algorithm 3.2.

Algorithm 3.1 Dot product form – dense case

do i = 1, n

tmp = 0

do j = 1, n

tmp = tmp + a(i,j) * x(j)

enddo

y(i) = tmp

enddo

Algorithm 3.2 SAXPY form – dense case

y(1:n) = 0.0

do j = 1, n

do i = 1, n

y(i) = y(i) + a(i,j) * x(j)

enddo

enddo

In the sparse case, the multiplication can also be performed in one of these two modes.
Thus, Algorithm 3.3 is a sparse translation of Algorithm 3.1 for the case where the matrix
is stored in CSR format.

Algorithm 3.3 CSR format – Dot product form
Sparse matrix-vector multiplication for CSR format.

do i = 1, n

tmp = 0

do j = ia(i), ia(i+1)-1

tmp = tmp + a(j)*x(ja(j))

enddo

y(i) = tmp

enddo

9

Assuming that the matrix is stored by columns (CSC format) we can perform the matrix-
vector product by the following algorithm.

Algorithm 3.4 CSC format – SAXPY form
Sparse matrix-vector multiplication for CSR format.

y(1:n) = 0.0

do i = 1, n

do j = ia(i), ia(i+1)-1

y(ja(j)) = y(ja(j)) + x(i) * a(j)

enddo

enddo

In the sparse case, a third possibility emerges, which consists of performing the product
by diagonals. This third possibility bears no interest in the dense case. Again there
are different variants related to different orderings of the loops in the basic FORTRAN
program.

Algorithm 3.5 DIA format – dot product form
Sparse matrix-vector multiplication for DIA format.

do i = 1, n

tmp = 0.0d0

do j = 1, ncol

tmp = tmp + a(i,j)*x(i+offset(j))

enddo

y(i) = tmp

enddo

Algorithm 3.6 DIA format – TRIAD form
Sparse matrix-vector multiplication for DIA format.

y = 0.0d0

do j = 1, ncol

do i = 1, n

y(i) = y(i) + a(i,j)*x(i+offset(j))

enddo

enddo

Similarly there are also two basic ways of implementing a matrix vector product when
using the Ellpack format.

Algorithm 3.7 Ellpack format – dot product form
Matrix-vector multiplication using dot-products for the Ellpack format.

10

do i = 1, n

yi = 0

do j = 1, ncol

yi = yi + a(j,i) * x(ja(j,i))

enddo

y(i) = yi

enddo

As will be seen later, there are two ways of implementing the above basic algorithm
in SIMD mode on the CM2. We can either use a temporary array to store x(ja(j, i)) or
we can use the SUM operation provided as part of the CM FORTRAN library.

Algorithm 3.8 Ellpack format – SAXPY form
Matrix-vector multiplication based on SAXPY operation for the Ellpack format.

y(1:n) = 0

do i = 1, ncol

do j = 1, n

y(ja(j,i)) = y(ja(j,i)) + a(j,i) * x(i)

enddo

enddo

Algorithm 3.9 BND format Sparse matrix-vector multiplication for BND format. Vari-
able p is the lower bandwidth of the matrix.

do i = 1, n

yi = 0

do j = 1, bandwidth

yi = yi + a(j,i)*x(i-p-1)

enddo

y(i) = yi

enddo

It is important to have an idea of which variant of the same basic algorithm will
perform better in a ’generic case’. For example, can we expect the dot-product variants
to perform generally better than the SAXPY one? To answer this question we tested two
subroutines to carry out matrix-vector multiplication for the same matrix with completely
random structure and random values on the CM-5. Table 20 shows the difference in the
speed between the inner-product and the SAXPY forms. A detailed analysis is given in
Section 5 for the CM-5.

In general we should expect the banded format to give the best performance for large
enough bandwidth. The diagonal format should be slightly better than the Ellpack for-
mat because it involves less communication and also because of the regularity of the
communication involved.

11

3.3 Basic Kernels

All the above algorithm are build up essentially from one of the following three types of
level-1 BLAS type kernels with slight variations: dot-product, SAXPY’s and TRIAD’s.
Note that the triad operation is not part of BLAS-1. These can be defined as follows.

1. DOT (a =
∑

xiyi)
a = 0
do i = 1, n

a = a + x(i) * y(i)
enddo

2. SAXPY (yi = yi + αxi).
do i = 1, n

y(i) = y(i) + alpha * x(i)
enddo

3. TRIAD (yi = yi + aixi).
do i = 1, n

y(i) = y(i) + a(i) * x(i)
enddo
As was seen in algorithms 3.3, 3.4, etc..., most of the kernels in sparse matrix com-

putations, use versions of the above primitives that resort to indirect addressing. The
indirect-addressing versions, are listed below. Note that there is a standard sparse BLAS
defined by Grimes and Lewis [6] and that DOTI and sparse blas kernels DOTI and AXPYI
given below follow the description of the standard.

1. DOTI (a =
∑

xiyind(i)).
a = 0
do i = 1, n

a = a + x(i) * y(ind(i))
enddo

2. SAXPYI (yind(i) = yind(i) + αxi).
do i = 1, n

y(ind(i)) = y(ind(i)) + alpha * x(i)
enddo

3. TRIADI (yind(i) = yind(i) + aixi).
do i = 1, n

y(ind(i)) = y(ind(i)) + a(i) * x(i)
enddo

12

4 Numerical Experiments in Data Parallel Mode

In this section, we discuss the implementation and performance of a few algorithms for
sparse matrix-vector multiplication with different storage formats on the Connection Ma-
chines using the data parallel model. We start with the CMSSL routines provided by
the Thinking Machine Corporation, followed by the descriptions for implementing the
Ellpack and the CSR formats. We then consider the algorithm for sparse matrices with
special structure using the diagonal format. Numerical experiments and floating-point
performance in terms of Mflops on both CM-200 and CM-5 are presented and discussed
at the end of this section.

4.1 Using the CMSSL Routines

The version 2.2 of the Connection Machine Scientific Software Library (CMSSL) provides
CM Fortran routines for general sparse and block sparse matrix-vector multiplications.
In the new Beta Version 3.0, routines for so-called grid sparse matrix-vector manipuation
which have special applications in the finite difference and finite element schemes, have
been addad. The entry format for the CMSSL routines for general sparse matrices, is a
Coordinate format, with the added restriction that the nonzero elements should be stored
in row order contiguously. In addition to a, ia, and ja defined earlier for the COO format,
a logical array segment(1 : nnz) must be supplied to specify the locations at which new
rows start, and another logical vector a mask(1 : nnz) to indicate that the corresponding
element of a is to be treated as a non-zero element of the sparse matrix. The following
routines are used to compute the matrix-vector product:

• sparse matvec setup: This routine analyzes the sparsity of the matrix and returns
the communication pattern, or trace, required by the sparse matvec mult routine.

• sparse matvec mult: This routine computes the matrix-vector product.

• deallocate sparse matvec setup: This routine deallocates the extra CM storage
space that was used by the setup routine.

The sparse matvec setup routine must be called before calling sparse matvec mult.
However, one can follow one call to sparse matvec setup with multiple calls to
sparse matvec mult, as long as the sparse matrices involved all have an identical sparsity
pattern. Thus a pseudo-code for performing a sparse-matrix vector product employing
the CMSSL routines is as follows,

Algorithm 4.1 COO format – using CMSSL
Sparse matrix-vector multiplication for COO format using CMSSL routines.

In the preprocessing phase:

call sparse_matvec_setup (a_mask, segment, ia, ja, x, trace,.....)

In the iteration phase:

13

call sparse_matvec_mult(y,a,x,ja,ia,segment,a_mask,trace,....)

In the post processing phase:

call deallocate_sparse_matvec_setup (trace,)

Despite the appearance in the above code, the three phases do not necessarily follow each
other. The preprocessing is done only once, as long as the pattern of the matrix has not
changed. The postprocessing is only done at the end of the iteration phase when we haved
completed the work with the same sparsity pattern. In general, the preprocessing is done
at the time the matrix is constructed, since in many applicationd the patterns remains the
same throughout the computation. These routines are intended for general use, and as
can be expected one may be able to obtain better performances by writing routines that
either exploit the special structure of the matrix or adopt more efficient storage schemes.

4.2 Using the ELL and SGP Formats

We refer to the description of the formats and the basic algorithms given in Section 3.
On a vector computer, such as the CRAY YMP, the SAXPY version of Algorithm 3.8 is
generally preferable to the dot-product version of Algorithm 3.7 since better performance
can be obtained form vectorizing the longer inner loop. However, this is not the situation
on parallel computers, since fine grain parallelism can be exploited at little cost across
a large number of processors. In particular parallelism across the row dimension can be
easily exploited as is done in the following CM FORTRAN code segment.

Algorithm 4.2 ELL format – dot product version
Sparse matrix-vector multiplication for ELL format.

forall (i=1:n, j=1:ncol) tmp(i,j) = x(ja(i,j))

y = SUM(a*tmp, dim=2)

Note that in order to get better performance, we use an extra temporary 2-D array
tmp(1 : n, 1 : ncol) to hold the entries gathered from vector x so that all the multiplications
and summations can be done in parallel. This algorithm can be further simplified by using
the forall construct in CM Fortran.

Algorithm 4.3 ELL format – using forall and SUM
Sparse matrix-vector multiplication for ELL format.

forall (i = 1:n) y(i) = SUM(a(i,1:ncol)*x(ja(i,1:ncol)))

Numerical experiments show that the dot-product based Algorithms 4.2 and 4.3 can be
a few times faster than the SAXPY-based Algorithm 3.8, cf. Table 10.

However, no matter which algorithm is employed, the general communication caused
by the gather operation x(ja(i, j)) dominates the cost. If the multiplication is required
to be performed repeatedly but the sparsity pattern is not changing, one might want
the system to calculate the communication pattern only once, “remember” it, and use

14

this information for later computations. The sparse util gather routine in the CMSSL
library is provided for such purpose. Unfortunately, we are unable to implement this
approach on the CM-5 due to a current bug in sparse util gather routine in CMSSL
2.2. Although the problem has been fixed in the new version 3.0, these routines are not
available on the CM-5, since they have been designed for the CM-2 architecture only.

In order to perform the gather operation, the following routine must be applied to
calculate and save the communication patterns, namely the gather trace.

• sparse util gather setup: This routine analyzes the sparse pattern supplied by
the application, allocates the CM memory space required for the preprocessing,
calculates the communication pattern, and returns the information, gather trace,
required by the sparse util gather routine.

After the setup, the sparse util gather routine is used to move elements from the
source vector x to a temporary 2-D array tmp, the element-by-element product a ∗ tmp
is then computed in parallel and the intrinsic function SUM can be used to compute
the summations along each row. One can follow one call to sparse util gather setup
with multiple calls to sparse util gather if the sparsity remains constant throughout
the calls. The pseudo-code can be outlined as follows.

Algorithm 4.4 ELL format – using gather
Sparse matrix-vector multiplication for ELL format.

In the preprocessing phase:

call sparse_util_gather_setup (ja, gather_trace, ...)

In the iteration phase:

call sparse_util_gather (tmp, x, gather_trace, ...)

y = SUM(a*tmp, dim=2)

In the post processing phase:

call deallocate_gather_setup (gather_trace)

Note that some auxiliary storage space needs to be allocated for these library routine calls.
Also the deallocate gather setup routine is recommended to deallocate the extra CM
storage space required by the gather routine at end of the computation.

An alternative way of doing the gathering operation is to use the communication
compiler routines in the new CMSSL version 3.0 Beta. The communication Compiler,
which was developed by Dahl [4], is a software facility for scheduling completely general
communications on the Connection Machines. It produces output data structures which
are used by a message delivery system to perform synchronous processor to processor
message passing. The setup routine compute the trace for a communication pattern just
once, and then the message delivery routines use it repeatedly in subsequent operations.
Similarly to the gather routine, this feature can yield significant time saving in applications
that use the same communication pattern repeatedly. The following routines are employed
in our implementation.

15

• comm setup: This routine calculates a message delivery trace for the specified
operation with the user specified source and destination arrays and layout. The
information about the trace is stored in the front end memory.

• comm get: This routine gathers selected source array elements into a destination
array using the communication trace computed by the setup routine.

• deallocate comm setup: This routine deallocates the CM and front end memory
that the setup routine allocated to store a trace.

There are several methods provided by the communication compiler for trace compi-
lation. Each method involves a trade-off between compilation time and message delivery
performance gain, as well as a cost in memory usage. We employ the so called Fast Graph
method, which optimizes the use of CM-200 hypercube topology by scheduling the use
of individual wires by each message. The pseudo-code for computing the matrix-vector
product using communication compiler routine can then be outlined as follows.

Algorithm 4.5 ELL format – Using the communication compiler
Sparse matrix-vector multiplication for ELL format.

In the preprocessing phase:

get_trace = comm_setup (tmp, ja, x,)

In the iteration phase:

call comm_get (tmp, get_trace, x,)

y = sum(a*tmp, dim=2)

In the post=processing phase:

call deallocate_comm_setup (get_trace)

The communication compiler also provides a variety of comm send routines for scat-
tering selected source array elements to a destination array. However, the performance
of these send operations is currently quite poor (cf. Table 9). Instead, we use the CM
Fortran primitive routine sum to compute the summation required in the dot product,
for each row.

The ideas behind the gather routine and the communication compiler get routine are
similar. The numerical experiments show that better performance can be obtained by
using the communication compiler. However, the comm setup routine takes more time
and memory for trace compilation, cf. 3.

Two-dimensional mappings of the vectors We now assume that the vector x is
expanded as a 2D array, i.e., that the components x(j) are duplicated horizontally on the
nc columns of the j-th row of a 2-D array x2D(1 : n, 1 : nc), with x2D(:, j) = x(:), for
j = 1, . . . , nc. The vector y(1 : n) is also expanded similarly. The following algorithms
assume that this expansion is done intially and will use vectors in their 2-D representation
described above throughout.

16

Algorithm 4.6 ELL format - with 2D expansion of variables
Sparse matrix-vector multiplication for the ELL format with redundant storage.

forall (i=1:n, j=1:nc) tmp(i,j) = x(ja(i,j),j)

tmp = a*tmp

y(1:n,k) = SUM(tmp, DIM=2)

y(1:n,1:nc) = spread(y(1:n,k),DIM=2,nc)

Note that the results are mapped directly on one column of virtual processors, the
kth so that an additional spread may be needed to prepare for the next matrix by vector
product in a typical algorithm. Alternatively, we can also do a SPREAD-WITH-ADD
operation along the second dimension which will deliver the result on each column. As it
is written the algorithm assumes that the vector x is the result of previous computation
and is already duplicated in each column.

The above algorithm performs two data parallel floating point computations, namely a
elementwise matrix multiplication and a sum. The SUM requires communication between
neighbouring virtual processors. Nevertheless, we often have a large vpr and many of these
virtual communications are just local moves within the memory of the same physical
processor.

The idea behind the above code, is that we would like to first perform the necesseary
communication between the physical processors and then the triadic operations on each
virtual processor. When we use a row-wise ELL or SGP versions described above, the
massively paralelel operation SUM(a*w,DIM=2) can be done as a triadic operation on each
PN and with just order log2(p) communication steps between the PN’s (p is the number
of PN’s).

We can also use an SGP column-wise format to compute a sparse matrix vector mul-
tiplication. Thus, the vectors are expanded such as x(i, :) = x1D(:), ∀ i = 1, nc. In this
case, the sparse matrix vector multiplication can be done as follows:

Algorithm 4.7 SGP column-wise format - with 2-D expansion of variables

tmp = a * x

forall (i = 1:nc, j=1:n) tmp(jc(i,j),ia(i,j)) = tmp(i,j)

y(k,1:n) = SUM(tmp, DIM=1)

The mapping of the vector is such as the data x(i, j) are aligned with the data a(i, j).
Notice than the algorithm 4.6 generates a general get (gather) between virtual processors
while the above algorithm uses a send (scatter) operation as is typically the case with
column oriented algorithms. This difference can be important because on the CM-2, the
general router performs a get by using two consecutive sends: a first in which the address
of the requesting node is sent from this requesting processor to all ‘sending’ processors and
a second in which the data is sent from these processors to the requesting node. Thus, the
second algorithm will require general communications which are often faster than those
of the first one.

17

We observe that the possibility to transpose the sparse matrix on the geometry asso-
ciated with the SGP format is well-suited to the algorithm 4.7. The one-to-one general
communication is similar to this operation. In the classical Ellpack-Itpack format the
information stored on the array jc(i, j) is not available on each processor.

4.3 Using the CSR Format

When the matrix is stored in the CSR format, the matrix-vector product can be carried
out by Algorithm 3.3. If this pseudo-code is compiled as it stands on the CM, all resulting
computations will be executed on the front-end host of the CM-2 or the Control Processor
(CP) of the CM-5, rather than on the hundreds or thousands of available processors. We
can instead employ the gather and scatter operations provided by the CMSSL library,
and the scan add from the CM Fortran Utility Library. The corresponding alogrithm is
outlined below.

Algorithm 4.8 CSR format – Data Parallel Model
Sparse matrix-vector multiplication for CSR format.

y = 0.0d0

call sparse_util_gather (tmp, x, gather_trace,)

tmp = a*tmp

call cmf_scan_add (tmp, tmp, cmf_upward, cmf_inclusive,)

call sparse_util_scatter (y, scatter_pointer, tmp,

scatter_trace,)

In this algorithm, the sparse util gather routine is first called to gather the corre-
sponding entries from the vector x into a temporary array tmp, then the multiplications
are carried out element-by-element in parallel. The cmf scan add routine from the CM
Fortran Utility Library is used to perform the summation for each row, and finally the
sparse util scatter routine is used to retrieve the results. Note that the sparse util gather -
setup and sparse util scatter setup routines must be called to compute the communication
patterns, gather trace and scatter trace, before this algorithm is called.

Instead of using gather & scatter operations, we have tried an alternative way of using
comm get and comm send add routines, known as the communication compiler routines,
supplied in the new version CMSSL 3.0 Beta. However, the performance of this alternative
is very unsatisfactory due to the poor performance of comm send add, cf. Table 9.

4.4 Using DIA Format

Special matrices that have a diagonal structure, can be stored in the diagonal (DIA)
format and the matrix-vector multiplication can be performed by either one of the Al-
gorithm 3.5 or 3.6. In order to accomplish the data movement related to shifting the
vector x into x(∗+offset(j)) in both algorithms, we can employ the EOSHIFT primitive

18

routine under the data parallel model on the CM. The matrix-vector product y = Ax can
be implemented in CM Fortran as following:

Algorithm 4.9 DIA format – data parallel model
Sparse matrix-vector multiplication for DIA format.

y = 0.0d0

do j = 1, ndiag

y = y + a(:,j)*EOSHIFT(x, dim=1, shift=offset(j))

end do

In some special cases, the number of diagonals is small and known in advance and
the outer loop can be avoided. For example, the matrix-vector product for a tri-diagonal
matrix can be written as

y = a(:,1)*EOSHIFT(x, dim=1, shift=-1) + a(:,2)*x

+ a(:,3)*EOSHIFT(x, dim=1, shift=1)

Here we assume that the subdiagonal is stored in the first column of a, the main diagonal in
the second column, and the superdiagonal in the third column. Since the communication
required in shifting the vector x is a nearest neighbor communication, we can expect
high performance from the above implemention. The numerical experiments confirm this
expectation.

So far, we assumed that the sparse matrix A is mapped onto a 2-D mesh of CM
processors using the mapping (:news,:news) as a default layout, that is, each virtual
processor or PN holds one element of A.

An alternative is to store the sparse matrix in a 2-D array diag(1 : ndiag, 1 : n). Rows
of a are stored in columns of diag, that is, diag = aT . We then map each column of
diag onto a virtual processor or PN by using the (:serial, :news) layout. We also map the
vector x and y onto the same processors where rows of diag reside. In this mapping, the
only communication required would be the shifting operation of x. Multiplications and
summations are carried out within each processor without any cross-processor communi-
cation. Numerical experiments show the improvement in performance over the previous
mapping.

4.5 Numerical Experiments

We first show the performance of some basic linear algebra computations on the CM-
200 and CM-5 using the Data Parallel model. These computations are fundamental to
the sparse matrix-vector multiplications and many other applications. We examine the
DOTPRODUCT, SAXPY, and TRIAD operations, and then compare the CM Fortran
intrinsic function SUM and the Utility Library routine SCAN ADD. We also compare
the indirect addressing, sparse gather and get functions. Experiments of matrix-vector
products using different storage formats are followed.

19

DOTPRODUCT, SAXPY and TRIAD. The dot-product is implemented in the
intrinsic function DOTPRODUCT on the Connection Machines. SAXPY can be coded
in a Fortran-90 like style

y(1 : n) = α ∗ x(1 : n) + y(1 : n)

or simply by
y = α ∗ x + y

if x and y are conformable, that is, arrays of the same shape and size. A TRIAD can
be coded in a similar way by replacing the scalar α by a vector a. Table 1 shows the
Mflop performance of these operations in double precision floating point numbers. It is
safe to predict that higher perofrmance can be obtained by increasing the array size n.
In SAXPY, the front-end scalar α will be broadcasted to all processors, and in TRIAD,
each processor can access its local memory simultaneously for operands. Therefore, the
overhead of memory access is much less than for shared-memory architectures and conse-
quently there is little difference in performance between SAXPY and TRIAD. From the
table, we observe that the SPARC-based CM-5 with only 512 PEs is competitive with
CM-200 with 32K processors in theses two computations. One must also note that high
performance (over 100 Mflops) can only be achieved with very large arrays. For less than
20 Mflops are achieved even when the vector length n is as large as 65536.

CM-200 CM-5

n DOT SAXPY TRIAD DOT SAXPY TRIAD

16384 (16K) 4.34 3.54 3.54 4.51 3.30 3.30
65536 (64K) 17.20 12.25 12.25 17.28 10.74 10.99

524288 (512K) 126.87 72.98 72.97 119.20 65.73 67.69
1048576 (1024K) 240.94 134.33 134.31 224.89 122.17 125.57
2097152 (2048K) 457.64 248.80 248.76 423.95 228.26 230.51

Table 1: Mflop performance of DOTPRODUCT, SAXPY, and TRIAD on a 32K-processor
CM-200 and a 512-processor CM-5 without vector units

SUM and SCAN ADD. It is usually necessary to compute the sum of entries accross
the rows, columns, or intervals of arrays in the sparse matrix-vector multiplications. There
are two primitives, SUM and SCAN ADD, provided in the CM Fortran. They provide
similar but not identical functions. In Table 2, we compare the Mflop performance of
these two routines. In the 2-D cases, there is not much difference in summing accross the
rows or columns. We only show the results of summing accross the rows. From the table,
one may observe that SUM is about twice faster than SCAN ADD in the 1-D case, and
60% faster in the 2-D case.

20

1-D (n× 1)

CM-200 CM-5

n SUM SCAN ADD SUM SCAN ADD

16384 (16K) 2.21 1.09 2.34 1.14
65536 (64K) 8.79 4.29 9.27 4.30

524288 (512K) 68.49 31.45 67.88 28.99
1048576 (1024K) 133.47 59.57 128.38 54.29
2097152 (2048K) 255.97 112.52 241.65 96.34

2-D (n× n)

CM-200 CM-5

n SUM SCAN ADD SUM SCAN ADD

1024 (1K) 95.96 58.71 94.25 53.92
2048 (2K) 321.14 208.63 302.01 170.57
4096 (4K) 1089.91 680.45 1007.76 569.02
6144 (6K) 2248.05 1371.66 2123.75 1158.34
8192 (8K) 3766.70 2282.99 3501.49 1949.31

Table 2: Mflop performance of SUM and SCAN ADD on a 32K-processor CM-200 and a
512-processor CM-5 without vector units

Indirect Addressing. Communication costs due to indirect addressing can be quite
high for sparse matrix computations on massively parallel computers, see illustration in
Table 8. Since it is unavoidable to use indirect addressing in the sparse matrix context,
we examine three different ways of handling the indirect addressing on the Connection
Machines. A 2-D integer array of indices, ja, is generated from the 5-point finite difference
scheme over a rectangular domain, We then compare the timing (in ms) for performing
the following operations:

• forall(i=1:n,j=1:ncol) tmp(i,j) = x(ja(i,j))

• call sparse util gather (tmp, x, gather trace, gather trace mask)

• call comm get (tmp, get trace, x, ier)

We are unable to perform sparse util gather and comm get routines on the CM-5 since
the CMSSL 3.0 is not available on the CM-5 at present. From Table 3, one can see that
the sparse util gather routine is about 50% faster than the array index format, and the
comm get routine is twice faster than the sparse util gather routine. The time spent in
the gather setup is moderate. On the other hand, the setup time for the comm get routine
is extremely high. Therefore, its use can only be justified in some specific applications.
We also like to comment that the communication cost on the CM-5 is greatly improved
when compared to the CM-200.

21

CM-200 CM-5

nx× ny × nz x(ja) gather setup gather get setup get x(ja)

128× 128× 1 3.92 8.46 3.07 9.24× 103 1.58 1.48
256× 256× 1 12.90 24.13 8.58 4.80× 104 4.65 5.27
512× 512× 1 50.63 89.83 34.63 4.93× 105 16.22 20.80
25× 25× 25 5.40 11.33 3.68 1.66× 104 2.02 3.73
32× 32× 32 8.66 17.46 6.13 2.95× 104 2.56 3.86
64× 64× 64 70.97 128.71 44.84 4.56× 105 16.99 29.18

Table 3: Comparison of Timing(in ms) for Indirect Addressing on a 32K-processor CM-
200 and a 512-processor CM-5 without vector units

Sparse Matrix-vector Product. We experimented with two types of sparse matrices
to test the performance of matrix-vector products on the CM-200 and CM-5 using data
paralllel (SIMD) models. We used the COO, CSR, ELL and DIA storage schemes to store
the test matrices.

Problem 1. The sparse matrices arise from the elliptic partial differential equation
with Dirichlet boundary condition on a rectangular domain using centered difference
schemes. Both 2-D and 3-D cases are considered.

Problem 2. Random symmetric band matrix with different bandwidths. All the
non-zero entries are clustered around the main diagonal.

Although both types of matrices have a special structure, we treat them as general
sparse matrices when they are stored in COO, CSR or ELL format.

In Table 4 and 5, we show the performance in Mflops for Problem 1. Tables 6 and
7 are for test problem 2. If the matrix is stored in COO format, we use the matrix-
vector product routines supplied in the CMSSL library. When the DIA format is used,
we experiment with both row- and column-oriented mappings as was explained earlier.
For the ELL format, both the gather routine and the communication compiler get routine
for trace compilation are tested and compared on the CM-200. Since we are unable to use
these routines on the CM-5 at present, we only compare the row- and column-oriented
data mappings using plain CM-Fortran code on the CM-5.

As can be seen from the tables, the best performance is obtained with the column-
oriented DIA format. Clearly, this format exploits the special structure of the matrices.
There is no inter-processor communication when summing up the results of the triads
in the algorithms. It can be as much as 5 times faster than the the CMSSL library
routine using the very general COO format (eg., 64 × 64 × 64 finite difference data on
CM-200), and about twice as fast as the algorithm using a row-oriented DIA format (by
comparing the columns DIA row and DIA col in tables 4 ∼ 7). For the band matrix
with large bandwidth, e.g. 31, the ratio between the column-oriented data mapping and
the row-oriented data mapping can be as much as 6.5 on the CM-200 and 8.5 on the
CM-5 when n = 1, 024K. The performance decreases dramatically when the bandwidth

22

increases. This is due to the increasing cost in the communication performed by EOSHIFT
operations. In the special tri-diagonal cases, we code the multiplication explicitly, hence
we are able to get over 340 Mflops on the CM-200. The performance on the CM-5 is about
half of that on CM-200. We think this is because the lack of floating-point accelerators on
the CM-5 and fewer processors; 512 processors vs. 32K processors with 1K floating-point
accelerators.

When the matrix is treated as a general sparse matrix, the ELL format using the
communication compiler get routine achieved better performance than the others. It is
about twice faster than the gather routine, and 5 times faster than the CSR format and
CMSSL library routine for the finite difference data. It is also interesting to observe
that the performance of ELL format using communication compiler get routine increases
when the bandwidth increases in the band matrix data, while that of ELL format using
gather routine keeps steady, and that of DIA format using EOSHIFT routine decreases.
However, we need to point out that the communication compiler setup routine takes much
more time for trace compilation while the setup time for gather is negligible (less than
one second in most cases). Moreover, the communication compiler setup routine requires
a lot more memory space. We were unable to test some of the large data set due to the
memory problem. On the CM-5, we compare both the row- and column-oriented ELL
format. Unlike the DIA format, there is not much of differences in the performance.
This is because the gneral communications involved in the indirect addressing x(ja(i, j))
dominates the cost. Also the performance is about the same with variant bandwidths in
the band matrix data set.

In Table 8, we show the time spent in multiplications, gather operation, and summa-
tion of each row when and the matrix is stored in ELL format. In Table 9, we show some
timing results for communication compiler routines when the matrix is stored in CSR
format and communication compiler get and send add routines are used.

We should point out that although the sparse matrices in both test problems have
similar characteristics; namely all non-zero entries belong to just a few diagonals, bet-
ter performance can be obtained when all the diagonals are clustered around the main
diagonal, like those band matrices in problem 2. Similar observation has been made in
[15].

4.6 Analysis of the data parallel ELL/SGP algorithms

In this section we analyze the performance on the CM-5 of the algorithms that utilize
the Ellpack and the variant SGP in a data parallel programming model. We evaluate the
performance of each part of these two versions. The building blocks in both routines are
the following operations.

1. The massively parallel multiplication.

2. the reduction with addition along each dimensions of the two concerned geometries.

3. the global time of the sparse matrix-vector multiplication.

23

2-D Finite Difference

nx× ny × nz CMSSL CSR ELL gather ELL get DIA row DIA col

32× 32× 1 0.11 2.52 4.12 4.45 1.88 8.30
64× 64× 1 9.29 8.99 39.57 39.81 25.26 32.49

128× 128× 1 18.44 17.96 46.93 67.26 50.22 70.83
256× 256× 1 24.20 24.33 65.07 78.13 65.24 96.77
512× 512× 1 26.40 26.37 65.24 73.65 69.59 105.095

3-D Finite Difference

25× 25× 25 21.14 20.47 50.23 67.98 27.13 37.12
32× 32× 32 22.52 22.80 65.47 100.74 53.72 85.28
64× 64× 64 22.97 23.47 71.50 96.72 65.19 115.09
32× 64× 64 23.48 23.67 71.54 101.73 63.94 111.96
8× 64× 64 22.56 22.95 66.23 100.74 56.83 93.36
64× 64× 8 21.84 21.33 67.81 99.13 49.43 75.01

Table 4: Mflop performance with finite difference data on CM-200 with 32K processors

For testing purposes we will use two test matrix patterns with different values of N, nc
and 3 different geometries. These three are: the standard geometry [:,:] which is the one
used by default by the system, the geometry [1:,10:] which is equivalent to the serialization
of the second dimension during the mapping onto physical processors, and the geometry
[10:,1:] which is equivalent to the serialization of the first dimension during the mapping
between the virtual data parallel model and the physical processor.

4.6.1 Data parallel element-wise multiplication

Figure 1 shows the performance of the massively parallel operation V = V ∗ W , which
in CM-FORTRAN denotes the element-wise data parallel multiplication of two arrays.
If V and W are N by nc arrays, the resulting V is defined by vij := vij ∗ wij for i =
1, . . . , N ; j = 1, . . . , nc. There is no communication between the processors, i.e., we only
perform the operation V = V ∗W . Note that these performances are independent of the
geometry and the matrix pattern.

We observe that when the size of the data parallel 2D array is larger than 1 Mega words,
the performance decreases. This corresponds to 16K bytes on each physical processor,
which is precisely the size of the SPARC cache. We will study the performance of the
floating point arithmetic for the two cases, namely when the data fits in cache and when
it does not.

24

2-D Finite Difference

nx× ny × nz CMSSL CSR ELL row ELL col DIA row DIA col

32× 32× 1 6.22 6.22 14.06 14.33 4.12 5.05
64× 64× 1 19.54 19.31 37.68 38.15 13.62 17.86

128× 128× 1 39.49 39.33 60.38 65.55 33.23 54.25
256× 256× 1 35.51 23.04 66.71 71.62 46.05 86.68
512× 512× 1 * 59.13 67.46 69.15 48.05 97.14

3-D Finite Difference

25× 25× 25 29.96 39.32 45.19 45.19 20.33 27.80
32× 32× 32 43.74 23.06 68.49 69.41 34.30 68.71
64× 64× 64 36.58 34.31 69.72 54.10 40.94 96.49
32× 64× 64 48.90 51.57 72.20 73.99 39.78 59.95
8× 64× 64 47.60 48.26 68.61 72.14 34.93 69.58
64× 64× 8 46.24 46.53 66.79 60.62 34.82 69.24

Table 5: Mflop performance with finite difference data on a CM-5 with 512 PNs, without
vector units

4.6.2 Data parallel reduction with addition operation

Tables 11, 12 and 13 show the performances obtained for the data-parallel reduction with
addition. We compute sk =

∑j=l
j=1 a(k, j) or sl =

∑j=k
j=1 a(j, l) with l, k = N or l, k = nc

depending of the underlying geometries.
Table 11 shows the performance obtained using an N by nc geometry, with N equal

to one million. We observe that the order of the results are similar for the mappings [:,:]
and [10:,1:]; even if we have a ratio of 9 when nc = 32 along the second dimension. The
variation of the performance corresponding to the reduction along the first dimension is
better with the [10:,1:] mapping than the standard one but the reduction along the other
dimension is worse. The variation is just amplified. The standard mapping does not map
the second dimension well for the concerned computation and dimension sizes. It seems
to generate much more communication between physical processor when performing the
reduction along the second dimension. With a N by nc geometry, more elements of the
same column of the matrix, reside on the same physical processor when using a [10:,1:]
mapping, than with the standard [:,:] mapping. As the vpr, i.e., the ratio of the virtual
to physical processors, is equal to 2K * nc, using 512 PNs, the number of communications
is reduced along the first dimension but is increased along the second. The impact on the
times is shown in the Table.

The reduction along the short dimension is fast when we use a [1:,10:] mapping. In this
case we can map all the elements of each row of the matrix, using a N by nc geometry, on
the same physical processor and there is no communication when computing the reduction
with addition along this dimension.

25

Band Matrices

band n CMSSL ELL gather ELL get DIA row DIA col

16384 (16K) 20.85 50.12 74.04 96.14 170.13
65536 (64K) 49.36 105.46 148.86 137.80 281.82

3 262144 (256K) 61.94 110.55 197.72 148.84 332.54
524288 (512K) 64.39 110.55 209.13 150.50 341.06

1048576 (1024K) 65.70 110.66 * 151.42 344.68

16384 (16K) 37.95 90.10 141.54 55.20 97.81
65536 (64K) 57.16 121.65 240.46 76.41 160.39

7 262144 (256K) 65.09 129.95 290.06 83.83 189.51
524288 (512K) 66.44 130.94 300.34 85.01 194.35

1048576 (1024K) 67.05 131.28 * 85.54 196.33

16384 (16K) 41.33 89.71 187.99 44.27 93.15
65536 (64K) 57.66 117.23 288.95 59.89 159.25

11 262144 (256K) 65.32 133.29 332.39 64.67 190.01
524288 (512K) 66.58 135.92 * 65.49 195.38

1048576 (1024K) 67.14 137.05 * 65.87 197.63

16384 (16K) 36.78 59.79 293.71 22.75 79.56
65536 (64K) 50.73 90.09 371.56 28.39 149.19

31 262144 (256K) 62.80 127.26 * 30.18 187.36
524288 (512K) 65.29 136.49 * 30.47 194.81

1048576 (1024K) 66.48 141.23 * 30.62 198.24

Table 6: Mflop performance with band matrices on CM-200 with 32K processors

The performance of the reduction along the other dimension is just a little worse
than with the others mapping. It is the worst possible case for the reduction along the
first dimension for this geometry. As a result we conclude that the standard by-default
mapping should not be used for this prefix operation along the shorter dimension.

We note that the data does not fit in the cache but that performance is better than
that shown in Figure 1. The difference may come from the fact that we do the reduction
with addition and some optimizations of register usage can be done, in contrast with the
case of the data parallel diadic operation.

Table 12 shows the performance obtained using an nc by N geometry. We remark
again that the geometry [:,:] and [10:,1:] give similar variations. We now have higher
performances along both dimensions using this geometry. We may conclude that the
first dimension always yields a better mapping than the second with respect to these
operations. Using a [1:,10:] mapping of the nc by N geometry, we obtain the same sort
of variations than with the [10:,1:] mapping of the N by nc geometry discussed above,
but it is not completely symmetric as we would expect.

26

Band Matrices

band n CMSSL ELL row ELL col DIA row DIA col

16384 (16K) 37.44 54.63 54.78 39.82 70.88
65536 (64K) 60.15 67.22 68.12 74.27 152.43

3 262144 (256K) 64.20 69.73 71.10 83.94 189.15
524288 (512K) 63.02 66.62 69.63 85.87 179.01

1048576 (1024K) 58.52 63.81 64.29 75.30 165.80

16384 (16K) 40.37 72.68 72.78 26.29 52.58
65536 (64K) 72.06 75.49 75.58 38.99 89.39

7 262144 (256K) 68.63 70.81 75.43 41.71 100.08
524288 (512K) 66.55 71.17 71.81 39.24 106.03

1048576 (1024K) 64.22 70.85 70.11 38.60 155.84

16384 (16K) 61.49 76.65 76.53 20.90 51.55
65536 (64K) 74.11 80.97 81.45 29.53 90.53

11 262144 (256K) 68.48 75.06 73.62 30.79 101.30
524288 (512K) 63.08 74.22 72.50 29.38 100.64

1048576 (1024K) 74.05 71.33 29.07 100.29

16384 (16K) 56.99 79.69 79.81 11.84 50.59
65536 (64K) 54.72 80.56 80.86 13.65 86.10

31 262144 (256K) 32.35 76.85 74.47 13.04 110.98
524288 (512K) 31.24 78.62 73.86 13.16 106.99

1048576 (1024K) 77.63 73.94 13.20 102.35

Table 7: Mflop performance with band matrices on a CM-5 with 512 PNs without vector
units

Table 13 presents the results of identical tests but with a smaller matrix, i.e. N =
128 K. Now, the data fits in the cache for nc ≤ 8, cache but the performances are not
higher because the vpr is smaller. Then, the percentage of time spent performing the
floating point operation is just a little smaller than with a larger vpr but the time spent
communicating is constant and depends only on the number of physical processors in this
case.

4.6.3 Data parallel sparse matrix vector multiplication

The two versions of sparse matrix-vector multiplications examined here are the row and
column versions of the SGP algorithms 4.6 and 4.7. Note that the first version uses a
get(gather) operation and the second uses a one-to-one send operation for the general
communications generated.

In this section we will use two types of matrices to test the performance on the CM-5.
The terminology used here is borrowed from [11, 10].

27

Multiplication Gather SUM Total
nx× ny × nz ms % ms % ms % ms

256× 256× 1 0.302 3.10% 8.609 85.47% 0.019 0.19% 10.073
32× 32× 32 0.234 3.33% 6.140 87.63% 0.014 0.20% 7.007

Table 8: Timing (ms) Results for Finite Difference Data in ELL format using
Sparse util gather routine on CM-200 with 32K processors

Multiplication GET SEND ADD Total
nx× ny × nz ms % ms % ms % ms

128× 128× 1 1.6 0.02% 1.7 0.25% 7870 99.96% 6873
16× 16× 16 0.6 0.005% 1.5 0.01% 12111 99.99% 12113

Table 9: Timing (ms) Results for Finite Difference Data in CSR format using Communi-
cation Compiler GET, SEND ADD routines on CM-200 with 32K processors

C-distributed matrices. A matrix with a C-distributed pattern has a uniform distribu-
tion of nc diagonals across the matrix in addition to a (non zero) main diagonal.
Thus, we have a(i, j) 6= 0 only when j = i + k ∗ nc with k = −b i−1

nc
c, N

2
− b i−1

nc
c − 1,

∀ i ∈ [1, N]. Therefore, for the same nc, we have the same number of non zero
elements, namely, nc, along each row or column. The distance between the physical
processor holding a given diagonal and that holding the main diagonal can reach
values close to N

2
for standard mappings.

C-diagonal matrices. A matrix with a C-diagonal pattern has nc − 1 diagonals to the
right of, and in addition to, the main diagonal. Thus, a(i, j) 6= 0 for only j = i + k
with k = 0, . . . , nc − 1 , ∀i ∈ [1, N] with j ≤ N . The distance from non-zero
elements to the main diagonal are always ≤ nc.

We saw in algorithms 4.6 and 4.7, described in previous sections, that communication

nx× ny × nz dot-product form forall & sum saxpy form

128× 128× 1 62.75 61.67 20.38
256× 256× 1 70.79 67.95 19.17
25× 25× 25 42.96 44.73 9.13
32× 32× 32 71.39 68.70 16.20

Table 10: Comparison of Mflop Performance for Finite Difference Data in ELL format on
CM-5 with 512 PNs without vector units

28

150

200

300

350

400

450

1/16 1/8 0.25 0.5 1 2 4 8 16 32

Mflops

N * nc (millions)

3
3

3 3 3

3

3 3 3 3

Figure 1: Performance of the element-wise matrix product operation V = V ∗ W , on a
512 PN CM-5.

times depend on the distance between the processor holding the non-zero element located
on a given diagonal and that holding the nonzero element located on the main diagonal.
We need to send (resp. get) data from the column (resp. row) of the virtual processor j
to the column (resp. row) of virtual processor i, in order to compute the result ai,j−kxj,
where k is the offset. Let us assume that nc � N . With classical 2D geometries as
described above, we can expect communication between processors that are farther apart
for C-distributed matrices, with ‖i− j‖ larger than N

2
, than for C-diagonal matrices, with

‖i− j‖ ≤ nc,∀(i, j). These results were already observed in the previous work [11, 10] for
the CM-2.

Table 14 presents the performance obtained for the multiplication of a sparse matrix
of size one million with nc non zero elements per row and column. We observe that the

weight dimension nc = 4 nc = 8 nc = 16 nc = 32
(sec., Mflops) (sec., Mflops) (sec., Mflops) (sec., Mflops)

[:,:] first (0.016 ,262) (0.034 ,246) (0.081 ,207) (0.162 ,207)
second (0.062 ,67) (0.167 ,50) (0.192 ,87) (0.233 ,144)

[1:,10:] first (0.016 ,262) (0.041 ,205) (0.082 ,204) (0.165 ,203)
second (0.023 ,182) (0.034 ,246) (0.054 ,310) (0.096 , 350)

[10:,1:] first (0.016 ,262) (0.031 ,270) (0.062 ,270) (0.123 ,273)
second (0.158 ,26) (0.364 ,23) (0.764 ,22) (2.085 , 16)

Table 11: Reduction with addition along the first or the second dimension on 512 PN
CM-5 without vector units. The geometry is N by nc, with N = 1 Mega. The data can’t
fitted into the cache.

29

weight dimension nc = 4 nc = 8 nc = 16 nc = 32
(sec., Mflops) (sec., Mflops) (sec., Mflops) (sec., Mflops)

[:,:] first (0.021 ,199) (0.081 ,103) (0.111 ,151) (0.171 ,197)
second (0.016 ,262) (0.031 ,270) (0.062 ,270) (0.124 ,270)

[1:,10:] first (0.064 ,65) (0.17 ,48) (0.38 ,45) (0.786 ,43)
second (0.016 ,262) (0.031 ,271) (0.062 ,270) (0.123 , 273)

[10:,1:] first (0.022 ,190) (0.040 ,210) (0.070 ,240) (0.131 ,256)
second (0.016 ,262) (0.032 ,262) (0.063 ,267) (0.124 , 270)

Table 12: Reduction with addition along the first or second dimension on 512 PN CM-5
without vector units. The geometry is nc by N, with N = 1 Mega. The data can’t be
fitted inot the cache.

weight dimension nc = 4 nc = 8 nc = 16 nc = 32
(sec., Mflops) (sec., Mflops) (sec., Mflops) (sec., Mflops)

[1:,10:] first (0.002 ,262) (0.004 ,263) (0.008 ,262) (0.017 ,247)
N by nc second (0.003 ,175) (0.004 ,263) (0.006 ,350) (0.012 ,350)
[1:,10:] first (0.008 ,65) (0.018 ,59) (0.044 ,48) (0.091 ,47)

nc by N second (0.002 ,262) (0.004 ,262) (0.007 ,300) (0.016 , 262)

[10:,1:] first (0.002 ,262) (0.004,262) (0.008 ,262) (0,0̇16 ,262)
N by nc second (0.018 ,30) (0.039 ,27) (0.083,26) (0.765 , 55)
[10:,1:] first (0.003 ,175) (0.005 ,210) (0.009 ,234) (0.017 ,245)

nc by N second (0.002 ,263) (0.004 ,263) (0.008 ,263) (0.017 , 245)

Table 13: Reduction with addition along the first or second dimension on 512 PN CM-5
without vector units. The geometry is nc by N, with N = 128 K. The data can be fitted
into the cache for nc ≤ 8 and can’t be fitted into the cache when nc>8.

variation of performance for the C-distributed pattern matrix with respect to the mapping
is poor. The speed for these matrices is small as expected. The performance for C-
diagonal pattern matrices is better but smaller that for reductions and data parallel array
multiplications. The best performances are obtained with a [:,:] or a [1:,10:] mapping
of the N by nc geometry, as was indicated in our previous discussion of the reduction
with add operation. Nevertheless, the variation of the performance with respect to nc,
i.e., the vpr, are different. The general communication seems not to have the same
evolution with respect to these mappings. The gap between the performances shown
for the reduction with addition and these matrix vector products is certainly due to the
general communications.

When we use C-diagonal pattern matrices, the general communication represents, on
the average, one third of the global time. In contrast, it represents almost more than 90
per cent of the global time for C-distributed matrices.

Table 15 presents performances for the nc by N geometry. We observe again that the
performance of the C-distributed case is better when we have a [:,:] or a [1:,10:] mapping

30

weight matrix nc = 4 nc = 8 nc = 16 nc = 32
(sec., Mflops) (sec., Mflops) (sec., Mflops) (sec., Mflops)

[:,:] C-distr. (5.8 , 1.5) (7.1 , 2.4) (9.7 , 3.5) (24 , 2.8)
C-diag. (0.171 , 49) (0.402 , 42) (0.66 , 51) (1.143 , 59)

[1:,10:] C-distr. (4.06 , 2.1) (6.9 , 2.5) (25 , 1.4) (30 , 2.3)
C-diag. (0.146 , 58) (0.358 , 47) (0.709 , 48) (1.408 , 48)

[10:,1:] C-distr. (13.5 , 0.7) (8.02 , 2.1) (5.88 , 5.8 (14.09 , 4.7)
C-diag. (0.268 , 32) (0.581 , 29) (1.19 , 29) (3.4 , 21)

Table 14: Sparse matrix - vector multiplication on 512 PN CM-5 without vector units;
N = 1M. The geometry is N by nc. The data can’t be fitted into the cache.

than otherwise.

weight matrix nc = 4 nc = 8 nc = 16 nc = 32
(sec., Mflops) (sec., Mflops) (sec., Mflops) (sec., Mflops)

[:,:] C-distr. (7.4 , 1.2) (1.7 , 9.8) (2.9 , 12) (5.9 , 12)
C-diag. (0.16 , 53) (0.397 , 43) (0.74 , 45) (1.5, 45)

[1:,10:] C-distr. (1.55 , 5.4) (1.21 , 14) (1.37 , 25) (3.3 , 21)
C-diag. (0.20, 42) (0.48 , 35) (1.0 , 34) (2.11 , 32)

[10:,1:] C-distr. (7.4 , 1.2) (7.3 , 2.3) (8.7 , 3.9 (13 , 5.1)
C-diag. (0.16 , 53) (0.36 , 47) (0.73 , 46) (1.4 , 47)

Table 15: Sparse matrix - vector multiplication on 512 PN CM-5 without vector units;
N = 1M. The geometry is nc by N. The data can’t be fitted into the cache.

Table 16 shows that we obtain higher performances when the data fits in the cache.
We observed that it is not so important for the reduction but it is still crucial for the
data parallel array multiplication. The performance of the matrix vector operation is
difficult to analyze in depth because each of the three parts investigated have different
evolutions with respect to nc (and then on the vpr), the pattern of the matrix and the
mapping. When the data fits into cache and when the geometry and the pattern are
well-adapted to the mapping we can reach 70 Megaflops. Nevertheless, when the data
does not fit into cache the data parallel multiplication performance decreases as does
the global performance. The mapping seems to be important for the performance of
the reduction operation and for the C-distributed matrix vector multiplication. General
communications are more difficult to analyze but they still constitute the bottleneck.
There is a big gap in performance between the data parallel multiplication, the reduction
with add, and the sparse matrix multiplication.

When the size of the matrix is larger than one million or smaller than 128 K, the
variation of the performance can reach a ratio approximately 5 for the C-distributed
pattern matrix or 3 for the C-diagonal pattern matrix, for nc ≤ 32, see Table 17.

31

weight nc = 4 nc = 8 nc = 16 nc = 32
(sec., Mflops) (sec., Mflops) (sec., Mflops) (sec., Mflops)

[:,:] (0.015 , 70) (0.034 , 62) (0.66 , 64) (0.17, 48)
[1:,10:] (0.02, 53) (0.043 , 49) (0.096 , 44) (0.238 , 36)
[10:,1:] (0.015 , 70) (0.030 , 70) (0.062 , 68) (0.16 , 52)

Table 16: Sparse matrix - vector multiplication on 512 PN CM-5 without vector units;
N = 128 K. The geometry is nc by N. The data can be fitted into the cache when
nc ≤ 8. The matrix is C-diagonal.

C-distributed pattern C-diagonal pattern
N nc = 4 nc = 16 nc = 32 nc = 4 nc = 16 nc = 32

4M 0.6 * * 45 * *
1M 1.5 3.5 2.8 49 51 59

128K 3.12 9.7 16 58 65 53
16K 3.2 10 17 32 65 62
2K 2.8 9.4 16.4 17 33 44

Table 17: Sparse matrix - vector multiplication on 512 PN CM-5 without vector units.
The geometry is N by nc, [:,:]. The data can’t be fitted into the cache when N>128K
and can be fitted on the cache when N<128K. For N = 128K, the data can be fitted
into the cache only when nc = 4. Performance are in Megaflops.

4.6.4 General Remarks

The peak performance obtained for the sparse matrix vector multiplication in data parallel
mode is approximately 70 Megaflops on 64 bits word arithmetic using CM-FORTRAN.
We emphasize that this is obtained on a CM-5 with no vector units and no optimizing
compiler. It is difficult to understand exactly the variations in performance at times. The
difficulties with the cache will disappear when the vector units will be installed, since
data will be stored in memory. The communication performance will not change in the
new configuration. As a result, for the C-distributed pattern matrix, the performance
will not increase very much because the major part of the computational time is spent
during the general communications. For C-diagonal pattern matrices only one third of
the global time is spent during the general communications and as a result we expect to
obtain an interesting gain in speed with the vector units. However, we will not be able
to exceed a three-fold improvement in achievable performance. Thus, since C-diagonal
matrices yield the best performances in our study, we may extrapolate that we will not
be able to exceed a performance of about 200 Mflops on a 512 CM-5 for the general
sparse matrix-vector product, in data parallel mode. This is a performance that would
be obtained from CM-FORTRAN, without any optimization in communication, such as
communication pre-processing as is done via the use of the communication compiler on the
CM-2. However, we note that precisely because these performance are obtained without
communication optimization, we may achieve a good speed up over the CM-2, in situations

32

where the sparsity pattern changes dynamically, as is the case in many time-dependent
PDE applications.

5 Experiments on the CM-5 in SPMD mode

A remarkable feature of the CM-5 is its ability to support both SIMD and MIMD modes.
In this section we will discuss how to implement matrix-vector product routines in SPMD
mode and briefly examine the capability of the SPARC chips which currently constitute
the processing units of each node of the CM-5.

Before we present each individual matrix-vector product routine, we would like to
briefly mention some unique aspects of SPMD programs. The first is the data splitting,
dividing the matrix among different processors. In conventional and SIMD type of pro-
gram, the programmer needn’t split the data. SPMD (MIMD) program on the other hand
does require the programmer explicitly handle this issue. Some of the common methods
of splitting data are block-row, block-column, interleaving, etc. These type of data distri-
bution schemes must be based on information on the matrix. There are cases where we
know more about the origin of the matrices, in which cases a mapping by subdomains,
i.e., a domain decomposition approach, may be preferable.

Tightly linked to the distribution of data is the question of communication or exchange
of data among different processors. From a pure matrix operation viewpoint, the commu-
nication can be arranged according to the array indices. On the other hand, if a domain
decomposition approach is used communication is dictated by the need to exchange data
across the boundaries of the domains.

On the Processing Node itself, local memory layout and the flow of arithmetic opera-
tions should be carefully designed so that the architecture of the processor is best used.
From this local viewpoint an SPMD program is very much like a sequential program.

We recall that all the matrix-vector multiplication routines are constructed as in the
power iterations, i.e., we model the vector iteration x(i+1) = Ax(i). Each iteration includes
a copying process and a multiplication process (x(1 : n) = y(1 : n), y = Ax), rather
than just a single multiplication. This type of structure resembles the structure of most
iterative linear system solvers. This copying will put these routines at a disadvantage if
the MFLOP rate is the measure of the performance, since the copying of a data element
will require a nonnegligible time but it is not counted as a floating point operation.

In the rest of this section, the first part is on the performance of the basic compu-
tational kernels defined in section 3.3. This part shows on the one hand the hardware
capability of the CM-5, and on the other hand it also shows which of these primitives
can form faster matrix-vector multiplication routines. The worst and best types of sparse
matrices are presented in the two following sections. Then an in-depth look at the issues
of how to map the matrix onto the processors and how to perform communications are
discussed for one type of application. Finally, a short summary is presented.

33

5.1 Performance of the Basic Computational Kernels

As indicated in section 3.3, all the matrix-vector multiplication routines considered in this
paper involve three types of basic kernel operations. There are four variations for each
type of operation. An one-letter prefix and an one-letter suffix are used to distinguish
these variations. The first letter in the name of the function indicates the precision of the
function, the letter S indicates single precision (32-bit floating point arithmetic), and the
letter D double precision (64-bit floating point arithmetic). The suffix letter I is used to
indicates that the primitive is with indirect addressing. For example, SDOT is the name
of the function that performs dot-product in single precision without indirect addressing;
DDOT is the double precision dot product operation; SDOTI is the single precision dot
product with indirect addressing; and finally DDOTI is the double precision dot product
with indirect addressing. Similarly for the SAXPY and the TRIAD. We refer to Section
3.3 for the definitions of these operations. All of these basic primitives are invoked in
one or a few of the sparse matrix-vector multiplication routines. Those without indirect
addressing are invoked in the special data structures such as the banded storage scheme.

We show in figures 2, 3, 4 and 5 the speed of these functions (in Mflops) versus the
array size. The speed is measured for a single processing node (PN) separately and not
for a whole partition. Accordingly, the array size is the number of elements on each PN
also. The figures are self-explanatory.

We can make the following comments.

1. The basic speeds and the number of clock cycles per iteration for not too large array
sizes are listed in table 18. The clock rate of the SPARC chip used is 33MHz.

2. Among the three functions, the dot-product gives the best megaflop rate. Notice
that *DOT* is much faster than *AXPY*, which in turn is only slightly faster than
the *TRIAD*.

3. When the array size exceeds a certain limit, the performance of all these BLAS1
type of operations is severely reduced. We can see from the figures that the speeds
of all the functions fall between the 0.5 and 1 Mflops marks, when the array size
becomes larger than 8K. We list separately in table 19 the speed and the number of
clock cycles per iteration corresponding to operations with these large size arrays.

According to the technical specification, the SPARC chips used on CM-5 has a peak
rate of about 5 Mflops which is roughly consistent with the speeds observed here. The
SPARC chip has a combined cache (used for both instruction and data) of 64K bytes.
For single precision arrays, the cache can hold 2 arrays of size 8K. The program used in
the test is very small, so most elements of the data array used in SDOT and SAXPY will
be in cache. This can be verified in figure 2. When the arrays are too large to be stored
in cache, since in each run of all three operations the arrays are not reused, most the
elements of the arrays must be brought into cache at the time of use. The main memory
is much slower than that of the cache, hence the severe decrease in performance.

34

speed (Mflops)

addressing direct indirect
precision single double single double

DOT 5.1 4.5 3.9 3.3
SAXPY 3.2 2.9 2.9 2.3
TRIAD 3.0 2.4 2.6 2.2

clock cycles per iteration

addressing direct indirect
precision single double single double

DOT 13 15 17 20
SAXPY 20 23 23 29
TRIAD 22 27 25 30

Table 18: Performances of kernel operations when arrays fit in the cache.

speed (Mflops)

addressing direct indirect
precision single double single double

DOT 1.0 1.0 1.1 1.3
SAXPY 0.8 0.9 0.6 1.1
TRIAD 0.6 0.6 0.5 0.6

clock cycles per iteration

addressing direct indirect
precision single double single double

DOT 65 65 60 53
SAXPY 84 72 103 61
TRIAD 112 114 132 110

Table 19: Performance of kernel operation when arrays do not fit in cache.

Since the write buffer is write-through, a write could take a lot more CPU cycles than
a read from cache. The inner-product operation requires 2 reads per iteration (as shown
in the pseudo-Fortran code), and virtually no write. The *AXPY requires 2 reads and 1
write; and the TRIAD 3 reads and 1 write. On the other hand the number of floating
point operations for the same array size is the same for all these operations. This explains
why the dot-product performs better than both SAXPY and the TRIAD in all cases,
while the SAXPY is only slightly better than the TRIAD. From the tables of the clock
cycles per iterations in table 18, it seems that the SAXPY takes about 8 clock cycles
longer than DOT and the TRIAD takes 2 clocks cycles longer than the SAXPY. For the
case where data is directly read from main memory, the differences are not very consistent
among different variations of the functions.

We are unable to explain the consistent and important drops in performance for DDOTI

35

Figure 2: Speed versus array length. Single precision data, no indirect addressing.

in Figure 5. For array sizes of exactly 256, each iteration of DDOTI seems to take about 12
more clock cycles than for nearby array sizes. There are other fluctuations in the figures,
but these are much smaller. Most of these fluctuations seem to occur when the total data
array size is about 6K bytes.

We now go back to the issue of performance of matrix-vector products. Table 20 shows
the speed (in Mflops) of the arithmetic operations used in matrix-vector subroutines with
matrix in Ellpack format. Each PN has 2560 rows and 80 nonzero elements per row. The
nonzeros have been randomly distributed, i.e. at given row the column indices of the
nonzeros are randomly chosen. This shows the difference between using the dot-product
form and the SAXPY form in an artificial but representative case.

The difference between inner-product and SAXPY (or TRIAD) forms for performing
matrix-vector products, is quite consistent with the results obtained in the previous tables
and figures. Because of this, the dot-product form is preferred for the current configuration
of CM-5. This may change when the vector chips are installed.

32 PNs 256 PNs 512 PNs
SDOT 77.6 208.8 364.2
SAXPY 35.4 161.9 291.2

Table 20: Speed (in Mflops) of arithmetic operations in matrix-vector subroutines.

Table 21 shows the speed in Mflops of the CMMD reduction and scan operations as
provided in the CMMD library. These two functions are used here only to sum up the
number contributed from each PN. As is, they only accept one number from each PN,
which is not as general as the reduce and scan functions used in the data parallel programs.
The reduction returns the total to either all PNs or the host. The scan puts a running tally

36

Figure 3: Speed versus array length. Double precision data, no indirect addressing.

Figure 4: Speed versus array length. Single precision data, with indirect addressing.

37

Figure 5: Speed versus array length. Double precision data, with indirect addressing.

on each PN. They may be used for other purposes. From the table, it is evident that the
speed of the reduce and scan operations is proportional to the number of the processors
in the partition. This indicates that the these two global communication functions take
roughly a fixed amount of time for different size partitions. The performance of these two
functions suggests that we should not use them directly to construct our matrix-vector
product routines as in data parallel mode.

32 PNs integer real*4 real*8
reduce 4.4 0.77 0.78
scan 3.1 0.62 0.62

256 PNs integer real*4 real*8
reduce 36.8 6.3 6.3
scan 24.6 4.8 4.8

Table 21: Speed (in Mflops) of CMMD’s reduction and scan operations.

5.2 Matrix-Vector Products with General Sparse Matrices

The first consideration when implementing parallel matrix-vector multiplication on dis-
tributed memory computers is to decide how to map the matrix onto the processors. In
SPMD programs, the mapping must be programmed explicitly by the user. As a starting
point here, we will assume the matrix has a general sparsity pattern, and no additional
information about the problem structure is available. The most straight-forward way of
mapping matrix under this given condition is to split the matrix according the row or

38

column indices. More complicated schemes may include blocking, or distributing the ma-
trix in such a way that every processor will have the same number of non-zero elements
of the matrix, etc. For simplicity we will first consider only block-row and block-column
type splitting. Other schemes will be discussed in subsequent sections.

Suppose the matrix is of size n × n, there are p processors. Then each PN will have
m = dn/pe rows (or columns) of the matrix. In block-row(column) scheme, each PN will
have m consecutive rows (or columns). In interleaving row (column) scheme, each PN will
have m rows (columns) with indices that are p apart. For example, processor i will have
row (column) i, p + i, 2p + i, For the block version of data splitting, each PN will also
have m consecutive elements of the vector. In the case of interleaving schemes, the vector
will also be distributed in the interleaving fashion, processor i will have i, p+i, 2p+i, . . .th
element of the vector x.

Now that we have the matrix distributed in block-row, or block-column. We may
further arrange the local arrays (on each PN) so that a given algorithm will access most
of its data from consecutive memory locations. The next consideration is communication.
We will analyze what is needed by both block-row and block-column splitting schemes.

One point should be made clear before we continue. For the multiplication y = Ax,
if initially xi is on processor j, yi is required to be generated on the same processor.
This demand makes the power iteration easy to implement in the simple way described
earlier. Under this restriction, when the matrix is split block-row-wise, each PN will
obtain the needed elements xi. For every aij on a given PN, if xj is not located on this
processor, it must be moved from some other processor to this PN. In case block-column
splitting of the data, we can form partial summation of yi =

∑
aijxj before doing any data

exchange. If xi belongs to a given PN, all the partial summations of yi must be passed
to this processor directly or indirectly. For the sake of clarity, we will directly pass the
partial sum to the desired destination, then perform the final sum there. If this is done,
the block-row scheme and the block-column scheme basically require the same amount of
data movement if the matrix has a symmetric sparsity pattern.1

To estimate the lower bound of performance for matrix-vector product routines, we
now will consider what is the worst case communication requirement as outlined above.
The most demanding case for communication is when every element xi is needed by every
PN in case of the block-row version, or every PN produces a partial sum for every yi in
case of the block-column version. In both cases, there is a simple way of accomplishing
the required data movement, which is to use ‘personalized all to all communication’ (or
‘total exchange’ as it is sometimes called) to obtain the whole vector x or y from each
processor. Table 22 show the speeds of the subroutine using this communication scheme.
We know that the communication rate for this operation is about 0.87 MegaBytes/sec
[16]. Assuming that arithmetic operations take basically no time, the execution time for
the procedure in double-precision (8-Byte words), would be at least 8n/0.87µsec, where n
is the total number of rows. There are total 2 ∗n ∗nc number of floating point operations

1A matrix has a symmetric sparsity pattern when aij 6= 0 iff aji 6= 0, ∀i, j.

39

executed. Therefore the estimated speed of the procedure should be approximately

Rcomm = 0.22× nc Mflops

where nc is the number of nonzero per row. This gives the upper limit of the Mflop
rate for the scheme using all-to-all communication with an infinitely fast arithmetic unit,
which can be considered as a worst case scenario for the communication overhead.

In table 22, DIA means that the matrix used in multiplication is diagonal format (see
algorithm 3.5). The CSR refers to the multiplication for general sparse matrices stored in
the CSR format. Algorithm 3.3 is used in this case. ELLi and ELLs are both for matrices
stored in Ellpack format, ELLi uses algorithm 3.7 and ELLs uses algorithm 3.8. All such
matrices have been generated to have a random sparsity pattern. ‘Total exchange’ is
used as the means of communication. As can be seen the above estimate for the bound
on speed, Rcomm is reasonable. In other words, the communication will dominate the
execution time if no special structure of the matrix is exploited in order to reduce the
communication time.

of PNs nc DIA ELLi ELLs CSR Rcomm

256 64 12.59 12.46 11.98 11.10 14.08
256 16 3.24 3.22 3.16 3.00 3.52
32 80 12.40 13.36 11.02 13.64 17.60
256 80 15.26 14.90 14.76 15.36 17.60
512 80 15.12 15.38 15.38 15.64 17.60

Table 22: Speed of general sparse matrix-vector multiplication subroutines.

5.3 Banded Matrices

Having seen the worst case, now we turn our attention to an special class of sparse matrix,
namely banded matrix, which will require very little data exchange in general.

For not too large bandwidth, the communication will be limited to between nearest
neighbors only, for either block-column of block-row data mappings. Suppose the total
bandwidth is 2b + 1, the upper bandwidth and the lower bandwidth are both b, a given
processor i would only need to obtain b elements of a vector (either x or y) from processor
i− 1 and i + 1. Assuming each processor has more than b elements of the desired array.
Though the amount of data to be moved is the same for both data splitting schemes,
as we will see, the block-row version is slightly favorable than the block-column version.
This is because (1) the block-row version can be easily constructed to have longer dot-
product loop; (2) the block-column version must use some extra memory in the process
of communication. Due to these technical reasons, we will be using block-row version for
the experiments. (A comparison will be made in later sections.)

The experimental results are listed in table 23. The time required for communication
is generally much smaller than that needed for arithmetic operations. This is evident

40

from the data (tc + tb)/ta in the table, where the time ta is the time spent in arithmetic
operations, tb is the time in copying the array y into x, and tc is the communication
time. In almost all the cases we tested, only nearest neighbor communication is required.
Besides the low communication cost, the arithmetic operation for banded matrix is also
faster than other types. As we can see from algorithm 3.9, multiplications with banded
matrices do not require indirect addressing.

Other data splitting schemes, such as interleaving, are not tested here, because they
require more data exchanges than simple block-row scheme.

size 32 PNs 256 PNs 512 PNs
n band Mflops tz/ta Mflops tz/ta Mflops tz/ta

16k 3 31.0 0.74 77.2 4.18 149.0 6.23
16k 11 67.0 0.40 115.4 2.04 441.0 2.83
16k 31 68.8 0.22 415.6 1.17 805.2 1.43
16k 51 85.4 0.12 515.0 0.90 976.8 1.04

64k 3 35.1 0.53 191.4 1.20 379.5 2.00
64k 11 60.8 0.21 441.6 0.64 832.0 0.81
64k 31 82.0 0.10 643.8 0.37 1308.5 0.47
64k 51 88.6 0.08 712.2 0.27 1457.2 0.36

128k 3 32.6 0.40 229.0 0.78 447.4 0.93
128k 11 61.9 0.19 483.9 0.44 800.0 0.44
128k 31 83.6 0.09 614.6 0.17 1194.1 0.20
128k 51 89.2 0.06 672.4 0.16 1352.0 0.18

256k 3 28.0 0.30 243.9 0.54 528.9 0.73
256k 11 58.3 0.17 444.0 0.25 1072.4 0.31
256k 31 80.3 0.09 622.1 0.13 1243.4 0.16
256k 51 87.4 0.05 670.6 0.11 1371.0 0.12

Table 23: Speed of banded matrix-vector multiplucations subroutines. Here Ta is the time
spend for performing arithmetic operations and tz = tc + tb is the total time needed for
communicating and copying the arrays.

5.4 Grid Matrices

From the two previous sections we have seen two extreme cases, on one side, the general
sparse matrix, the speed of the multiplication routines is low; on the other side the faster
routines can only take on special type of matrices, namely banded matrices. In this section
we will concentrate matrices from finite difference discretization of PDEs on rectangular
domains(see figure 6). The focus here is to try to take advantage of the special sparsity
structure and the knowledge of the original physical problem.

For later discussions, we will assume the matrix has symmetric non-zero pattern. This
is true for the 5-point matrix we are considering. Given this, all the communication can be

41

Figure 6: An example of a 2-D grid and a neighborhood of a grid point.

arranged in terms of swaps, which are CMMD functions that perform a send and receive
at the same time. This is one of the more efficient ways to accomplish the data exchange.

First let us assume we only know the matrix has a general diagonal structure. To
speed up the communication, we need to find which processor must communicate with
which and save the information. This idea is generally applicable. In our experiments we
implemented this with block-row data splitting. For simplicity, if one element xi is needed,
the PN that has it will send out all the elements of array x that belong to the processor.
Also we used algorithm 3.6, the TRIAD form of DIA matrix-vector multiplication. In our
discussions this is denoted as routine A.

Instead of continuing exploring other methods of splitting matrix according to the
indices, we will turn to the schemes that involve more information from finite element
grids. Some of the information that is obvious from observing the grid may not be
easily obtained from analyzing the matrix. For example, there is only a fixed number
of diagonals, and the offset of each diagonal is fixed when the size of the grid is given.
We don’t need to keep an offset array, and consequently the indirect addressing in the
multiplication algorithm 3.5 is removed. This should speed up the arithmetic operations.
More significantly, the communication may be arranged much more efficiently according
to the relations shown by the grid.

Matrices arising from 5-point discretizations of elliptic problems on 2-D rectangular
grids have five diagonals. If the matrix is divided in block-rows, a total of 6 possible swaps
are needed for each processor. The two diagonals with offset ±1 requires one element of
x from neighboring nodes. For the two far away diagonals, the elements required may
possibly be located on two separate processors, therefore four possible swap operations
are needed. However, by looking at the neighborhood of a grid point (fig 6b), we can
see that there are only four neighbors for each grid point, in other word besides xi only

42

for other elements of x are needed in order to compute yi. We should be able to require
no more than four swaps for each PN in two dimensions, and no more than 6 in three
dimensions.

We would now like to look at the communication needs of routine A. For 2-D case,
each PN will perform possible six swaps, receive 6m array elements. (m is the number
of variables on each processor.) And for 3-D case, a processor could possibly perform 10
swaps, receive 10m elements for other PNs.

One splitting that will require four swaps per PN for 2-D grid and 6 swaps for 3-D
grid is the row (column) interleaving scheme. For 2-D case, each node will receive 4m
array elements. For the 3-D case, 6m. The advantage of this type of splitting is that the
work is uniformly divided among the PNs and the communication pattern is simple. One
disadvantage is that each element yi will require exactly 4 (6) xi’s from other processors.
Worse yet may be the need to consider that the processors form a ring. Because the
CMMD provides mainly blocking message passing functions, it is not possible to have all
the nodes paticipate in the data exchange at the same time. Suppose each PN i is to
exchange a message with processor i− j. If the processors (say p of them) are treated as
an open linear array, a simple algorithm will accomplish the task.

1. Divide the processors in to two groups. If bi/jc is even, then i ∈ even group, and
bi/jc is odd, i ∈ odd group.

2. Each processor i ∈ the even group swaps the content of the message with PN i + j.
Each processor i in the odd group swaps with PN i− j.

3. Each processor i ∈ the even group swaps with PN i− j. And all processors i ∈ the
odd group swap with Pn i + j.

4. If i− j or i + j out of range (0, p− 1), PN i will not be sending/receiving anything.

However, in the case of a ring, i − j < 0 means i should be expecting some data from
p + i − j. Above algorithm will not complete the task in one run. Two runs are needed
if p/j is not a even number. A program is implemented using this scheme. We will refer
to it as routine B.

Interleaving schemes only take advantage of the local structure of the grid points. Next
we will introduce one-way dissection. We always try to let each PN have equal number
of variables. In general one-way dissection does not require all the subdomain to be the
same size. For 2-D case, onw-way dissection will divide a m × n grid into subdomain of
size m/p× n or m× n/p, where p is number of processors. For 3-D case, it will divide a
domain of l×m×n into l/p×m×n or l×m/p×n or l×m×n/p. In our implementation,
a slightly different dissection is used. The difference is in how 3-D case is handled. In our
implementation, a 3-D grid of size l ×m× n is treated as a l ×mn 2-D grid. When the
number of the processors is large, this will balance the load on each processor better than
the straight one-way dissection method. To keep the locality in the computation, we try
to number the grid point on each PN in consecutive order, or in other word we will always
divide a m × n grid into m × n/p subdomain. There are still two ways of splitting the

43

matrix. The first is the block-row. The program implementing this will be called C in
later discussions. The other one is block-column. It will be called routine D. These two
routines will need 2 swaps for a m×n grid, each PN will receive 2m elements of x (or y).
For a l×m×n grid, possible six swaps are needed, up to 2l(1+mn/p) elements of x (or y)
maybe received. The communication requirement shown here is slightly more than that of
pure one-way dissection. Let us assume that the communication time can be modeled as
t = ts+n/b, where ts is start-up time, and b is bandwidth, n is the message size. When the
start-up time is very high one-way dissection is the most economical method. However,
when the start-up time is small, then minimizing the total number of bytes passed would
also roughly minimize communication time [12]. In the 2-D case, dividing the domain into
hexagonal subdomains would normally be best in that it provides the tessalation which
requires the least amount of data to be passed [12]. Since this optimal subdivision is not
easy to implement or generalize, we simply use squares. We try to select two parameters
q and r such that p = q ∗ r and q : r = m : n for a m × n grid. Each processor will
then have an m/q × n/r block of the grid. For this, one matrix-vector multiplication (in
row-wise version) requires four swaps and 2(m/q+n/r) elements of x. In case of l×m×n
grid, we will try to find q, r, s, such that p = q ∗ r ∗ s and q : r : s = l : m : n. Each PN
will have a grid of l/q×m/r×n/s. Again, under row-wise splitting, six swaps are needed
and each processing node will receive 2(l/q ∗m/r + l/q ∗ n/s + m/r ∗ n/s) elements of x.
We will refer to this as routine E.

Table 24 shows the performance of the different routines described above. Table 25
shows the time used in communication (averaged across all the PNs). Table 26 shows
the actual number of swaps (communication start-ups) for different grid size. Table 27
shows the exact number of bytes received by a typical PN in the partition. From all the
tables we can see that routine B needs to move more data, and spends more time in
communication than any other routine. Routine E moves the least among of data, and
also spends the least amount of time in communication. Routine C and D require the
same number of start-ups and move the same number of bytes, but due to some technical
detail in the programs, routine D spend slightly more time than C in communication.
Routine A spend much less time in communication than B even for the case where they
both move same amount of data and use same number of swaps. For example when
a 512 node partition is used to work on a grid of size 120 × 60 × 60, for each matrix-
vector multiplication, each PN does six swaps and receives 23040 bytes of data, routine
A spends 18.5ms in communication versus 28.4ms for B. This is due to the fact that in
the interleaving scheme (B) the PNs are conceptually on a ring (see previous section).
However, if it is possible to pair all the PNs into send-receive pairs, then there is no
difference whether the PNs are viewed as on a open line or closed one. An illustration of
this can be found in table 27 for the case of 32 PNs with grid 32× 32× 32, where routine
B passes same size of data as A, and on the average the two routines spend about same
amount of time in communication.

Regarding the overall performance of the routines, the one based on SAXPY (or
TRIAD) is obviously slower than the one based on dot-products. Comparing routines A
and B, A spends less time in communication, but the overall Mflops rate of A is clearly

44

lower than B. This is because A is based on algorithm 3.6, uses TRIAD rather than
dot-product as in the B. This is consistent with what was presented in earlier sections.
Comparing between C and D we may again conclude that the block-row versions of
matrix-vector product routines will outperform the the block-column versions.

grid size A B C D E
nx nx nz

32 PNs

128 128 1 11.5 36.4 67.7 29.8 50.7
25 25 25 11.0 16.4 38.1 22.5 36.4
30 30 30 11.4 19.5 39.9 23.5 46.4
32 32 32 14.8 44.0 50.4 27.5 53.2

512 PNs

1024 512 1 148.0 556.6 600.1 488.8 1047.0
100 50 50 99.2 151.1 416.5 331.6 639.0
120 60 60 105.0 181.1 442.7 341.4 897.5
128 64 64 128.4 349.1 462.5 356.5 996.3

Table 24: Speed of different algorithms for some median size grid matrices.

grid size A B C D E
nx nx nz

32 PNs

128 128 1 2.8 2.7 1.0 1.4 1.7
25 25 25 5.1 11.1 3.6 4.2 2.0
30 30 30 8.0 15.3 5.2 6.3 2.3
32 32 32 5.0 5.0 4.9 5.0 2.3

512 PNs

1024 512 1 6.1 5.0 5.0 5.1 1.7
100 50 50 11.8 20.7 6.3 6.8 2.1
120 60 60 18.5 28.4 9.2 10.0 2.2
128 64 64 14.0 15.8 11.3 12.4 2.2

Table 25: Time (ms) in communication for different data distribution schemes.

5.5 Summary

In this section, we tested various algorithms for doing matrix-vector product on a mas-
sively parallel machine using SPMD program. The first type of matrix-vector product
routine is for matrix with random sparsity structure, in which communication demand
is high. And most of the computer time is spent in moving the desired data between

45

grid size A B C D E
nx nx nz

32 PNs

128 128 1 2 4 2 2 4
25 25 25 4 6 6 6 6
30 30 30 4 6 6 6 6
32 32 32 2 6 2 2 6

512 PNs

1024 512 1 2 4 2 2 4
100 50 50 4 6 4 4 6
120 60 60 6 6 6 6 6
128 64 64 4 6 4 4 6

Table 26: Number of communication start-ups required by different routines.

processors. We give an estimate of the communication time, and therefore the total time
of the execution and what could be expected in terms of Mflops. On this, we would like
to point out that it is not necessary to pass the partial sum of yi to the final destination
then perform the final summation. It is conceivable that one may perform the summation
as the data is being passed as is done in the data parallel mode. However, there are still
uncertainties regarding this possibility and we have not implemented this option.

High Mflops rates can be reached for banded matrices, because of the low communi-
cation to arithmetic ratio achieved in this case. When a matrix in nearly banded, or can
be put in banded form without padding with too many zeros this can constitute a good
alternative to general sparse matrices.

For a class of real applications, finite discretization of PDE on regular grid, we pre-
sented various different ways of taking advantage of the special matrix structure and
domain structure. In our tests, we have shown that dissecting the matrix based on the
domain structure makes the handling of communication much easier, and can significantly
reduce the communication cost. Even though interleaving is easy to implement and can
enhance load balancing among the processors, it was not a very efficient method for our
test problems because it involves the longest subdomain interfaces among all possible
splittings. Standard one-way dissections and other domain decomposition approaches
work much better on regular grids. For some medium size problems on a 512 node par-
tition of the CM-5, GFLOPs rates can be achieved for real application even without the
vector units.

46

grid size A B C D E
nx nx nz

32 PNs

128 128 1 4096 4096 1024 1024 384
25 25 25 8000 12000 4200 4200 1848
30 30 30 13920 20880 7200 7200 2432
32 32 32 8192 8192 8192 8192 2560

512 PNs

1024 512 1 8196 16384 8192 8192 512
100 50 50 8000 12000 4800 4800 1848
120 60 60 23040 23040 8640 8640 2432
128 64 64 16384 24576 9216 9216 2560

Table 27: Message size (in bytes) actually passed by each routine.

grid size 32 PNs 256 PNs 512 PNs
nx ny nz Mflops t(ms) Mflops t(ms) Mflops t(ms)

32 32 1 8.5 1.20 9.4 1.09 9.5 1.08
128 128 1 60.2 2.72 122.4 1.34 136.2 1.20
512 512 1 71.9 36.5 531.6 4.93 943.0 2.78

16 32 32 45.6 5.03 111.5 2.06 223.6 1.03
8 64 64 53.7 8.54 191.8 2.39 365.8 1.26

128 64 64 72.4 101.4 493.7 15.6 224.8 20.4
128 128 128 77.0 381.2 571.1 51.4 986.4 29.8

Table 28: Performance of variant (E) for grid matrices.

grid size 32 PNs 256 PNs 512 PNs
nx ny nz ta tb tc ta tb tc ta tb tc

32 32 1 9 2 89 3 2 95 4 2 94
128 128 1 42 10 48 15 3 82 9 2 89
512 512 1 81 12 7 55 12 33 42 9 49

16 32 32 54 8 38 21 3 76 21 3 76
8 64 64 65 9 26 27 4 69 21 3 76

128 64 64 89 5 6 77 6 17 64 6 30
128 128 128 92 5 3 86 5 9 78 9 13

Table 29: Distribution of the execution times for version (E) with respect to arithmetic
operations ta, local array copying tb, and communication tc.

47

6 Conclusion

In this section we summarize our main results and draw some tentative conclusions. Our
first overall conclusion regarding sparse matrix computations on massively parallel com-
puters is that reasonable performance can be obtained with average effort, i.e., from
standard FORTRAN augmented with the usual communication primitives. Using either
CM FORTRAN or CMMD FORTRAN we can achieve a good fraction of the peak per-
formance for certain matrices. However, one notable difference with dense computations,
is that performance depends critically on the type of matrices considered. In sparse com-
putations, it is important to provide the possibility of taking advantage of the structure
of the matrix if one wishes not to sacrifice a great deal in performance. Thus, there can
be a big difference between the performance that can be obtained from a matrix stored
in diagonal format and one that is stored in the more general CSR format. Generally
speaking, we also observed that in data parallel mode it is important to take advantage
of two-dimensional mappings of the data in conjunction with the variants of the ELL-
PACK format. The CMSSL scatter and gather routines allow to enhance performance
substantially. In SPMD mode, there is currently no means of exploiting knowledge on the
communication pattern to speed-up later matrix – vector produtcs via saved traces. This
is because of the dynamic nature of the current implementations of the communication
routines, although improvements are possible. On the other hand a rather important
feature of the communication provided on the CM-5 is the near insensitivity of commu-
nication speed relative to the logical distance between processors. In other words, the
network tends to provide a good approximation to a fully connected universal computer.
There is certainly a price to pay for this capability, partly in terms of hardware com-
plexity, partly because it may be achieved at the expense of limiting certain achievable
communication speeds for special cases.

Regarding the comparison between the two modes, it is clear that the SPMD mode
has a slight edge in terms of achievable performance, mainly because one can better take
advantage of communication patterns. On the other hand, programming is much easier
in data parallel mode.

The experiments in this paper were made on a preliminary version of the CM-5 which
is not equipped with vector chips 2. It is interesting to notice that the timings were in
many cases dominated by communication and as a result, we anticipate that the vector
units will make essentially no difference in those cases. It is a rule of thumb that for
sparse computations performance can often virtually be stated in terms of communication
speeds alone [7]. With communication latencies generally high and difficult to reduce to
acceptable levels, this problem is a challange to algorithm designers and manufacturers
alike.

We would like to discuss the possible improvements that can be made to bring the
communication times down to much lower levels. First, it is feasible to combine messages
to exploit the fact that the best comminucation speed is obtained for messages whose
length is a multiple of 32 Bytes, or four 64-bit foating point numbers. Some of these

2As of the time of this writing the vector units are planned to be installed by the end of August 1992.

48

optimisations are possible on the CM-5 [5]. Another possible improvement [5], may come
from exploiting the fact that even though communication in the higher levels of the data
network can be viewed as indeterministic, they can be deterministic in the first level. As
a result optimization tools similar to the communication compiler may be developed for
this limited but important level.

References

[1] Connection Machine Model CM-2 Technical Summary, Thinking Machine Corpora-
tion, Cambridge, Massachusetts.

[2] The Connection Machine CM-5 Technical Summary, Thinking Machine Corporation,
Cambridge, Massachusetts.

[3] CM-Fortran User’s Guide. Thinking Machine Corporation, Cambridge, Mas-
sachusetts.

[4] E. Denning Dahl, Mapping and Compiled Communication on the Connection Ma-
chine System, Proc. Fifth Distributed Memory Computing Conference, Charleston,
SC, 1990.

[5] E. Denning Dahl, Personal communication, 1992.

[6] D. S. Dodson, R. G. Grimes, and J. G. Lewis. Sparse extensions to the Fortran
basic linear algebra subprograms. ACM Transactions on Mathematical Software,
17(2):253–263, June 1991.

[7] K. Gallivan, W. Jalby, A. Malony, and H. Wijshoff. Performance prediction for
parallel numerical algorithms. International Journal of High Speed Computing, 3:31–
62, 1991.

[8] S. Hammond and R. Schreiber, Mapping Unstructured Grid problems to the Connec-
tion Machine, Tech. Report 90.22, RIACS, 90.

[9] M. Misra and P. Kumar, Efficient VLSI implementation of iterative solutions to
sparse linear systems, Tech. Report 246, Institute for Robotics and Intelligent Sys-
tems, University of Southerm California, 1988.

[10] S. Petiton, Massively Parallel Sparse Matrix Computation for Iterative Methods,
Tech. Report YALE/DCS/878, Department of Computer Science, Yale University,
1991.

49

[11] S. Petiton and C. Weill-Duflos, Very sparse preconditioned conjugate gradient on mas-
sively parallel architectures, in Proceeding of 13th World Congress on Computation
and Applied Mathematics, 1991.

[12] D.A. Reed and R.M. Fujimoto, Multicomputer Networks, Message-Based Parallel
Processing section 7.2, The MIT Press, 1987.

[13] Y. Saad, SPARSKIT: A basic tool kit for sparse matrix computations. Techni-
cal Report 90-20, Research Institute for Advanced Computer Science, NASA Ames
Research Center, Moffet Field, CA, 1990.

[14] Y. Saad and H. Wijshoff. A benchmark package for sparse matrix computations. In
J. Lenfant and D. De groot, editors, Proceedings of ICS conference 1988, St Malo,
France, pages 500–509. ACM, 1988.

[15] Joel Saltz, Serge Petiton, Harry Berrryman, and Adam Rifkin, Performance Effects of
Irregular Communication Patterns on Massively Parallel Multiprocessors, 1 Journal
of Parallel and Distributed Computing, 13 (1991), pp. 202–212.

[16] K. Wu and Y. Saad, Experiments with the CM-5 message passing primitives, AH-
PCRC internal report, 1992.

50

