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Abstract. We present a variant of the GMRES algorithm which allows changes in the precon-
ditioning at every step. There are many possible applications of the new algorithm some of which
are briefly discussed. In particular, a result of the flexibility of the new variant is that any iterative
method can be used as a preconditioner. For example, the standard GMRES algorithm itself can
be used as a preconditioner, as can CGNR (or CGNE) the conjugate gradient method applied to
the normal equations. However, the more appealing utilization of the method is in conjunction with
relaxation techniques, possibly multi-level techniques. The possibility of changing preconditioners
may be exploited to develop efficient iterative methods and to enhance robustness. A few numerical
experiments are reported to illustrate this fact.
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1. Introduction. Krylov subspace techniques have increasingly been viewed as
general purpose iterative methods, especially since the popularization of precondition-
ing techniques [2] in the mid 70’s. Although iterative methods lack the robustness of
direct methods, they are effective for the large class of problems arising from partial
differential equations of the elliptic type. An important gap in the literature concerns
the development of truly general purpose iterative solvers that could replace direct
methods with a minimum risk of failure. A comparison between existing software
based on direct methods and software based on iterative methods, reveals that the
direct solvers have evolved quite differently and have acquired a level of sophistication
that far exceeds that of iterative methods.

In order to be able to enhance robustness of iterative solvers, we should be able
to determine, e.g., by means of heuristics, whether or not a given preconditioner is
suitable for the problem at hand. If not one can attempt another possible iterative
method/preconditioner and switch periodically if necessary. It is desirable to be able
to switch within the outer iteration instead of restarting. For the GMRES algorithm
[5], this can be accomplished with the help of a rather simple modification of the
standard algorithm, referred to as the Flexible GMRES (FGMRES) which is presented
in this paper. An important property of FGMRES is that it satisfies the residual norm
minimization property over the preconditioned Krylov subspace just as in the standard
GMRES algorithm [5].

For motivation, we mention that there are cases in which relaxation type precon-
ditioners are more attractive than the usual ILU preconditioners. These include the
case in which a red-black ordering is used. In this situation, the single step SSOR
preconditioner and the ILU preconditioning may perform very poorly. However, our
experience is that if a higher level-of-fill ILU or a multiple step SSOR (or SOR) pre-
conditioner is used then the preconditioned method can perform rather well [4]. In
this situation, SOR and SSOR have a distinct advantage over the ILU type precon-
ditioners, in that they preserve their high degree of parallelism which is of order N.

* University of Minnesota, Computer Science Department, 200 Union st., Minneapolis, MN 55455
1



In contrast a serious loss of parallelism is incurred for the incomplete factorization
preconditioners with high level-of-fill. A few other advantages are discussed in [4].
Thus, we wish to be able to apply an arbitrary number of SOR or SSOR steps in
the preconditioning phase, for example, in order to solve the preconditioning system
My = v to a given tolerance. We may also wish to change the relaxation parameter
w, possibly at each GMRES step in order to attempt to achieve optimality.

The Flexible GMRES algorithm presented in this paper allows to incorporate
these changes in the preconditioner into the GMRES framework at little additional
cost. To be precise there is no additional cost incurred in the arithmetic but the
memory requirement doubles. On the other hand FGMRES may enable one to utilize
the memory more efficiently since the vectors that are normally not being used in
a given FGMRES step can be fully exploited to compute a preconditioned vector,
e.g., via another GMRES run that uses these vectors. A few tests based on this
approach will be presented in the numerical experiments section. We will present
some applications of the technique to show how the method can be used to improve
the robustness of the standard GMRES algorithm. We should point out that another
illustration of the benefits of FGMRES in the finite element framework is described
by Tezduyar et al. [6].

2. Krylov Subspaces with Variable Preconditioning. The basic principle
of preconditionings is to use a Krylov subspace method for solving a modified system
such as

AM™Y(Mz) = b.

Clearly, the matrix AM ~! need not be formed explicitly: we only need to solve Mz = v
whenever such an operation is required. Thus, a fundamental requirement is that it
should be easy to compute M ~'v for an arbitrary vector v. In some cases, solving
a linear system with the matrix M consists of forming an approximate solution by
performing one or a few steps of a relaxation type method, or a Chebyshev iteration.
It is natural to consider preconditioners that do not use only a single step of an
iterative method but as many are are needed to solve a linear system within a given
tolerance. In fact this would be the equivalent of a higher level-of-fill, in the usual ILU
preconditioners, except that the preconditioner is no longer constant but is allowed to
vary from one step to another in the outer iteration. A similar situation in which the
preconditioner is “not constant” is when another Krylov subspace method, e.g., one
that is based on the normal equations approach, is used as a preconditioner. These
applications and others, lead us to raise the question as to whether or not it is possible
to accommodate such variations in the preconditioners and still obtain an algorithm
that satisfies an optimality property similar to the one satisfied by the original iterative
method. This question has been avoided in the past because in the Hermitian case
there does not seem to exist a version of the usual preconditioned Conjugate Gradient
algorithm that satisfies a short vector recurrence and that allows the preconditioner
to vary at each step. In the non-Hermitian case and for methods that do not rely
on short vector recurrences, such as GMRES, variations in the preconditioner can be
handled without difficulty as we now show.

2.1. The algorithm. We start by describing the standard GMRES algorithm
with right preconditioning and then show the flexible modification which allows such
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variations.
ALGORITHM 2.1. GMRES with right Preconditioning
1. Start: Choose ¢ and a dimension m of the Krylov subspaces. Define an
(m + 1) x m matrix H,, and initialize all its entries h; ; to zero.
2. Arnoldi process:
(a) Compute ro = b— Axg, § = ||ro||2 and vy = ro/p.
(b) For j=1,...,m do
o Compute z; := M 1v;
o Compute w := Az;
e Fori=1,...,7,do Z;’J:_w(il]’}:;)%
o Compute hjyq ; = ||w||2 and vj41 = w/hjt1 ;.
(¢) Define V,,, := [v1, ..., vp]].
3. Form the approximate solution: Compute z,, = o + M ~'V,,y,, where
Ym = argmin, ||Be; — Hyyll2 and e; = [1,0,.. .,0]7.
4. Restart: If satisfied stop, else set xg «— z,, and goto 2.
The Arnoldi loop simply constructs an orthogonal basis of the preconditioned
Krylov subspace

Span{ro, AM~trq, ..., (AM ™1™ g}

by a modified Gram-Schmidt process, in which the new vector to be orthogonal-
ized is obtained from the previous vector the process. The last step in the above
algorithm forms the solution as a linear combination of the preconditioned vectors
2z = M~ 'v;,i = 1,...,m. Because these vectors are all obtained by applying the
same preconditioning matrix M ! to the v’s, we need not save them. We only need
to apply M~! to the linear combination of the v’s, i.e., to V,,9,,. The question we
can now ask is: what if we allowed the preconditioner to change at every step, i.e., z;

would be defined by

. —_— _1 .
Zj = j\/[j v;

but we saved these vectors to use them in updating z,, in step 3?7 In other words we
would like to consider the following ‘flexible’ modification to the previous algorithm.
ALGORITHM 2.2. FGMRES: GMRES with variable Preconditioning
1. Start: Choose ¢ and a dimension m of the Krylov subspaces. Define an
(m + 1) x m matrix H,, and initialize all its entries h; ; to zero.
2. Arnoldi process:
(a) Compute ro = b— Axg, § = ||ro||2 and v1 = ro/p.
(b) For j=1,...,m do
o Compute z; := ij_lvj
o Compute w := Az;
e Fori=1,...,7,do Z’J:_w(iv’}::])%
o Compute hjyq; = ||w||2 and vj41 = w/hj4q1 ;.
(c) Define Z,, := [z1,...., Zm).
3. Form the approximate solution: Compute z,, = 9 + Z,,y,, Where
Ym = argmin, ||Be; — Hyyllo and e; = [1,0,.. ., 0]7.
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4. Restart: If satisfied stop, else set zg «— z,, and goto 2.

As can be observed the only difference with the standard version is that we now
save the preconditioned vectors z; and update the solution using these vectors. It is
clear that when M; = M for j = 1,...,m then the new method is mathematically
equivalent to Algorithm 2.2. Note that we can define z; in step 2-b without reference
to any preconditioner, i.e., we can simply pick a given new vector z;. We would like
to mention that the technique presented above can be viewed as an extension of a
strategy presented in [1] in the context of using Krylov subspace methods for solving
nonlinear equations. More recently, van der Vorst and Vuik developed a family of
algorithms that have the same feature as FGMRES in that they also allow variations
in the preconditioner [7].

2.2. Some basic properties. One notable difference between FGMRES and
the usual GMRES algorithm is that the action of Aﬂ/[j_1 on a vector v of the Krylov
subspace is no longer in the span of V,,, 1. Instead, it is easy to show that the following
equality takes place

(1) AZy = Vi1 Hyy
This replaces the simpler relation
(AM™Y)W,. = Viugr Hoy,

which holds for the standard preconditioned GMRES [5]. Following [5] we will denote
by H,, the m x m matrix obtained from H,, by deleting its last row and by ¥j41 the
vector w obtained at the end of step 2-b of the algorithm, i.e.,, the vector obtained
before normalizing w to get v;41. Then an alternative to (1) which is valid even when
hmg1,m = 0 is the following

We will now prove an optimality property similar to the one which defines GM-
RES. Consider the residual vector for an arbitrary vector z = zg + Z,,y in the affine
space zqg + span{Z,,}. We have

b—Az = b—Alzo+ Zny)

(3) = rog—AZ,y
ﬁvl - Vm—}—lﬁmy
(4) = VmtilBer — Hyy).

If we denote by J,,(y) the function

Im(y) = ||b = Alzo + Zmy]ll2

we observe that by (4) and the fact that V,,4; is unitary, we have

(5) T (y) = 1Ber — Huyll2

Since Step 3 of the algorithm minimizes this norm over all vectors y in R™ to yield y,,,
it is clear that the approximate solution x,, = zg + Z,,¥,, has the smallest residual
norm in zg + Span{Z,,}. Thus we have proved the following result.
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ProrositioNn 2.1. The approzimate solution x,, obtained al step m minimizes
the residual norm ||b — Ax,,||; over zg + Span{Z,,}.

We will now examine the breakdown situation in FGMRES which occurs when
hjt1,; = 0 in the last part of step 3 in Algorithm 2.2. In this situation, the vector
v;j4+1 cannot be computed and the algorithm breaks down. For the standard GMRES
algorithm this is not a problem because when this breakdown occurs, then the ap-
proximate solution z; is exact. In fact breakdown is equivalent to convergence. In
FGMRES this is no longer true. More specifically we have the following result.

ProposITION 2.2. Assume that 3 = ||ro||2 # 0 and that j — 1 steps of FGMRES
have been successfully performed, i.e., that h;y1; # 0 for ¢ < j. In addition, assume
that the matriz H; is nonsingular. Then x; is exact if and only if hj1q; = 0.

Proof. If hji1 ; = 0 then we have the relation AZ; = H;V;, and as a result

Ji(y) = ||Bor — AZjy;ll2 = ||Bor — Vi Hjyjll2 = [|Ber — Hjy;ll2

If we assume that H; is nonsingular, then the above function is minimized for y; =
H]-_l(ﬂel) and the corresponding minimum norm reached is zero, i.e., z; is exact.
Conversely, if z; is exact then from (2) and (3) we have

(6) 0=b— Ax; = Vj[Brey — Hjy;] + bj41€] y;

If the last component of y; is zero then (6) would mean that H;y; = (e; and, since
hit1,; # 0for 1 <¢ < j—1, asimple back-substitution starting from the last equation
will show that all components of y; are zero. This would imply that 3 = 0 and
contradict the assumption. Hence ejTyj # 0. Therefore, since 9;41 is orthogonal to
v1,...,v; the only way in which (6) can hold is that S1e; — H;y; = 0 and 9,41 = 0
which implies h;41; =0. O

Note that the only difference between this result and the one in [5] concerning the
standard GMRES algorithm is that we must make the additional assumption that H;
is nonsingular since this is no longer implied by the nonsingularity of A.

A consequence of the result is that if at a given step j, we have Az; = v;, i.e.,
if the preconditioning is ‘exact’ at step j, then the approximation z; will be exact
if in addition H; is nonsingular. This is because w = Az; is linearly dependent on
previous v;’s (it is equal to v;), and as a result we will obtain ¢;4; = 0 after the
orthogonalization process.

A difficulty with the theory of the new algorithm is that we cannot prove general
convergence results such as those in [5]. This is because the subspace of approximants
is no longer a standard Krylov subspace and we have no isomorphism with the space of
polynomials. However, the optimalty property of Proposition 2.1 can be exploited in
some specific situations. For example, if within each outer iteration we select at least
one of the vectors z; to be a steepest descent direction vector, e.g., for the function
F(z) = ||b — Az|)3, then FGMRES is guaranteed to converge, independently of m.

2.3. Practical considerations and applications. The additional cost incurred
by the flexible variant over the standard algorithm is only in the extra memory re-
quired to save the set of vectors {z;};=1,...,m. On the other hand the added advantage
of flexibility may certainly be worth this extra cost. There are a few applications in
which this flexibility can be quite helpful especially in the context of developing robust
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iterative methods or for developing preconditioners for massively parallel computers.
Here is a sample of possible applications.
1. Use of any iterative techniques as preconditioners: Block-SOR, SSOR, ADI,
Multi-grid, etc... but also GMRES, CGNR, CGS etc..
2. Use of chaotic relaxation type preconditioners (e.g., in a parallel computing
environment)
3. Mixing Preconditioners to solve a given problem.

For an example of (3) see the recent work by Tezduyar and co-authors [6] in which
two types of preconditioners are alternatively applied at each FGMRES step to mix the
effects of “local” and “global” interactions. Tezduyar et al. reported good performance
with this procedure, much better than using either of the two preconditioners by itself.

Note that any iterative method can now be used as a preconditioner. For example,
we will show how to make some nonnegligible improvements to the performance of
the basic GMRES algorithm by using GMRES as preconditioner to itself (using for
memory space the unused vectors at the i-th step of FGMRES(m)).

Preconditioners of particular interest within this framework are relaxation type
techniques. As an example, the SSOR preconditioning matrix defined by

Mssor(A) = (D —wE)D YD —wF)

in which —F is the strict lower part of A, —F is the strict upper part of A, and D
is the diagonal of A, has some important advantages some of which have been briefly
discussed in the introduction. In the context of preconditioning, it is customary to just
take w = 1 as the gains from selecting an optimal w are typically small. However, it is
clear that one can use different values of w at each step of FGMRES and this can open
up the possibility of using heuristics to determine the best w dynamically, by simply
monitoring convergence. Alternatively, a mixture of w’s can be initially selected and
then used cyclically, instead of arbitrarily taking only w = 1 as is usually done. We
would also like to make an important point concerning SOR as a preconditioner. The
usual one-step SOR is not popular as a preconditioner mainly because it tends to
make the eigenvalues of the preconditioned matrix distributed around a circle (e.g.,
for the model problem). This is not too desirable for a CG-type solver. However, we
found that when using multiple steps, SOR is often more economical than SSOR as a
preconditioner.

We will not discuss these applications here but refer the reader to the paper [4].
Rather, we would like to demonstrate the flexibility of FGMRES by simply combining
it with other iterative methods to improve its robustness. We are particularly inter-
ested in combinations with CGNR, and with the standard GMRES itself. The reason
why we chose CGNR is that we know that the method is globally convergent and as
a result, adding one direction vector to the standard Krylov subspace will guarantee
global convergence because of the optimality of FGMRES. We should add however,
that guaranteeing global convergence is not the ultimate goal, since the convergence
can be still too slow to be of any practical value.

3. Numerical Experiments. For test purposes we consider the problems aris-
ing from the centered difference discretization of problems of the form

(7) — Au+vy(zuy + yuy) + fu=f
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on a square regions with zero Dirichlet boundary conditions. In our first test we
selected the parameters: 7 = 10 and § = —100, to make the problem indefinite.
The grid consisted of a square of 32 internal mesh points in each direction leading
to a matrix of size N = 1024. The right hand side was selected once the matrix is
constructed so that the solution is known to be z = (1,1,..., 1)T. In all methods
the initial vector is chosen so that its ¢th component for ¢ = 1,...,n is defined by
zo(i) = 1. We have compared the following methods.

1. A standard ILU(0) preconditioned GMRES(m) iteration with m = 20 direc-
tion vectors.

2. The CGNR iteration (Conjugate Gradient — Normal equations) using an ILQ
preconditioner with level-of-fill equal to 5; see [3] for details on these pre-
conditioners. The idea of ILQ is to perform an incomplete Gram-Schmidt
factorization on the rows of A. The normal equations are preconditioned us-
ing this factorization and the Conjugate Gradient method (CGNR version) is
used to solve these equations.

3. The FGMRES iteration using (the unpreconditioned) GMRES itself as a pre-
conditioner. As was briefly mentioned in the introduction this is run as follows.
We observe that at step ¢ of the FGMRES iteration, the space for the vectors
Vg2 .-y U1 and for zx, k=14 1,...,m is unused. However, they can be
exploited to generate a preconditioned version of »; by running a standard
GMRES iteration using 2m — ¢ — 1 direction vectors. In fact the vectors v;
and z; occupy the same array wk(1:n,1:2m) and the z;’s are stored back-
wards starting in column 2m to avoid collisions. Note that for fairness in the
comparisons, we use here m = 10 so that the total number of vectors needed
is 2m = 20, the same as is required for the ILU0-GMRES in 1.

4. The FGMRES iteration using ILU(0)/GMRES as a preconditioner. This is
similar to the previous method except that the method used to precondition
is ILUO-GMRES instead of the unpreconditioned GMRES.

5. The FGMRES iteration using k steps of the unpreconditioned CGNR iteration
as a preconditioner. In our first test we took £ = 5 and in the second k = 2.
Other values of k have also been tested and performed similarly.

Figure 1 is a plot of the residual norm achieved by these five methods against
the number of operations (in millions) required to reach that level for the first test
problem. We chose to plot the residuals versus the number of operations because the
number of iterations is no longer significant for making comparisons since the cost of
each iteration can be quite different for each of the methods compared. Observe that
the FGMRES iteration using the unpreconditioned GMRES (method 3) converges,
although slowly, whereas the standard GMRES(20) (not shown) as well as the ILUO
preconditioned GMRES(20) both stagnate. More interesting is the convergence of
FGMRES with ILU0-GMRES as a preconditioner. ILU0-GMRES(20) alone fails to
converge (stopped after 700 steps). Used as a preconditioner, the technique converges
in 15 outer iterations and yields the second best performance in this test. In this test
CGNR/ILQ(5) performed quite well.

In our second test we took the same Partial Differential Equation as before but
with the parameters v = 1000 and § = 10.0, to make the problem highly nonsymmet-
ric. The grid is the same as before and so the size of the matrix is still 1024. The
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right-hand-side and the starting vector are generated similarly to the previous exam-
ple. We have run the same methods as before, except that the number of CGNR steps
used in FGMRES/CGNR is 2 instead of 5. The results are shown in Figure 2. Note
that this time, CGNR/ILQ does not perform as well. In fact some of the conclusions of
the previous test are reversed. Thus, FGMRES/ILUO-GMRES is now outperformed
by the simpler ILUO-GMRES(20). The FGMRES with unpreconditioned GMRES
outperforms the FGMRES with ILUO-preconditioned GMRES by a slight margin. In
addition, FGMRES with CGNR preconditioner using just 2 steps of CGNR is now
the overall best.

4. Conclusion. An interesting observation from the above experiments is that
for indefinite and /or highly nonsymmetric matrices the performance of a given precon-
ditioner can be unpredictable. In these situations, it is essential to be able to switch
preconditioners, in order to improve robustness. FGMRES is an algorithm which al-
lows arbitrary changes in the preconditioner and can be used to this end. There are
many other uses of the Flexible variant of GMRES. In addition, the difference in the
coding of the two methods is so small that they can both be implemented, with no
loss of efficiency, in a single subroutine which incorporates an option parameter.
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