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Abstract.

When combined with Krylov projection methods, polynomial filtering can provide a powerful method for extracting
extreme or interior eigenvalues of large sparse matrices. This general approach can be quite efficient in the situation when
a large number of eigenvalues is sought. However, its competitiveness depends critically on a good implementation. This
paper presents a technique based on such a combination to compute a group of extreme or interior eigenvalues of a real
symmetric (or complex Hermitian) matrix. The technique harnesses the effectiveness of the Lanczos algorithm with partial
reorthogonalization and the power of polynomial filtering. Numerical experiments indicate that the method can be far superior
to competing algorithms when a large number of eigenvalues and eigenvectors is to be computed.
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1. Introduction. The problem addressed in this paper is to compute eigenvalues located in a specified
interval of a large real symmetric or complex Hermitian matrix, along with their associated eigenvectors.
The interval, which we will also refer to as a ‘window’, can consist of a subset of the largest or smallest
eigenvalue, in which case the eigenvalues requested are in one of the two ends of the spectrum. When the
window is well inside the interval containing the spectrum, this is often referred to as an ‘interior eigenvalue
problem’. Eigenvalues in the inner portion of the spectrum are called ‘interior eigenvalues’, though this is
clearly a loose definition.

Computing a large number of interior eigenvalues of a large symmetric matrix remains one of the most
difficult problems in computational linear algebra today. The classical approach to the problem is to use a
form of shift-and-invert technique. If we are interested in eigenvalues around a certain shift σ, shift-and-
invert consists of using a projection-type method (subspace iteration, Lanczos) to compute the eigenvalues
of the matrix (A− σI)−1. The eigenvalues (λi − σ)−1 of this matrix become the dominant eigenvalues for
those λi’s close to σ and as a result they are easy to compute with the projection method. This approach
has been the most common in structural analysis codes [1]. Computational codes based on this approach
select a shift dynamically and perform a factorization of the matrix A− σI (or A− σB for the generalized
case).

There are a number of situations when shift-and-invert will be either inapplicable, or too slow to be of
practical interest. For example, it is known that problems based on a 3-D physical mesh will tend to give
matrices that are very expensive to factor due to both computational and memory requirements. There
are also situations when the matrix A is not available explicitly but only through subroutines to perform
matrix-vector products. Finally, in the situation, common in electronic structure calculations, when a
very large number of eigenvalues is to be computed, the number of factorizations to be performed, i.e.,
the number of shifts necessary to obtain all wanted eigenvalues, can be quite high. Since the cost of each
factorization is expensive, the approach will loose its appeal. In fact for the example of electronic structure
calculations, one is struck by the double whammy of the 3-D nature of the problem and the large number
of eigenvalues.

In this paper we address this problem by combining two major ingredients: the Lanczos algorithm on
the one hand and polynomial filtering on the other. A key feature of the Lanczos algorithm is to exploit par-
tial reorthogonalization [27]. This is favored over the alternatives of ‘selective reorthogonalization’ [22] and
‘full reorthogonalization’ [25], due to its compromise between accuracy, cost, and ease of implementation.

Our focus is on the eigen-space rather than individual eigenvectors. Standard diagonalization software
places too big an emphasis on obtaining accurate eigenvectors, at a cost that is often quite high. Focusing
on invariant subspaces is much more natural and can be more cost effective. All that is needed is that a good
basis of the subspace be computed, but this basis does not need to be a basis of accurate eigenvectors. This
principle was exploited with good success by Zhou et al. [30, 31], where a Chebyshev-type approach was
used in the nonlinear context of self-consistent field (SCF) iterations in electronic structure calculations.
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The specific problem considered in this paper can be stated as follows. Given a real symmetric (or
complex Hermitian matrix), compute all the eigenvalues in a given interval [ξ, η], which is a given sub-
interval of the interval [λmin, λmax] containing all eigenvalues. It is assumed that an interval [a, b] which
(tightly) contains [λmin, λmax] is available a priori. This means that two scalars a, b with a / λmin and
λmax / b are already available, typically computed in a pre-processing stage. For example, a and b can be
estimated by the Gershgorin circle theorem or via a simple modification of the approximate smallest and
largest eigenvalues obtained from the standard Lanczos procedure.

There are three type of problems. If a = ξ < η < b, then the requested eigenvalues are in the ‘lower
end’ of the spectrum. If a < ξ < η < b, then the requested eigenvalues are ‘interior’. If a < ξ < η = b, then
the requested eigenvalues are in the ‘upper end’ of the spectrum. Matrix polynomials and filtering matrices
have been used in linear scaling and related methods, see for example [9, 10, 15, 16, 17]. In some cases,
these methods will compute the entire density matrix [16], or just a small part of it as an approximation
[10]. Along these lines, a polynomial filtered Lanczos procedure with partial reorthogonalization has been
utilized for electronic structure calculations [2]. The main difference between the present work and that in
[2] is that we consider the computation of interior eigenvalues computations as well extreme eigenvalues,
whereas [2] addresses only extreme eigenvalue problems.

Section 2 reviews the Lanczos method and sketches the basic idea of polynomial filtering. Section 3 gives
an overview of the reorthogonalization schemes and provides some details of partial reorthogonalization.
Section 4 provides some details on the incorporation of polynomial filtering to extract eigenvalues in a
given interval [ξ, η] and their associated eigenvectors. Experimental results are reported in Section 5 and
a conclusion is given in Section 6.

2. The Lanczos method with polynomial filtering. Given a Hermitian matrix A ∈ Cn×n with
a unit (typically random) column vector q1 ∈ Cn, the Lanczos algorithm [12] (see also [4, 5, 21, 25]) builds
a sequence of vectors q1, q2, . . . , qm ∈ Cn which form an orthonormal basis of the Krylov subspace1

Km(A, q1) = Span{q1, Aq1, A2q1, . . . , A
m−1q1}.(2.1)

2.1. Background: The basic Lanczos algorithm. A sketch of the Lanczos procedure is given in
Algorithm 1. Essentially, at each step we compute Aqj which is orthogonalized against qj and (when j > 1)
against qj−1.

1: {Given a Hermitian matrix A ∈ Cn×n, with an initial unit vector q1 ∈ Cn.}
2: q0 := 0, β1 := 0
3: for all i = 1, 2, . . . do
4: w := Aqi − βiqi−1

5: αi := qHi w
6: {Check convergence.}
7: w := w − αiqi
8: {Apply reorthogonalization.}
9: βi+1 := ‖w‖

10: if βi+1 == 0 then

11: Pick qi+1 := a unit vector orthogonal to q1, . . . , qi.
12: else

13: qi+1 := w/βi+1

14: end if

15: end for

Algorithm 1: The Lanczos algorithm.

Note that Algorithm 1 implements a modified Gram-Schmidt process. Paige [19] and Parlett [21]
suggest this as the preferred implementation among several other options. The Lanczos algorithm requires
the matrix A only in the form of matrix-vector products which can be quite appealing in some situations,
such as when A is available in stencil form. The sequence of vectors computed in the course of the Lanczos

1Here we assume that q1 is in the span of at least m eigenvectors of A.
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algorithm satisfies the 3-term recurrence:

βi+1qi+1 = Aqi − αiqi − βiqi−1.(2.2)

Therefore, in principle only three Lanczos vectors need to be stored in main memory. As is well-known,
in exact arithmetic, this 3-term recurrence, as implemented by Algorithm 1, would deliver an orthonormal
basis q1, . . . , qm, of the Krylov subspace Km. In the presence of rounding, orthogonality between the qi’s
is quickly lost, and a form of reorthogonalization is needed in practice. Alternative schemes obviate the
need for reorthogonalization at the expense of a large increase the number of steps, see [4].

Let Qm = [q1, . . . , qm] and Tm denote the symmetric tridiagonal matrix

Tm = Tridiag[βi, αi, βi+1],(2.3)

the tridiagonal matrix with entries βi, αi, βi+1 in the ith row, where the scalars αi, βi are those produced
by the Lanczos algorithm. Aggregating (2.2) into matrix form, we obtain

AQm = QmTm + βm+1qm+1e
H
m,(2.4)

where em is the mth column of the canonical basis and qm+1 is the last vector computed by the Lanczos
algorithm. In exact arithmetic α1, . . . , αm are real, since Tm = QH

mAQm is Hermitian. In addition we
choose βi’s as real numbers. Therefore Tm is a real symmetric matrix. However, due to rounding, αi’s may
have small imaginary values, which can be dropped in practice.

Let θi, yi be an eigen-pair of Tm. In case of ambiguity, θ
(m)
i , y

(m)
i will denote the same eigen-pair at

the mth step of the process. Then the eigenvalues θ
(m)
i , known as Ritz values, will approximate some of

the eigenvalues of A as m increases. Specifically, the extreme eigenvalues are often approximated first. The

vectors Qmy
(m)
i , referred to as Ritz vectors, will approximate the related eigenvectors of A. The Lanczos

algorithm quickly yields good approximations to extreme eigenvalues of A while convergence is often much
slower for the interior of the spectrum.

A scheme based on the Lanczos procedure, relies on the orthogonality of the Lanczos vectors q1, . . . , qm.
As was mentioned above, the qi’s, which in theory form an orthonormal basis, loose their orthogonality in
practice. Orthogonality is lost very rapidly after one eigenvector starts converging, leading to an unstable
underlying computation. This was studied in detail by Paige in the 1970s [18, 19, 20]. A remedy to this
problem is to reorthogonalize the vectors when needed. A further discussion will be given in Section 3. For
now we only need to know that a form of reorthogonalization is applied.

2.2. Filtered Lanczos algorithms. When the number of requested eigenvalues becomes large, the
number of needed Lanczos vectors may increase so much that the orthogonalization process becomes very
expensive. One way to circumvent this is to apply a spectral transformation [21], i.e., to compute the
eigenvalues of either (A− σ)−1 (shift-and-invert) or ρ(A), where ρ is a certain polynomial.

The method we use is based on spectral transformation using polynomials, i.e., replacing A by ρ(A)
in order to compute the requested eigenvalues in far fewer steps than would be required with A directly.
This can be illustrated with a very simple example. Suppose we need to compute all the eigenvalues in the
interval [ξ, η] = [3.9, 4.1] of a matrix whose spectrum is known to be included in [a, b] = [0, 8]. Our first
option is to simply use the Lanczos algorithm to compute as many eigenvalues as needed until those in
the desired interval are captured, i.e., until they all converge. This is likely to require a great many steps
when n is large.

Our second option is to factor the matrix A − σI, with σ = (ξ + η)/2 = 4, and apply Lanczos to the
inverse of A− σI. This is likely to require far fewer steps to yield convergence to the desired eigenvalues –
but a factorization is now needed, possibly at the expense of enormous fill-in.

A third option is to use spectral transformation with a polynomial. For example, if a quadratic
polynomial is used, we would compute the eigenvalues of the matrix B = [αI − (A − σI)2]/d. We would
like to find the parameters α, d in such way that all unwanted eigenvalues of A are transformed to eigenvalues
of B that are < 1, and those that are wanted should be transformed into eigenvalues of B that are ≥ 1.
This is achieved by taking α = (σ2 + δ2)/2, and d = (σ2 − δ2)/2, with σ = 4, δ = 0.1 in the above example.
Note that the scaling by d has no effect, so we can define B = ρ(A) ≡ αI − (A− σI)2. We can then apply
the Lanczos algorithm to B to compute those wanted eigenvalues and corresponding eigenvectors. The

3



eigenvectors of the original matrix A are the same as those of B. The eigenvalues can be obtained from
the eigenvectors, for example from their Rayleigh quotients.

Using a degree 2 polynomial is usually not optimal. In particular, it may not be a good choice when
the interval of desired eigenvalues is not exactly in the middle of [a, b] as the case in the above example.
In addition, the separation of the eigenvalues α − (λi − σ)2 can be very poor for those eigenvalues near
σ, and this can cause slow convergence. For these reasons it is important to allow the polynomial to
be of higher degree and to select this polynomial very carefully. However, whether a low or high degree
polynomial is used, the principle is the same. The desired polynomial will have a property illustrated in
Figure 2.1. We need to obtain a scalar γ with the property that ρ(λ) ≥ γ for λ ∈ [ξ, η], and ρ(λ) < γ for

λ /∈ [ξ, η] but λ ∈ [a, b]. This is desired for all three types of problems, for smallest eigenvalues, for interior
eigenvalues, and for largest eigenvalues. The corresponding filters are called low-pass filters, mid-pass
filters, and high-pass filters, respectively.
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Fig. 2.1. A basic high-pass polynomial filter (left) and a basic mid-pass polynomial filter (right).

A polynomial filtered Lanczos algorithm for computing interior eigenvalues is sketched in Algorithm 2.
A few explanations and comments follow. The polynomial filter ρ(λ) is determined by an algorithm to
be seen in Section 4 (Algorithm 4) which also provides the scalar γ that separates the ρ(λj)’s according
to whether λj ∈ [ξ, η] or not. The convergence test in line 9 is performed every ‘stride’ iterations. The
eigenvalues θj ’s of Ti in line 22, called the Ritz values, approximate eigenvalues of ρ(A). Since ρ(A)
and A share the same eigenvectors, in line 23 we can obtain approximate eigenvalues of A by 〈yj , Ayj〉
with the approximate eigenvectors yj ’s of ρ(A). The test in the last line rejects the eigenvalues not in
the requested interval [ξ, η]. This is required if the polynomial filter does not fully satisfy the separation
property illustrated in Figure 2.1.

Convergence of the algorithm is checked in line 9 of Algorithm 2. This is performed as follows. Let

θ
(i)
j ’s be the eigenvalues of Ti and θ

(i−1)
j ’s be the eigenvalues of Ti−1, where the symmetric tridiagonal

matrices Ti and Ti−1 are defined in (2.3). With a preset tolerance ǫ, the desired eigenvalues are deemed

to have converged if the number of eigenvalues of Ti satisfying θ
(i)
j ≥ γ is the same as the number of

eigenvalues of Ti−1 satisfying θ
(i−1)
j ≥ γ, and

∣∣∣∣
σi − σi−1

σi−1

∣∣∣∣ < ǫ, where σi =
∑

θ
(i)
j

≥γ

θ
(i)
j and σi−1 =

∑

θ
(i−1)
j

≥γ

θ
(i−1)
j .(2.5)

By the interlacing property of eigenvalues of a reducible symmetric tridiagonal matrix, e.g., [6, Theo-

rem 8.5.1], |σi − σi−1| is the sum of Ritz value differences |θ(i)j − θ
(i−1)
j | for θ(i)j , θ

(i−1)
j ≥ γ. Therefore, the

error is measured in the relative and average sense.
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1: Input: matrix A ∈ Cn×n; initial unit vector q1 ∈ Cn; interval of desired eigenvalues [ξ, η], and degrees
of base filter and polynomial filter {di}4i=1 and d.

2: Output: eigenvalues λj ’s in the interval [ξ, η] and the corresponding eigenvectors yj ’s.
3: Determine a polynomial filter ρ(λ) with γ such that ρ(λ) ≥ γ for λ ∈ [ξ, η]. ⊲ Algorithm 4
4: q0 := 0, β1 = 0
5: for all i = 1, 2, . . . do
6: w := ρ(A)qi − βiqi−1 ⊲ ρ(A)qi is computed via Algorithm 3.
7: αi := qHi w
8: if rem(i, stride) == 0 then ⊲ Check convergence.
9: If it converges, break the loop.

10: end if

11: w := w − αiqi
12: if w fails to pass the semi-orthogonality test then
13: Apply a reorthogonalization scheme here. ⊲ We use partial reorthogonalization.
14: end if

15: βi+1 := ‖w‖
16: if βi+1 == 0 then

17: Pick qi+1 as a unit vector orthogonal to q1, . . . , qi.
18: else

19: qi+1 := w/βi+1

20: end if

21: end for

22: Compute the Ritz values θj ’s of Ti for θj ≥ γ and the corresponding Ritz vectors yj ’s.
23: Compute the approximate eigenvalues λj := 〈yj , Ayj〉 for all yj’s from above.
24: Reject all λj , yj pairs such that λj /∈ [ξ, η].

Algorithm 2: The polynomial filtered Lanczos algorithm.

To complete the description of our algorithm, two ingredients are now needed: 1) How to reorthogonal-
ize the Lanczos vectors; 1) How to compute the desired polynomial filters. These two issues are discussed
in turn in Sections 3 and 4, respectively.

3. Reorthogonalization schemes. Section 3.1 reviews the orthogonality issue in the Lanczos pro-
cess. Section 3.2 gives some details of the partial reorthogonalization scheme.

3.1. Orthogonality in the Lanczos process. Various reorthogonalization schemes have been pro-
posed to correct the loss of orthogonality of the Lanczos vectors. The simplest but most expensive one
is that of full reorthogonalization, whereby the orthogonality of the current Lanczos vector qi against all
previous vectors q1, . . . , qi−1 ∈ Cn is reinstated at each step i. When summed over m steps, the overall
cost of orthogonalization, by the Gram-Schmidt process for instance, is O(m2n). This is not an issue if m
is small but when m is large, the orthogonalization procedure eventually dominates the cost of the Lanczos
algorithm. When computing many eigenvalues, the number of steps m will usually be quite large and this
can result in a very expensive scheme.

In the literature there are actually three different approaches to reduce the cost of reorthogonalization,
namely periodic reorthogonalization [7], selective reorthogonalization [22], and partial reorthogonalization

[27]. See also [28, chapter 5.3] for an introduction. Methods based on partial reorthogonalization, a variant
of which is used in this paper, attempt to reorthogonalize only when it is deemed necessary. The goal is
not to guarantee that the vectors are orthogonal to the machine precision level, but to ensure that they
are at least nearly orthogonal. Typically, the loss of orthogonality is allowed to grow to roughly

√
ǫM , the

square root of the machine precision, before a reorthogonalization is performed. A result by Simon [26]
ensures that we can still get accurate eigenvalue approximations by the Ritz values, i.e., eigenvalues of the
tridiagonal matrix Tm, despite the reduced level of orthogonality of the Lanczos vectors.

For all reorthogonalization schemes (full, periodic, selective, and partial), we no longer have a 3-term
recurrence. This results in an increased cost related to increased computations as well as memory traffic.
As will be discussed in Section 4, the use of polynomial filtering significantly reduces the number of required

5



Lanczos vectors needed to extract the desired interior eigenvalues, thereby reducing drastically the cost of
reorthogonalization at the expense of a higher cost related to matrix-vector products. See also [2, 3].

3.2. Semi-orthogonality and partial reorthogonalization. In what follows, we use a hat for
each computed quantity (i.e., with rounding errors), and rewrite (2.2) as

β̂i+1q̂i+1 = Aq̂i − α̂iq̂i − β̂iq̂i−1 −∆fi,(3.1)

where ∆fi accounts for rounding errors. If a polynomial filter ρ(λ) is utilized, Aq̂i is replaced by ρ(A)q̂i and
the discussion remains the same. To measure the loss of orthogonality, we define the level of orthogonality

κi = max
1≤j≤i−1

|q̂Hi q̂j |.

Full reorthogonalization aims at keeping κi at the roundoff level. However, in practice semi-orthogonality,
i.e., requiring only that κi ≤

√
ǫM with ǫM the machine epsilon, is sufficient to prevent spurious duplicate

copies of eigenvalues in the computation. Therefore, the objective is to find an upper bound on κi which
can be computed inexpensively. Reorthogonalization is applied when this bound is greater than

√
ǫM .

Let ωij = q̂Hi q̂j for i 6= j and ωii = 1. Replacing i by j in (3.1), we obtain

β̂j+1q̂j+1 = Aq̂j − α̂j q̂j − β̂j q̂j−1 −∆fj .(3.2)

After simplification in the expression q̂Hj ×(3.1) - q̂Hi ×(3.2), we obtain

β̂i+1ωi+1,j = β̂j+1ωi,j+1 + (α̂j − α̂i)ωij + β̂jωi,j−1 − β̂iωj,i−1 + q̂Hi ∆fj − q̂Hj ∆fi.(3.3)

The equation (3.3) was first shown by Paige [18] and by Takahasi and Natori [29]. Note that here we
assumed A is real symmetric to simplify the discussion. If A is complex Hermitian, the discussion will be
similar.

Writing (3.3) as a recurrence, we have for i = 1, 2, . . .,

ωi+1,j =
1

β̂i+1

[
β̂j+1ωi,j+1 + (α̂j − α̂i)ωij + β̂jωi,j−1 − β̂iωj,i−1 + q̂Hi ∆fj − q̂Hj ∆fi

]
, j = 1, . . . , i−1

ωi+1,i = q̂Hi+1q̂i, ωi+1,i+1 = 1,
(3.4)

where the base case is ω1,1 = 1 and ωi,0 = 1 for all i. Note that the recursion involves q̂Hi ∆fj and q̂Hj ∆fi
for j = 1, . . . , i − 1. These rounding error vectors ∆fi,∆fj are not computable without higher precision
arithmetic. In addition, the vector inner products should be avoided, in an effort to keep the estimate of
the level of the orthogonality inexpensive to evaluate. To this end we consider the following recurrence.
For i = 1, 2, . . .,

ω̄i+1,j :=
1

β̂i+1

[
β̂j+1ω̄i,j+1 + (α̂j − α̂i)ω̄ij + β̂jω̄i,j−1 − β̂iω̄j,i−1 + ϑij

]
, j = 1, . . . , i−1

ω̄i+1,i := ϕi, ω̄i+1,i+1 := 1,
(3.5)

with the base case ω̄1,1 = 1 and ω̄i,0 = 1 for all i. Note that ϑij and ϕi in (3.5) correspond to q̂Hi ∆fj−q̂Hj ∆fi
and q̂Hi+1q̂i in (3.4), respectively. The goal is to choose ϑij ’s and ϕi’s properly, such that in practice the
computed ω̄ij ’s satisfy the property,

κ̄i+1 ≥ κi+1, where κ̄i+1 = max
1≤j≤i

|ω̄i+1,j | and κi+1 = max
1≤j≤i

|ωi+1,j |.

Reorthogonalization is performed whenever κ̄i+1 is greater than
√
ǫM . Simon [27] used normally distributed

random numbers for ϑij and ϕi. We adopt the approach used in PROPACK [13], which potentially gives a
tighter upper bound κ̄i+1 on κi+1.

Recall that ϕi in (3.5) plays the role of q̂Hi+1q̂i in (3.4). Since q̂i+1 and q̂i are unit vectors at roundoff
level, a standard rounding error analysis, e.g., [8], yields a bound on |q̂Hi+1q̂i| proportional to nǫM , where
ǫM is the machine epsilon. However this bound is too pessimistic. In practice we use the rule of thumb
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that the mean rounding error is proportional to the square root of number of operations. Hence, we set
ϕi =

√
nǫM/2 in the recursion (3.5). Note that ǫM/2 is the unit roundoff.

For an appropriate value of ϑij in (3.5), we consider q̂Hi ∆fj − q̂Hj ∆fi or simply q̂Hj ∆fi in (3.4). The

rationale for ignoring q̂Hi ∆fj and considering only q̂Hj ∆fi is that ‖∆fi‖ may be larger than in ‖∆fj‖, since
∆fi is from an later iteration, i.e., i > j, and the accumulated rounding errors may be larger. The product
q̂Hj × (3.1) yields

ωj,i+1 = q̂Hj Aq̂i − α̂iωij − β̂iωj,i−1 − q̂Hj ∆fi.

We should focus on q̂Hj Aq̂i, since the factors ωj,i+1, α̂iωij , and β̂iωj,i−1 are modest under the assumption
of semi-orthogonality.

A standard rounding error analysis gives a bound on |q̂Hj Aq̂i| proportional to nǫM‖A‖2 for j ≤ i − 2.
Again, this bound is too pessimistic, and therefore we use the rule of thumb to obtain the estimate
(
√
nǫM/2)‖A‖2. When the polynomial filtering technique is used, an interval [a, b] which tightly contains

the spectrum is sought first. Since ‖A‖2 is the largest singular value of A, we can use max{|a|, |b|} as a
tight bound on ‖A‖2.

Alternatively, since ‖A‖2 can be approximated quickly by the largest singular value of the symmetric
tridiagonal matrix Ti from the Lanczos algorithm, we consider (

√
nǫM/2)‖Ti‖2 instead. We can apply the

Gershgorin circle theorem to Ti for a bound on ‖Ti‖2. Furthermore, a sophisticated strategy is to apply the
Gershgorin circle theorem to obtain a bound on ‖T 2

i ‖2, whose square root usually provides a tighter bound

on ‖Ti‖2. Note that this bound can be updated recursively when i increases. Let g
(j)
i be the upper bound

of the jth Gershgorin circle of T 2
i , and gi = max{g(j)i |j = 1, . . . , i} be an upper bound of ‖T 2

i ‖2. Recall
that Ti is symmetric tridiagonal with diagonal elements α1, . . . , αi and sub-diagonal elements β2, . . . , βi.
We expand T 2

i as




α2
1+β

2
2 (α1+α2)β2 β2β3

(α1+α2)β2 β2
2+α

2
2+β

2
3 (α2+α3)β3 β3β4

β2β3 (α2+α3)β3 β2
3+α

2
3+β

2
4 (α3+α4)β4 β4β5

. . .
. . .

. . .
. . .

. . .

βi−2βi−1 (αi−2+αi−1)βi−1 β2
i−1+α

2
i−1+β

2
i (αi−1+αi)βi

βi−1βi (αi−1+αi)βi β2
i +α

2
i




,

where the underlined terms are those not in T 2
i−1. Therefore, the following recurrence is clear.

g
(i−2)
i = g

(i−2)
i−1 +|βi−1βi|,

g
(i−1)
i = g

(i−1)
i−1 +β2

i +|(αi−1+αi)βi|,
g
(i)
i = β2

i +α
2
i+|(αi−1+αi)βi|+ |βi−1βi|,

gi = max{gi−1, g
(i−2)
i , g

(i−1)
i , g

(i)
i },

for i ≥ 3. The cases i = 1 and i = 2 are trivial. Since we just need to update the Gershgorin circle bounds
of T 2

i from those of T 2
i−1 with the underlined terms, the cost is negligible. The computed

√
gi is an upper

bound of ‖Ti‖. To conclude, we use ϑij = (
√
nǫM/2)

√
gi in the recursion (3.5). Note that this factor can be

adjusted according to the degree of sparsity of matrix A, as well as whether a polynomial filter is used and
the degree of the polynomial. In practice we use ϑij = (

√
nǫM/2)

√
gi and this provides a good safeguard

for enforcing semi-orthogonality.
Once κ̄i+1 comes above

√
ǫM , semi-orthogonality is no longer guaranteed, and reorthogonalization

must be performed. A natural question is against which Lanczos vectors should the current vector be
reorthgonalized. A simple but effective strategy is to reorthogonalize the current Lanczos vector against
all previous Lanczos vectors. This is more than what is needed since the goal is to maintain only semi-
orthogonality among the Lanczos vectors. More economic strategies are proposed by Simon [27]. An
important idea in partial reorthogonalization is that, once the violation of a semi-orthogonality criterion
forces us to reorthogonalize qi+1 at step i, we must also reorthogonalize qi+2 at the (i+1)st step as well
[22, 27]. A justification can be found in [27].
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Finally, we have also incorporated the extended local reorthogonalization and double reorthogonaliza-
tion schemes. In short, the local reorthogonalization (against qi and qi−1 twice at iteration i) is performed
or the global reorthogonalization (against all selected previous vectors) is doubled, whenever some condition
is satisfied. Details are omitted.
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Fig. 3.1. Level of orthogonality with partial reorthogonalization in the standard Lanczos algorithm (left) and in the
filtered Lanczos algorithm (right, with a low-pass filter with d = 10).

The discussion for the filtered Lanczos method is identical since the method consists simply of applying
the Lanczos algorithm to ρ(A) instead of A. However, the rate of the loss of orthogonality can be very
different. A common observation is that the reorthogonalization frequency increases as the number of
iterations grows. An example is illustrated in Figure 3.1, where we use the Hamiltonian Ge99H100. The
plots show the true level of orthogonality κi versus the estimated level of orthogonality κ̄i in the standard
Lanczos algorithm (left) and in the filtered Lanczos algorithm with a low-pass filter with polynomial
degree d = 10 (right). In both cases, the estimated level of orthogonality κ̄i is larger than the true level of
orthogonality κi as needed. In this example, the filtered Lanczos algorithm lost orthogonality faster than
the standard Lanczos algorithm.

4. Polynomial filters. Polynomial filtered Lanczos algorithms replace the matrix-vector product Aqi
in the standard Lanczos algorithm by ρ(A)qi, where A is real symmetric or complex Hermitian and ρ is a
polynomial. Note that A and ρ(A) share the same eigenvectors, and ρ(A) has eigenvalues ρ(λ1), . . . , ρ(λn),
where λ1, . . . , λn are eigenvalues of A.

Suppose we are given an interval [a, b] which tightly contains the spectrum (i.e., all eigenvalues) of A,
and another interval [ξ, η] ⊂ [a, b] in which the eigenvalues are desired. The polynomial ρ(λ) is chosen such
that ρ([ξ, η]) is in an extreme region of ρ([a, b]). Therefore, because of the nature of the Lanczos algorithm,
the eigenvalues of ρ(A) in ρ([ξ, η]) are approximated first. The corresponding eigenvectors can be used to
extract the eigenvalues of A in [ξ, η].

If the interval [a, b] is not provided, one can apply the Gershgorin circle theorem to obtain such an
interval. However a loose interval [a, b] may decrease the effectiveness of the resulting polynomial filter.
Therefore we use a small number of Lanczos steps for approximate smallest and largest eigenvalues, denoted
by θa and θb. The corresponding Ritz vectors and residuals are denoted by ya and yb, and ra = Aya− θaya
and rb = Ayb−θbyb, respectively. From a standard theorem, e.g., [21, Theorem 4.5.1], there is a eigenvalue of
A in [θa−‖ra‖, θa+‖ra‖], and it is likely that this eigenvalue is the smallest one since the Lanczos algorithm
approximates the extreme eigenvalues fast. Likewise the largest eigenvalue is likely in [θb−‖rb‖, θb+ ‖rb‖].
Hence we can set a = θa − ‖ra‖ and b = θb + ‖rb‖, which practically bound the spectrum. Alternatively,
we may simply use a = θa and b = θb. In case any unwanted eigenvalue spills into the region of eigenvalues
being approximated, we can reject it posteriorly. See line 24 of Algorithm 2.
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4.1. Least-squares filter polynomial. We can naively use a polynomial which approximates a step
function to cover the interval of desired eigenvalues [ξ, η]. Such a polynomial can be computed in the
least-squares sense. However, a step function is discontinuous and a polynomial approximation to it will
exhibit wide oscillations when the polynomial degree is high. Therefore, we adapt a two-stage process [24].
We first use a smooth function φ(λ), called a base filter, similar to the step function in shape, and then
use a polynomial ρ(λ) to approximate φ(λ) in the least-squares sense. Three cases of φ(λ) are considered
in this paper: 1) a low-pass filter for smallest eigenvalues, 2) a middle-pass filter for interior eigenvalues,
and 3) a high-pass filter for largest eigenvalues. These cases are illustrated in Figure 4.1.

0 ba 0 ba 0 a b

Fig. 4.1. Low-pass (left), middle-pass (center), and high-pass (right) filter functions φ(λ).

To find the least-squares polynomial ρ(λ) approximation to the base filter φ(λ), we apply the conjugate
residual method in polynomial space [24]. One can also use the conjugate gradient algorithm instead.
However, we favor the conjugate residual algorithm for the least residual norm property. Since the procedure
is performed in polynomial space, the matrix is never invoked, and the resulting cost for computing the
polynomial is negligible. The polynomial is of the form

ρ(λ) = 1− λs(λ),(4.1)

where s(λ) is a polynomial. In other words, our polynomial ρ(λ) satisfies ρ(0) = 1. The approximation
aims to minimize

‖ρ(λ)− φ(λ)‖w ,

where ‖ · ‖w is the norm induced by some inner product 〈·, ·〉w of two functions.
Let ψ(λ) = 1− ρ(λ). Then by (4.1), it is equivalent to minimizing

‖ψ(λ)− λs(λ)‖w .

We call ψ(λ) the dual base filter. Since ψ(λ) is approximated by λs(λ), we require that ψ(0) = 0, or
equivalently φ(0) = 1. Consequently, we need a = 0 for both high-pass filters and middle-pass filters,
where a is the left endpoint of the interval [a, b] containing the eigenvalues of A. This can be achieved by
adding −aI to A, if a is not zero. For low-pass filters, we work with the translated matrix bI − A, and
hence the situation is the same as the case of high-pass filters. Without loss of generality, we assume a = 0
hereafter.

4.2. The filtered conjugate residual polynomials algorithm. What is required by the filtered
Lanczos procedure is a procedure to compute ρ(A)q, for a given vector q. The polynomial ρ(λ) does not
have to be explicitly formed. The conjugate residual algorithm iterates in the polynomial space can be used
to compute ρ(A)q. A corrected variant, known as the filtered conjugate residual polynomials algorithm, is
also proposed in [24, Algorithm 2.3]. The pseudo-code is given in Algorithm 3.

The lines commented with (P) in Algorithm 3 are those that correspond to the conjugate residual
algorithm applied in the polynomial space to approximate 1 by λs(λ). Therefore,

〈δi(λ), λδj(λ)〉w = 0, 〈λπi(λ), λπj(λ)〉w = 0, i 6= j.(4.2)

The conjugate residual method is equivalent to the GMRES algorithm in the Hermitian case [23, Sec-
tion 6.8], i.e., when the operator is self-adjoint. Recall that the GMRES algorithm minimizes the residual
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1: Input: matrix A ∈ Cn×n; vector q ∈ Cn; base filter ψ(λ) ≡ 1− ρ(λ).
2: Output: xd+1 = ŝd+1(A)q, where ŝd+1(λ) is the polynomial of degree ≤ d which minimizes ‖ψ(λ) −

λŝ(λ)‖w.
3: x0 := 0
4: π0 := 1, δ0 := 1 ⊲ (P)
5: p0 := r0, r0 := q
6: for all j = 0, 1, . . . , d do

7: αj := 〈δj , λδj〉w/〈λπj , λπj〉w ⊲ (P)
8: α̂j := 〈ψ, λπj〉w/〈λπj , λπj〉w ⊲ (P)
9: xj+1 = xj + α̂jpj

10: δj+1 = δj − αjλπj ⊲ (P)
11: rj+1 = rj − αjApj
12: βj := 〈δj+1, λδj+1〉w/〈δj , λδj〉w ⊲ (P)
13: πj+1 := δj+1 + βjπj ⊲ (P)
14: pj+1 := rj+1 + βpj
15: end for

Algorithm 3: The filtered conjugate residual polynomials algorithm.

over the Krylov subspace. If we add sj+1 := sj + αjπj (with base case s0 = 0) after line 7 in Algorithm 3,
then sj+1 is the minimizer of ‖1− λs(λ)‖w among all polynomials s(λ) of degree ≤ j.

In Algorithm 3, lines 5, 11, and 14 resemble lines 4, 10, and 13, respectively. Thus, the conjugate
residual iterations can also be performed to compute s(A)q for some polynomial s(λ). In practice, the
two calculations are decoupled, i.e., the polynomial is obtained in a pre-processing phase (only the (P)
part of the code is executed). Then, the calculations ρ(A)v are performed subsequently from the saved
polynomials. If the update to xj+1 in line 9 uses the coefficient αj (i.e., xj+1 := xj + αjpj) instead, then
xj+1 ≡ sj+1(A)q with sj+1(λ) the polynomial minimizing ‖1 − λs(λ)‖w . However, we are interested in
the polynomial ŝj+1(λ) which minimizes ‖ψ(λ)− λŝ(λ)‖w . Lines 9 and 10 are the required updates as the
following theorem from [24, Proposition 2.2] shows.

Theorem 4.1. The solution vector xj+1 computed at the jth step of Algorithm 3 is of the form

xj+1 = ŝj+1(A)q, where

ŝj+1(λ) = α̂0π0(λ) + · · ·+ α̂jπj(λ),(4.3)

such that ŝj+1(λ) minimizes ‖ψ(λ)− λŝ(λ)‖w among all polynomials ŝ(λ) of degree ≤ j.
Note that what we want is Aŝd+1(A)q with λŝd+1(λ) approximating ψ(λ). The output of Algorithm 3

is xd = ŝd+1(A)q. So we need to multiply it by A to get Axd = Aŝd+1(A)q and use it to replace Aq in the
standard Lanczos process.

A consequence of Theorem 4.1 is that λŝd+1(λ) converges to ψ(λ) uniformly when d → ∞. This can
be seen by the Weierstrass approximation theorem, e.g., [11, chapter 6]. Without loss of generality, let q
be a unit vector. Then

‖ψ(A)q −Aŝd+1(A)q‖2 ≤ ‖ψ(A)−Aŝd+1(A)‖2 = max
i=1,...,n

|ψ(λi)− λiŝd+1(λi)|,

where λ1, . . . , λn are eigenvalues of A. Therefore, Aŝd+1(A)q approximates ψ(A)q while λŝd+1(λ) approx-
imates ψ(λ).

The iterations in Algorithm 3 can also be used to compute λŝd+1(λ) for a given λ ∈ C. The computation
does not involve matrix-vector product and hence the cost is negligible. This can be very useful for
verification purposes and for adjusting the intervals for a base filter to obtain the final polynomial filter by
approximation. Details are discussed next.

4.3. Filter polynomial processing and selection. In what follows we consider the situation of
interior eigenvalues. The cases for extreme eigenvalues are similar and indeed simpler. Suppose we want
the eigenvalues in the interval [ξ, η] ⊂ [0, b]. In principle we need a dual base filter ψ with a shape similar
to the step function which takes value one in the interval [ξ, η] and zero in the intervals [0, ξ] and [η, b]. We
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partition [0, b] into five sub-intervals, [0, b] ≡ [0, τ1]∪[τ1, τ2]∪· · ·∪[τ4, b], such that 0 < τ1 < τ2 < τ3 < τ4 < b
and ideally ξ ∈ [τ1, τ2] and η ∈ [τ3, τ4]. We let ψ(λ) = 0 for λ ∈ [0, τ1]∪ [τ4, b] and ψ(λ) = 1 for λ ∈ [τ2, τ3].
For the last two intervals, called transition intervals, [τ1, τ2] and [τ3, τ4], we use the standard Hermite
interpolation such that ψ(λ) is continuous and smooth with

ψ(j)(τi) = 0, j = 1, . . . , di, i = 1, . . . , 4.(4.4)

Here di’s are preset degrees that determine the smoothness of ψ(λ).
In a filtered Lanczos procedure, a polynomial ρ(λ) = λs(λ) is used to approximate the (dual) base filter

ψ(λ), and conceptually apply the Lanczos algorithm on the matrix ρ(A). In order not to miss eigenvalues
in the desired interval [ξ, η], it is important that ρ(z1) > ρ(z2) for z1 ∈ [ξ, η] and z2 ∈ [0, ξ) ∪ (η, b], which
implies ρ(ξ) = ρ(η). This goal can be achieved with appropriate intervals [τ1, τ2] and [τ3, τ4].

Our implementation uses a nested loop to determine τ1, τ2, τ3, τ4. Initially, τ1 := ξ − δ and τ4 := η + δ
for some small δ > 0. The inner loop is a bisection algorithm which adjusts τ2, τ3 until ρ(ξ) and p(η) are
approximately equal. In each outer iteration, if ρ(z) > max{ρ(λ)|λ ∈ [ξ, η]} for some z ∈ [0, ξ), then we
decrease τ1 by a preset small value δ to reduce the oscillations in [0, ξ). Likewise, if ρ(z) > max{ρ(λ)|λ ∈
[ξ, η]} for some z ∈ (η, b], then we increase τ4 by δ. We found that an initial defined by δ = (η − ξ)/100
is a good choice in practice. For faster convergence, we also increase δ by a preset factor at each outer
iteration. The discussion is illustrated by Figure 4.2.

1

3

1

c

h

τ

τ

2τ

τ4

η

h

ξ0 b

Fig. 4.2. Illustration of the procedure to set up the partition and the dual base filter ψ(λ).

Some details on the inner loop for iterative bisections for ρ(ξ) ≈ ρ(η) are given next. We set τ2 and
τ3 to be of the form τ2 = c− h and τ3 = c+ h, where c is initialized as the middle point of τ1 and τ2, and
h is a small fraction of the interval width. This means that the desired ‘plateau’ interval for ρ is chosen
to be of the form [τ2, τ3] = [c − h, c + h], where h is fixed and c is determined by an iterative bisection
procedure so that the resulting ρ satisfies ρ(ξ) = ρ(η) approximately. In practice we usually initialize
h = (η − ξ)/20, which can be decreased by a preset factor in each outer iteration. We summarize the
discussion in Algorithm 4.

Three remarks of Algorithm 4 deserve noting. First, the routine get polynomial(intv, {di}4i=1, d) in-
voked in lines 8, 12, 17 determines the dual base filter ψ(λ) with degrees d1, d2, d3, d4 by Hermite interpola-
tion such that ψ(λ) is continuous and (4.4) is satisfied. Then ψ(λ) is approximated by a polynomial ρ(λ) of
degree d. As discussed in Section 4.2, the approximation uses a conjugate-residual-type algorithm applied
in the polynomial space which is simply Algorithm 3 restricted to the (P) part. This entails a negligible
cost since no matrix-vector products are needed. Second, the γ in line 26 and the conditions in lines 27
and 30 can be estimated by uniformly distributed sample points and some tolerance is allowed. Third, in
our system a few enhancements are made to improve the quality of the polynomial filter. For example we
impose the constraint that a polynomial filter with peaks outside [ξ, η] not too close to γ. The details are
omitted.

The key point of the above discussion is that the quality of the polynomial filter is important for the
convergence of the desired eigenvalues. The pre-processing to get appropriate intervals is inexpensive since
all operations are performed in the polynomial space.
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1: Input: interval of desired eigenvalues [ξ, η]; eigen-range [0, b]; base filter degrees d1, d2, d3, d4; polyno-
mial filter degree d.

2: Output: partition points τ1, τ2, τ3, τ4 which defines the mid-pass filter.
3: δ := (η − ξ)/100; h := (η − ξ)/20;
4: τ1 := ξ − δ; τ4 := η + δ;
5: repeat ⊲ Outer loop adjusts τ1, τ4.
6: c1 := τ1 + h;
7: intv := [0, τ1, c1−h, c1+h, τ4, b];
8: ρ1 := get polynomial(intv, {di}4i=1, d);
9: f1 := ρ1(η) − ρ1(ξ);

10: c2 := τ4 − h;
11: intv := [0, τ1, c2−h, c2+h, τ4, b];
12: ρ2 := get polynomial(intv, {di}4i=1, d);
13: f2 := ρ2(η) − ρ2(ξ);
14: while c2 − c1 > tol do ⊲ Inner loop determines τ2, τ3.
15: c := (c1 + c2)/2;
16: intv := [0, τ1, c−h, c+h, τ4, b];
17: ρ := get polynomial(intv, {di}4i=1, d);
18: f := ρ(η)− ρ(ξ);
19: if f · f2 < 0 then

20: c1 := c; f1 := f ;
21: else

22: c2 := c; f2 := f ;
23: end if

24: end while

25: τ2 := c− h; τ3 := c+ h;
26: γ := min{ρ(λ)|λ ∈ [ξ, η]}
27: if there is z ∈ [0, ξ) such that z > γ then

28: τ1 := τ1 − δ;
29: end if

30: if there is z ∈ (η, b] such that z > γ then

31: τ4 := τ4 + δ;
32: end if

33: δ := δµ1; h := h/µ2 ⊲ A good choice in practice is µ1 = µ2 = 1.5.
34: until the values of τ1, τ4 are fixed.

Algorithm 4: An iterative process to determine the mid-pass filter.

An example is illustrated in Figure 4.3, where we consider computing 250 interior eigenvalues of a
Hamiltonian Ge99H100 in [−0.65, 0.0096]. The characteristics of this matrix, such as the matrix dimension
and the number of non-zero elements, are displayed in Table 5.1. These eigenvalues are a window containing
the Fermi level, and are part of a Time-Dependent Density Functional Theory (TDDFT) calculation. The
full spectrum is contained in [−1.227, 32.71]. In all plots we use degrees d1 = d2 = d3 = d4 = 10 for the
dual base filter, followed by polynomial approximation with various degrees d = 20, 30, 50, 100. It is clear
that the higher the degree, the better the shape of the filter.

4.4. The weight function. Algorithm 3 applies the conjugate residual algorithm in the polynomial
space and requires the inner product 〈·, ·〉w of two functions. In order for this approach to be viable, we need
to avoid numerical integration when computing the inner products 〈·, ·〉w. This is actually achieved by a
proper selection of the weight function w which allows to resort to a form of Gauss-Chebyshev quadrature,
that provides exact values of the integrals without resorting to numerical integration.

The weight function is defined on each of the sub-intervals [0, τ1], [τ1, τ2], [τ2, τ3], [τ3, τ4], [τ4, b] of [0, b].
There are two reasons for this. First, the dual base filter ψ(λ), a piecewise polynomial function, is also
needed in the inner product calculation (see line 8 in Algorithm 3). Second, we can assign weights to
emphasize or de-emphasize specific sub-intervals. To avoid numerical integration, we expand all functions
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Fig. 4.3. Four examples of middle-pass filters ψ(λ) and their polynomial approximations ρ(λ).

in a basis of orthogonal polynomials for each sub-interval. This in effect amounts to Gaussian quadrature.
We use Chebyshev polynomials but other orthogonal polynomials, such as Legendre, can also be exploited.

We denote the partition of [0, b] by [0, b] ≡ [τ0, τ1] ∪ · · · ∪ [τl−1, τl], where τ0 = 0 and τl = b. For
extreme eigenvalues, there are three sub-intervals, i.e., l = 3. For the interior eigenvalues, five sub-intervals
are involved, i.e., l = 5. In the following discussion, there is no limit of the number of intervals l. The
inner-product of two functions ψ1(λ) and ψ2(λ) on each sub-interval [τi−1, τi] using Chebyshev weights is
defined by

〈ψ1, ψ2〉[τi−1,τi] =

∫ τi

τi−1

ψ1(λ)ψ2(λ)√
(λ− τi−1)(τi − λ)

dλ.

Then the inner product on the interval [0, β] is defined as a ‘weighted’ sum of the inner products on the
smaller intervals,

〈ψ1, ψ2〉w =

l∑

i=1

2wi

τi − τi−1
〈ψ1, ψ2〉[τi−1,τi] =

l∑

i=1

2wi

τi − τi−1

∫ τi

τi−1

ψ1(λ)ψ2(λ)√
(λ − τi−1)(τi − λ)

dλ,(4.5)

where wi’s are positive weights, and we have incorporated the normalization factors 2
τi−τi−1

’s for the

integral calculation.
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As was mentioned, we expand the functions in a basis of translated Chebyshev polynomials on each
of the sub-intervals. When all polynomials are expanded in the proper scaled and shifted Chebyshev
basis on each interval, then all inner product operations involved in Algorithm 3 are easily performed
with the expansion coefficients [24]. In addition, adding and scaling two expanded polynomials is a trivial
operation as it acts only on the expansion coefficients. Finally, multiplying a polynomial by λ can be easily
implemented thanks to the 3-term recurrence of Chebyshev polynomials. Details are omitted and can be
found in [24].

5. Experiments. The experiments were performed in sequential mode on a machine equipped with
two dual-core AMD Opteron(tm) Processors 2214 @ 2.2GHz and 16 gigabytes memory.

We have used a number of real symmetric matrices in our tests. These matrices vary in size, degree of
sparsity, and spectrum. We report results for five Hamiltonians (Ge87H76, Ge99H100, Si41Ge41H72, Si87H76,
and Ga41As41H72) from electronic structure calculations, an integer matrix named Andrews, and a large
matrix of discrete Laplacian by the finite difference method, denoted by Laplacian. These matrices are
available from the University of Florida sparse matrix collection2, except for Laplacian which we will
describe in detail in Section 5.4. The matrix dimension n, the number of non-zero elements nnz, and the
range of the spectrum [a, b] for each matrix are listed in Table 5.1. Compared to the Hamiltonians, matrix
Andrews is smaller and sparser. Matrix Laplacian is the largest in dimension and also the sparsest.

Table 5.1

Matrix characteristics.

matrix n nnz nnz/n
full eigen-range Fermi

[a, b] n0

Ge87H76 112,985 7,892,195 69.85 [−1.21402, 32.7641] 212
Ge99H100 112,985 8,451,395 74.80 [−1.22642, 32.7031] 248
Si41Ge41H72 185,639 15,011,265 80.86 [−1.21358, 49.8185] 200
Si87H76 240,369 10,661,631 44.36 [−1.19638, 43.0746] 212
Ga41As41H72 268,096 18,488,476 68.96 [−1.25019, 1300.93] 200
Andrews 60,000 760,154 12.67 [0, 36.4853] N/A
Laplacian 1,000,000 6,940,000 6.94 [0.002907, 11.9971] N/A

Each Hamiltonian has a number of occupied states of the molecular system, denoted by n0. In the
density functional theory (DFT) framework, n0 is usually the number of smallest eigenvalues requested,
and the n0th smallest eigenvalue corresponds to the Fermi level. In other physics models, such as the time-
dependent density functional theory (TDDFT), the requested eigenvalues may not be from the smallest
end and further interior eigenvalues (i.e., larger than n0th eigenvalue) may be useful. This characteristic
number n0 for each Hamiltonian is also listed in Table 5.1.

Another property to characterize the matrices is the sparsity pattern. The structure of a Hamiltonian
typically forms grids around the diagonal. A typical case, Ge99H100, is illustrated in the left of Figure 5.1.
The matrix Andrews has sparse elements spreading inside the matrix; however, denser elements cluster
around the diagonal. For a clear presentation of this character, we show only the top-left 5000×5000 corner
of Andrews in the middle of Figure 5.1. A three-dimensional discrete Laplacian by the finite difference
scheme has three pairs non-zero off-diagonals. In the right of Figure 5.1 is a 125×125 discrete Laplacian
(on a 5× 5××5 discrete cube) which is a very coarse version of the large Laplacian.

5.1. Experimental setting. For each test matrix, an interval [ξ, η] is provided in which the eigenval-
ues and the corresponding eigenvectors are desired. For matrices Andrews and Laplacian, we arbitrarily
set [ξ, η] = [4, 5] and [ξ, η] = [1, 1.01], respectively. For each Hamiltonian, [ξ, η] is chosen to cover from
about 1

2n0th to about 3
2n0th eigenvalues, where n0 is the number of occupied states listed in Table 5.1.

These eigenvalues are part of those which are of interest in TDDFT. Table 5.2 lists the interval [ξ, η], the
number of eigenvalues in [ξ, η], and the number of eigenvalues in [a, η] for each matrix.

In all cases we used the IEEE 754 double precision arithmetic. Four methods are compared in our
experiments: 1) the polynomial filtered Lanczos algorithm with a mid-pass filter, 2) the polynomial filtered

2http://www.cise.ufl.edu/research/sparse/matrices/
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Fig. 5.1. Structures of Ge99H100 (left), Andrews in part (middle), and a coarse Laplacian (right).

Table 5.2

Experimental setting.

matrix
eigen-interval # eig. # eig. # eig. η−ξ

b−a

η−a
b−a[ξ, η] in [ξ, η] in [a, η] ratio

Ge87H76 [−0.645,−0.0053] 212 318 0.67 0.0188 0.0356
Ge99H100 [−0.65,−0.0096] 250 372 0.67 0.0189 0.0359
Si41Ge41H72 [−0.64,−0.00282] 218 318 0.69 0.0125 0.0237
Si87H76 [−0.66,−0.33] 212 317 0.67 0.0075 0.0196
Ga41As41H72 [−0.64, 0.0] 201 301 0.67 0.0005 0.0010
Andrews [4, 5] 1,844 3,751 0.49 0.0274 0.1370
Laplacian [1, 1.01] 276 17,865 0.0154 0.0008 0.0044

Lanczos algorithm with a low-pass filter, 3) the standard Lanczos algorithm without restarting, and 4) the
ARPACK implementation of the implicitly restarted Lanczos algorithm [14]. For the first three methods, the
implementation is in C/C++, and partial reorthogonalization [27] is incorporated to reduce the computa-
tional cost, and the convergence is checked every 10 iterations, i.e., stride = 10 in line 8 of Algorithm 2.
For ARPACK, an eigenvalue software package written in Fortran 77, we set the maximum number of Lanczos
basis vectors as three times of the number of requested eigenvalues. The convergence tolerance was set
5
√
ǫ4M ≈ 3× 10−13 for all methods.

Note that the tolerance in the convergence check (2.5) is not the tolerance of the residual norm, and it
is defined in the relative and average sense. When a polynomial filter ρ(λ) is used, the error measurement
is indeed of the eigenvalues of ρ(A) instead of the eigenvalues of A. In spite of these factors, we found that
in practice a great part (usually more than 80%) of the computed eigenvalues have 10 or more significant
digits, and most eigenvalues have at least 8 significant digits.

We used the filtered Lanczos algorithm with either a low-pass filer or a high-pass filter. When a low-pass
filter is used, a partition of the spectrum consists of three intervals including one transition interval with
two joints, and we set the base filter degrees d1=d2=10 and interval weights w1 = 200 and w2 = w3 = 1
throughout. When a mid-pass filter is used, a partition of the spectrum consists of five intervals including
two transition intervals with four joints, and we set the base filter degrees d1 = d2 = d3 = d4 = 10, and
interval weights w1 = w5 = 200 and w2 = w3 = w4 = 1 straight, except for Laplacian where we decreased
the value of w1 and w5. We applied various polynomial degrees d for each problem.

We also used the Lanczos algorithm without restarting and the ARPACK symmetric eigensolver [14] which
incorporates the implicit restart technique, to find the extreme eigenvalues in [a, η]. For Hamiltonians this
amounts to computing the 1.5n0 smallest eigenvalues.

Compared with low-pass filters, a mid-pass filter has two ‘wings’, and usually requires a much higher
degree polynomial for a comparable filter quality. Therefore when the requested interior eigenvalues are
close to one end of the spectrum, it is a good idea to use the filtered Lanczos algorithm with a low-
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pass (or high-pass) filter. Indeed when the code is requested to compute the eigenvalues in the (interior)
interval [ξ, η], it is possible to estimate in advance if it is more economical to compute all eigenvalues in
the (extreme) interval [a, η]. The indicator used for this is the ratio of the number of eigenvalues in [ξ, η]
and the number of eigenvalues in [a, η], listed in the third to the last column of Table 5.2 for each problem.
If the indicator is high, then the utilization of a low-pass filter may be preferable over a high-pass filter.

The discussion above assumes that we have a method to estimate the number of eigenvalues of a given
interval. A traditional approach to count the eigenvalues in a given interval is by the LDLT factorization
coupled with the Sylvester inertia theorem. See, for example, [21, chapter 3] for an introduction. An
alternative is given in [24, section 3.4] which utilizes polynomial filtering.

The required polynomial degree of a quality mid-pass filter highly depends on how narrow the interval
[ξ, η] is relative to the range of spectrum [a, b]. Therefore we list the index (η− ξ)/(b− a) for each problem
in Table 5.2. As can be expected, the cases Si41Ge41H72 and Laplacian need much higher degree mid-
pass polynomial filters, since they have much lower (η − ξ)/(b − a) values than the others. This effect is
not so significant for low-pass filters though. When we use a low-pass filter for eigenvalues in [a, η], the
corresponding index is (η − a)/(b− a), which is also displayed in Table 5.2 for each matrix.

The results are summarized in Tables 5.3–5.9. For each method and each parameter setting, we report
the number of iterations, the number of matrix-vector products, the required memory, and the CPU time.
The filtered Lanczos algorithm needs an interval containing the full spectrum [a, b], which was computed by
the standard Lanczos algorithm (i.e., without polynomial filtering). The cost of the matrix-vector products
used for determining [a, b] is not significant compared to the filtered Lanczos process, and it is not included
in the number of matrix-vector products reported. Therefore, the number of matrix-vector products is
always the number of iterations times the polynomial degree.

For ARPACK which implements the implicitly restarted Lanczos algorithm, the maximum number of
Lanczos basis vectors is known a priori. Therefore the required memory can be allocated beforehand.
On the other hand, the other methods used in our experiments are based on the unrestarted Lanczos
framework, and one cannot easily predict the required number of Lanczos vectors for convergence. We
allocate memory for allowing a modest number (e.g., 20) of Lanczos vectors at initialization, and expand
the memory by a factor of 1.2 whenever memory is insufficient. The required memory reported is the sum
of the memory lastly expanded and the memory to storing the sparse matrix, excluding other relatively
small storages, e.g., for the tridiagonal matrix Tm in (2.3) and for the ω̄-recurrence in (3.5).

The total CPU time is reported in seconds for each case in the last columns of Tables 5.3–5.9. This
is the CPU time used from start to finish. For the filtered Lanczos method, the CPU time for all ρ(A)v
computations is also reported. For the Lanczos method without restarting and ARPACK, the polynomial
can be regarded as being equal to ρ(λ) = λ. Therefore what is reported is the CPU time for all matrix-
vector products. The reorthogonalization cost in CPU time is also provided in the third to the last
column. However for ARPACK what is reported in that column is the CPU time spent in the routine DSAUPD
for the implicitly restarted Lanczos process, excluding the matrix-vector products. The cost to obtain the
eigenvectors, listed in the second to the last column, may also be significant. It requires solving a symmetric
tridiagonal eigenvalue problem and computing a matrix-matrix product for which we use a BLAS3 routine
DGEMM. This cost can be quite high if the number of Lanczos basis vectors and the number of requested
eigenvalues are large. In the second to last column, the filled number for ARPACK is the CPU time used by
the routine DSEUPD for retrieving eigenvalues and eigenvectors. Since the CPU times for ARPACK in these
two columns have different meanings, we mark each of them with a †.

Finally, the Lanczos algorithm without restarting and ARPACK approximate eigenvalues directly by the
corresponding Ritz values. The computation of eigenvectors is not required if only the eigenvalues are
requested. On the other hand, the filtered Lanczos algorithm finds the eigenvectors first, and obtains the
eigenvalues by the Rayleigh quotients. The computation of eigenvalues are not required if only the invariant
subspace is needed.

5.2. Results for Hamiltonians. Tables 5.3–5.7 summarize the results for Hamiltonians Ge87H76,
Ge99H100, Si41Ge41H72, Si87H76, and Ga41As41H72, respectively.

Compared to ARPACK, the Lanczos algorithm with partial reorthogonalization achieved great CPU time
savings but required much more memory in all cases. This part is consistent with the results by Bekas et. al.
[2, 3]. It is also clear that in all cases, the filtered Lanczos algorithm achieved great computational savings
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Table 5.3

Results for Ge87H76.

method degree # iter # matvec
memory CPU time (seconds)
(MB) ρ(A)v reorth eigvec total

d = 20 930 18,600 941 1,029 64 18 1,147
filtered Lanczos d = 30 650 19,500 682 1,149 50 11 1,247
(mid-pass filter) d = 50 430 21,500 502 1,191 32 7 1,261

d = 100 310 31,000 377 1,547 23 5 1,601
d = 10 680 68,000 682 409 99 16 556

filtered Lanczos d = 20 530 10,600 583 561 46 12 664
(low-pass filter) d = 30 470 14,100 502 751 40 11 836

d = 50 420 21,000 502 1,107 25 10 1,174
Lanczos w/ partial reoth. 4,880 4,880 4,998 222 1,387 677 2,716

ARPACK 5,365 5,365 924 232 †11,693 †471 12,396

Table 5.4

Results for Ge99H100.

method degree # iter # matvec
memory CPU time (seconds)
(MB) ρ(A)v reorth eigvec total

d = 20 1,020 20,400 1,117 1,283 77 23 1,417
filtered Lanczos d = 30 710 21,300 806 1,343 55 14 1,440
(high-pass filter) d = 50 470 23,500 508 1,411 32 9 1,479

d = 100 340 34,000 440 1,866 26 7 1,930
d = 10 770 7,700 806 483 124 21 668

filtered Lanczos d = 20 600 12,000 688 663 57 21 777
(low-pass filter) d = 30 530 15,900 590 1,017 49 15 1,123

d = 50 470 23,500 508 1,254 26 13 1,342
Lanczos w/ partial reoth. 5,140 5,140 4,883 234 1,460 793 2,962

ARPACK 6,233 6,233 1,073 298 †17,503 †666 18,468

in both CPU time and memory, compared to the Lanczos algorithm with partial reorthogonalization.
When the filtered Lanczos algorithm was used, the higher the polynomial degree, the fewer the Lanczos

iterations, and therefore the less memory required. The CPU time, in this set of experiments, was governed
by the cost of ρ(A)v, or equivalently the number of matrix-vector products. When a mid-pass filter was
used, the optimal polynomial degree for the minimum number of matrix-vector products varied. On the
other hand, when a low-pass filter was used, a lower degree polynomial was sufficient for a decent filter,
and the optimal polynomial degree for the minimum number of matrix-vector products was d = 10, except
for Ga41As41H72. The Hamiltonian Ga41As41H72 is different from the others because it has a very narrow
interval of requested eigenvalues [ξ, η], relative to the range of the spectrum [a, b]. Therefore, higher degree
polynomials are required for quality filters for Ga41As41H72.

5.3. Results for Andrews. Compared to the five Hamiltonians, the integer matrix Andrews is
sparser and smaller. Therefore it serves as a good testbed for computing a larger number of further interior
eigenvalues. As shown in Tables 5.1 and 5.2, the range of the spectrum is the interval [a, b] = [0, 36.4853],
and we arbitrarily requested the eigenvalues in the interval [ξ, η] = [4, 5], which contains 1,844 eigenvalues.
The interval [a, η] = [0, 5] contains 3,751 eigenvalues. The results are reported in Table 5.8.

A few observations from Table 5.8 are the following. First, the eigenvalues in [a, η] are about twice
those in [ξ, η]. Using the filtered Lanczos algorithm to find the requested eigenvalues, the memory savings
with a higher degree mid-pass filter, as one can expect, is significant compared to using a low-pass filter.
Second, compared to Hamiltonians, the matrix Andrews is very sparse, and therefore the extra cost per
iteration by increasing the polynomial degree is relatively modest. Also compared to the experimental
setting for the five Hamiltonians, the number of eigenvalues to find is large, so the cost for the eigenvectors
is high. Hence it is attractive to increase the polynomial degree in exchange of fewer iterations and a lower
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Table 5.5

Results for Si41Ge41H72.

method degree # iter # matvec
memory CPU time (seconds)
(MB) ρ(A)v reorth eigvec total

d = 20 1,280 25,600 2,174 2,661 138 44 2,930
filtered Lanczos d = 30 830 24,900 1,470 2,619 84 23 2,796
(mid-pass filter) d = 50 470 23,500 847 2,139 38 12 2,240

d = 100 300 30,000 642 3,225 34 8 3,328
d = 10 760 7,600 1,337 862 181 30 1,150

filtered Lanczos d = 20 580 11,600 1,143 1,188 114 22 1,391
(high-pass filter) d = 30 490 14,700 982 1,583 84 19 1,755

d = 50 410 20,500 847 1,877 32 15 1,989
Lanczos w/ partial reoth. 5,680 5,680 9,304 488 2,979 1,626 5,827

ARPACK 6,332 6,332 1,460 572 †26,419 †620 27,612

Table 5.6

Results for Si87H76.

method degree # iter # matvec
memory CPU time (seconds)
(MB) ρ(A)v reorth eigvec total

d = 20 1,200 24,000 2,726 2,117 202 45 2,437
filtered Lanczos d = 30 790 23,700 1,631 1,916 103 27 2,101
(mid-pass filter) d = 50 480 24,000 1,171 1,857 63 17 1,985

d = 100 320 32,000 731 2,627 23 11 2,735
d = 10 750 7,500 1,631 821 293 42 1,236

filtered Lanczos d = 20 580 11,600 1,380 1,233 171 29 1,501
(low-pass filter) d = 30 500 15,000 1,171 1,382 101 25 1,586

d = 50 430 21,500 997 1,975 67 22 2,130
Lanczos w/ partial reoth. 5,650 5,650 10,562 384 3,638 417 5,947

ARPACK 6,315 6,315 1,888 479 †37,879 †1,084 39,443

cost for eigenvectors and for reorthogonalization. It is interesting to note that in this case, when a mid-pass
filter is used, the cost for reorthogonalization is much lower than the cases with a low-pass filter. Finally,
for such a number of eigenvalues and eigenvectors to be computed, both the implicitly restarted Lanczos
algorithm (as implemented in ARPACK) and the Lanczos algorithm with partial reorthogonalization would
choke if the matrix is much larger because of the the resulting high cost of reorthogonalization and the
memory cost.

5.4. Results for the discrete Laplacian. The last experiment we report on is with a large and very
sparse three-dimensional discrete Laplacian. The three-dimensional Laplacian ∆ is a differential operator

which maps a given twice-differentiable function f : R3 −→ R to ∆f ≡ ∂2f
∂x2 +

∂2f
∂y2 +

∂2f
∂z2 . Using the standard

finite difference method with the same grid size h in all three dimensions, we obtain a matrix A of size
n = nxnynz, see, e.g., [25]. The pattern of a small matrix with nx = ny = nz = 5 is shown on the right
side of Figure 5.1.

In our experiments, we used the matrix Laplacianwith nx = ny = nz = 100, resulting in the dimension
n = 1, 000, 000 and number of non-zero elements nnz = 6, 940, 000. We arbitrarily requested the eigenvalues
in the interval [ξ, η] = [1, 1.01], which is quite interior in the range of spectrum [a, b] = [0.002907, 11.9971].
In practice it is unlikely to compute all the eigenvalues from the smallest end a = 0.002907 up to η = 1.01.
Indeed, the eigenvalues of the discrete Laplacian are explicitly known and we found that there are exactly
17,865 eigenvalues of the 100× 100× 100 Laplacian in the interval [a, η] = [0.002907, 1.01]. Hence we used
the filtered Lanczos algorithm with a mid-pass filter and found 276 eigenvalues in [ξ, η] = [1, 1.01].

Each Lanczos vector of Laplacian has n = 1, 000, 000 entries, and in double precision arithmetic it
requires approximately 8 megabytes of memory. Therefore, 2,000 Lanczos vectors are allowed with 16
gigabytes memory. For 276 eigenvalues the polynomial filter must be of good enough quality so that we
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Table 5.7

Results for Ga41As41H72.

method degree # iter # matvec
memory CPU time (seconds)
(MB) ρ(A)v reorth eigvec total

d = 100 1,300 130,000 3,116 17,179 202 55 17,553
filtered Lanczos d = 200 590 118,000 1,615 15,030 83 21 15,230
(mid-pass filter) d = 300 410 123,000 1,171 15,593 52 15 15,748

d = 400 360 144,000 1,026 17,908 53 13 18,067
d = 10 3,560 35,600 8,872 5,108 1,649 473 7,549

filtered Lanczos d = 20 1,810 36,200 4,390 4,795 764 125 5,842
(low-pass filter) d = 50 760 38,000 1,895 4,796 284 39 5,222

d = 100 580 58,000 1,615 6,815 101 30 7,054
Lanczos w/ partial reoth. 5,980 5,980 13,401 726 32,835 1,441 35,939

ARPACK 55,676 55,676 2,069 8,883 †509,552 †906 519,343

Table 5.8

Results for Andrews.

method degree # iter # matvec
memory CPU time (seconds)
(MB) ρ(A)v reorth eigvec total

d = 20 9,440 188,800 4,829 2,797 192 4,834 9,840
filtered Lanczos d = 30 6,040 180,120 2,799 2,429 115 2,151 5,279
(mid-pass filter) d = 50 3,800 190,000 1,947 3,040 65 521 3,810

d = 100 2,360 236,000 1,131 3,757 93 220 4,147
d = 10 5,990 59,900 2,799 1,152 2,911 2,391 7,050

filtered Lanczos d = 20 4,780 95,600 2,334 1,335 1,718 1,472 4,874
(high-pass filter) d = 30 4,360 130,800 2,334 1,806 1,218 1,274 4,576

d = 50 4,690 234,500 2,334 3,187 1,032 1,383 5,918
Lanczos w/ partial reoth. 22,345 22,345 10,312 217 30,455 64,223 112,664

ARPACK 30,716 30,716 6,129 345 †423,492 †18,094 441,934

can obtain the desired precision for eigenvalues with up to 2,000 Lanczos basis vectors. On the other hand,
the requested window of eigenvalues [ξ, η] = [1, 1.01] is very narrow compared to the range of spectrum
[a, b] = [0.002907, 11.9971]. It means that we need a very high degree polynomial for a quality filter. In
our experiments, we used polynomial filters with degrees d=600, d=1, 000, and d=1, 600. A part of the
filter of degree d = 1, 000 is plotted in Figure 5.2.

One difficulty was encountered for this problem. When we tested the method for d = 600, after 48
eigenvalues in the specified window [ξ, η] = [1, 1.01] converged, the other eigenvalues did not show up as
filtered Ritz values yet. Therefore our program assumed that all eigenvalues were found and it stopped. The
following remedy was incorporated as a result of this issue. Whenever the convergence check was passed, we
applied 30 extra iterations to see whether new filtered Ritz values corresponding to the eigenvalues in [ξ, η]
would come out. The phase of such extra iterations may repeat for a few times until all eigenvalues in [ξ, η]
converge. The results are reported in Table 5.9. It is clear that the higher the degree of the polynomial,
the fewer the iterations and therefore the less the memory requirement for the Lanczos vectors, but the
more the matrix-vector products and therefore the longer the CPU time.

Table 5.9

Results for Laplacian.

Filtered Lanczos degree # iter # matvec
memory CPU time (seconds)
(MB) ρ(A)v reorth eigvec total

mid-pass filter
600 1,400 840,000 10,913 97,817 927 241 99,279

1, 000 950 950,000 7,640 119,242 773 162 120,384
1, 600 710 1,136,000 6,358 169,741 722 119 170,856
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Fig. 5.2. A high-degree (d = 1000) mid-pass filter for Laplacian.

6. Conclusions. We presented a polynomial filtered Lanczos method for computing extreme and
interior eigenvalues of large Hermitian matrices. The polynomial is computed by applying a conjugate-
residual-type algorithm in polynomial space. The proposed method significantly reduces the number of
Lanczos vectors required to compute all the desired eigenvalues and is especially appealing for situations
where a large number of eigenvalues and eigenvectors is to be computed. The experimental results in-
dicate that the proposed method can drastically outperform the implicitly restarted Lanczos algorithm
implemented in ARPACK and also the Lanczos algorithm with partial reorthogonalization. In some cases,
such as the example of the Laplacian shown in the numerical experiments, the method may be the only
viable option either because factoring the matrix in a shift-and-invert approach is too costly, or because
the number of vectors to store and orthogonalize in a standard or restarted Krylov subspace approach is
too high. On the negative side, the method is not easily applicable to the generalized eigenvalue problem.
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