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Abstract. This paper considers the problem of optimizing the ratio Tr [W T AW ]/Tr [W T BW ]
over all unitary matrices W with p columns, where A, B are two positive definite matrices. This
problem is common in supervised learning techniques. However, because its numerical solution
is typically expensive it is often replaced by the simpler optimization problem which consists of
optimizing Tr [W T AW ] under the constraint that W T BW = I, the identity matrix. The goal of this
paper is to examine this trace ratio optimization problem in detail, to consider different algorithms
for solving it, and to illustrate the use of these algorithms for face recognition problems.
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1. Introduction. A number of techniques in machine learning are based on
optimizing a trace of the form Tr [V T AV ] under certain constraints on V . This defines
a projector with the basis V , which is then used for various dimension reduction tasks.

A particular case of this scenario is the well-known Fisher Linear Discriminant
Analysis (LDA). The method which is a prototypical approach of supervised learn-
ing, defines a linear hyperplane which best separates two or more data-sets. This is
achieved by trying to maximize the ratio of two traces. The first of these (numerator)
represents the in-between scatter which measures how well the classes are separated
in the projected space. The second (denominator) represents the within scatter which
measures how well clustered each class is in the projected space.

When the desired dimension of the projected space is two or more, the problem
is then to maximize a ratio of the form,

Tr
[

V T AV
]

Tr [V T BV ]
, (1.1)

where V ∈ R
n×p is subjected to having orthonormal columns. This problem is

seldom solved in practice. It has been considered too difficult to solve and is commonly
replaced by the simpler, but not equivalent problem :

max
8

<

:

V ∈ R
n×p

V T BV = I

Tr
[

V T AV
]

(1.2)

Yet, recent publications do indicate that methods based on optimizing the trace
ratio (1.1) yield better results in general than those based on their simplified ana-
logues. As a result, several papers have recently addressed the problem of how to
optimize this ratio. Though the problem has been judged difficult, it was observed
that the results may warrant the extra cost. In fact as will be shown in this paper,
the cost of solving this problem need not be high.

The goal of this paper is to explore this problem from a few different avenues.
From a practical point of view we will show that maximizing the ratio (1.1) can be
done quite efficiently. The computational cost can be drastically reduced by exploiting
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a combination of techniques: Newton iteration, Lanczos procedure, etc. In fact, we
will argue that contrary to widespread belief, this problem is in fact less costly to
solve than that based on the standard constrained trace optimization of equation (1.2).
In a nuthshell this is because optimizing (1.1) will require solving a few standard
eigenvalue problems, while (1.2) leads to a generalized eigenvalue problem. We will
argue that with the help of the Lanczos procedure, the former will in fact be typically
less expensive than the second.

Throughout the paper, Up denotes the set of unitary matrices (matrices with
orthonormal columns) with p columns, (i.e., of size n × p). The identity matrix will
be denoted by I.

2. Preliminaries. Given a symmetric matrix A, of dimension n×n and an arbi-
trary unitary matrix V of dimension n×p it is known that the trace of V T AV reaches
its maximum (resp. minimum) when V is an orthogonal basis of the eigenspace of
A associated with the p algebraically largest (resp. smallest) eigenvalues. In par-
ticular, it is achieved for the eigenbasis itself: if eigenvalues are labeled decreasingly
and u1, · · · , up are eigenvectors associated with the first p eigenvalues λ1, · · · , λp, and
U = [u1, · · · , up], with UT U = I, then,

max
8

<

:

V ∈ R
n×p

V T V = I

Tr
[

V T AV
]

= Tr
[

UT AU
]

= λ1 + · · · + λp. (2.1)

This result is seldom explicitly stated on its own in standard textbooks, but it is
an immediate consequence of the Courant-Fisher characterization, see, e.g., [10, 12].
The optimal V is not unique since any system V that is an orthonormal basis of the
eigenspace associated with the first p eigenvalues will be optimal. In other words, it
is the subspace that matters rather than any specific particular orthonormal basis for
the subspace.

Maximizing the trace in (2.1), requires the solution of a standard eigenvalue
problem. Sometimes it is necessary to maximize Tr [V T AV ] subject to a new normal-
ization constraint for V , one that requires that V be B-orthogonal, i.e., V T BV = I.
Assuming that A is symmetric and B positive definite, we know that there are n real
eigenvalues for the generalized problem Au = λBu, with B-orthogonal eigenvectors.
If these eigenvalues are labeled decreasingly, and if U = [u1, · · · , up] is the set of
eigenvectors associated with the first p eigenvalues, with UT BU = I, then we have

max
8

<

:

V ∈ R
n×p

V T BV = I

Tr
[

V T AV
]

= Tr
[

UT AU
]

= λ1 + · · · + λp. (2.2)

In reality, Problem (2.2) often arises as a simplification of an objective function
that is more difficult to maximize, namely:

max
8

<

:

V ∈ R
n×p

V T CV = I

Tr
[

V T AV
]

Tr [V T BV ]
. (2.3)

Here B and C are assumed to be symmetric and positive definite for simplicity. The
matrix C defines the desired orthogonality and in the simplest case it is just the
identity matrix. The original version shown above has resurfaced in recent years, see,
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e.g., [5, 15, 9, 14, 16, 17, 14, 13] among others. One of the main reasons for the
regained interest in this problem, is that it seems to yield markedly improved results
for supervised learning tasks than its simplified counterpart (2.2).

3. Existence and uniqueness of a solution. There is no loss of generality
in assuming that C is the identity matrix. Problem (2.3) may not have a solution
when B is not positive definite. This is because in this situation it will be possible to
find subspaces for which Tr [V T BV ] is zero while Tr [V T AV ] is nonzero, making the
maximum ratio (2.3) infinite. A simple example is

A =

(

1 0
0 1

)

B =

(

0 1
1 0

)

, V =

(

1
0

)

.

It is helpful to examine the trace Tr [V T BV ] in detail. Let B = QΛBQT the
diagonalization of B, where Q is unitary and ΛB = diag(µ1, µ2, · · · , µn). Let v1, . . . , vn

be the columns of V , and define ṽj = Qvj . Then clearly

Tr [V T BV ] =

p
∑

j=1

n
∑

i=1

µiṽ
2
ij =

n
∑

i=1

µi

p
∑

j=1

ṽ2
ij . (3.1)

The following lemma examines under which conditions Tr [V T BV ] is nonzero in the
situation when B is positive semi-definite.

Lemma 3.1. Assume that B is positive semi-definite and let p be the number of
columns of V . If B has at most p− 1 zero eigenvalues then Tr [V T BV ] is nonzero for
any unitary V .

Proof. Using the previous notation Ṽ = [ṽ1, · · · , ṽp]. has at least one p × p
submatrix which is nonsingular, so it has at least p rows that have a nonzero norm.
Then in the sum (3.1) at least one of the n−p+1 nonzero eigenvalues µi will coincide
with one of these row norms and this sum will be nonzero.

Therefore, the problem is well-posed under the condition that the null space of B
is of dimension less than p, i.e., that its rank be at least n − p + 1. In this case the
maximum is finite.

Another situation that leads to difficulties is when the two traces have a zero value
for the same V . This situation should be excluded from consideration as it leads to
an indefinite ratio of 0/0. For this we must assume that Null(A) ∩ Null(B) = {0}.

Proposition 3.2. Let A,B be two symmetric matrices and assume that B is
semi-positive definite with rank > n − p and that Null(A) ∩ Null(B) = {0}. Then
the ratio (2.3) admits a finite maximum (resp. minimum) value ρ∗. The maximum
is reached for a certain V that is unique up to unitary transforms of the columns.

Proof. The set of matrices V such that V T V = I is closed and, under the
assumptions, the ratio trace function in the right-hand side of (2.3) is continuous
function of its argument. Therefore, using Lemma 3.1 the maximum of the trace
ratio (2.3) is reached.

4. Conversion to a scalar problem. In the remainder of the paper we will
assume that C is the identity and that B satisfies the conditions of Proposition 3.2.
From Proposition 3.2 we know that there is a maximum ρ∗ that is reached for a
certain (non-unique) orthogonal matrix, which we will denote by U∗. Then, for any
orthogonal V we have Tr [V T AV ]/Tr [V T BV ] ≤ ρ∗ and hence,

Tr [V T AV ] − ρ∗ Tr [V T BV ] ≤ 0.
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This means that for this ρ∗ we have Tr [V T (A−ρ∗B)V ] ≤ 0 for any orthogonal V , and
also Tr [UT

∗ (A − ρ∗B)U∗] = 0. Therefore, we have the following necessary condition
for the pair ρ∗, U∗ to be optimal:

max
V T V =I

Tr [V T (A − ρ∗B)V ] = Tr [UT
∗ (A − ρ∗B)U∗] = 0. (4.1)

According to (2.1), the maximum trace of V T (A−ρ∗B)V over all unitary matrices V
of size n × p, is simply the sum of the largest p eigenvalues of A − ρ∗B and U∗ is the
set of corresponding eigenvectors. If ρ∗ maximizes the trace ratio (2.3) (with C = I),
then the sum of the largest p eigenvalues of the pencil A−ρ∗B must be equal to zero,
and the corresponding eigenvectors form the desired optimal solution of (2.3).

Consider now the function

f(ρ) = max
V T V =I

Tr [V T (A − ρB)V ] . (4.2)

Note that the matrices V that reach the above maximum are not unique: any orthog-
onal transformation of the columns of V will not change the trace. We can select the
optimal V to be a set of eigenvectors of the matrix A − ρB. We will denote by V (ρ)
a set of the p eigenvectors which reach the above maximum and by G(ρ) the matrix:

G(ρ) ≡ A − ρB , (4.3)

whose n eigenvalues labeled decreasingly are:

µ1(ρ) ≥ µ2(ρ) ≥ · · · ≥ µn(ρ) . (4.4)

With this notation, it is clear that

f(ρ) = µ1(ρ) + µ2(ρ) + · · · + µp(ρ) . (4.5)

Another useful expression for f(ρ) which will be exploited later is one that is
based on the eigenprojector. Indeed if we set P (ρ) = V (ρ)V (ρ)T then clearly

f(ρ) = Tr [V (ρ)T G(ρ)V (ρ)] = Tr [G(ρ)V (ρ)V (ρ)T ] = Tr [G(ρ)P (ρ)]. (4.6)

It is also possible to exploit the Dunford integral for expressing P (ρ):

P (ρ) =
−1

2πi

∫

Γ

(G(ρ) − zI)−1 dz

where Γ is a Jordan curve containing the p eivenvalues of interest. We will denote by
Rρ(z) the resolvant

Rρ(z) = (G(ρ) − zI)−1 = (A − ρB − zI)−1. (4.7)

From this we obtain the following expression for f(ρ):

f(ρ) =
−1

2πi
Tr

∫

Γ

G(ρ)(G(ρ) − zI)−1 dz (4.8)

=
−1

2πi
Tr

∫

Γ

(G(ρ) − zI + zI) (G(ρ) − zI)−1 dz

=
−1

2πi
Tr

∫

Γ

z(G(ρ) − zI)−1 dz (4.9)

4



The following properties of f can now be proved.
Lemma 4.1.

1. f is a non-increasing function of ρ;
2. f(ρ) = 0 iff ρ = ρ∗.

Proof. To prove (1) we need to compare the sums of the p largest eigenvalues of
A − ρ2B and A − ρ1B for ρ2 ≥ ρ1. We have

G(ρ2) − G(ρ1) = −(ρ2 − ρ1)B.

Since B is positive semi-definite, classical monotonicity results show that the p largest
eigenvalues of G(ρ2) will not exceed those of G(ρ1).

To prove (2), we start by observing that the sufficient condition is trivial, i.e.,
according to (4.1), ρ = ρ∗ implies f(ρ) = 0. Next, since Tr [V T BV ] > 0 for any
V ∈ Up we can write

Tr [V T AV − ρV T BV ] ≤ 0, ∀ V ∈ Up iff
Tr [V T AV ]

Tr [V T BV ]
≤ ρ, ∀ V ∈ Up .

This can be restated as

f(ρ) ≤ 0 iff ρ∗ ≤ ρ . (4.10)

Suppose now that f(ρ) > 0 for a certain ρ. Then, there is a V0 such that

Tr [V T
0 AV0 − ρV T

0 BV0] > 0 →
Tr [V T

0 AV0]

Tr [V T
0 BV0]

> ρ.

This means that

max
V ∈Up

Tr [V T AV ]

Tr [V T BV ]
> ρ,

and therefore ρ∗ > ρ. This can be restated as

f(ρ) > 0 → ρ∗ > ρ . (4.11)

Equations (4.10) and (4.11) together, along with the continuity of f , show that f(ρ) =
0 implies ρ = ρ∗. This completes the proof.

It is to be noted that the function f is actually strictly decreasing as will be shown
later. This will provide another way to prove the second part of the proposition.

4.1. Localization of the optimum. We now know that the optimal trace ratio
can be found as the root of a decreasing function f(ρ). One may ask if it is possible
to find an interval where the root lies. When A is positive definite, then f(ρ) ≥ 0 for
ρ = 0, since G(0) = A. For ρ > λ1(A,B) we have f(ρ) < 0, where λ1(A,B) is the
largest generalized eigenvalue of the pencil (A,B). Therefore, the root belongs to the
interval [0, λ1(A,B)].

A more refined location interval for the root may be found by exploiting Sylvester’s
inertia theorem. For simplicity we assume that B is positive definite. Let Z be the
matrix which diagonalizes the pencil A,B:

ZT AZ = Λ, ZT BZ = I .
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Here the diagonal entries λ1 ≥ λ2 ≥ · · · ≥ λn of Λ are the generalized eigenvalues of
the pencil A,B. Then,

ZT [A − ρB]Z = Λ − ρI.

According to the Sylvester inertia theorem, the number of negative and positive eigen-
values for the matrices G(ρ) and those of Λ − ρI are the same. Thus for ρ = λp, the
first (largest) p eigenvalues of G(ρ) will be nonnegative and so their sum f(ρ) is non-
negative. On the other side of the spectrum, for ρ = λ1 all eigenvalues of G(ρ) will
be negative and so f(ρ) ≤ 0. We have just proved the following proposition.

Proposition 4.2. The root ρ∗ of f(ρ) is located in the interval [λp, λ1], where
λi is the i-th largest eigenvalue of the pair (A,B).

An alternative to the above bound uses eigenvalues of A and B instead of those
of the generalized eigenvalue problem.

Proposition 4.3. Assume that B is positive definite. Then the root ρ∗ of f(ρ)
is such that

∑p
i=1 λi(A)

∑p
i=1 λi(B)

≤ ρ∗ ≤

∑p
i=1 λi(A)

∑p
i=1 λn−i+1(B)

, (4.12)

where λi(A), and λi(B) are the i-th largest eigenvalues of the matrices A and B
respectively.

Proof. Let U be the unitary matrix whose column are the eigenvectors of A
associated with λ1(A), · · · , λp(A). Then clearly Tr [UT AU ] = λ1(A) + · · · + λp(A),
Tr [UT BU ] ≤ λ1(B) + · · · + λp(B), so

λ1(A) + · · · + λp(A)

λ1(B) + · · · + λp(B)
≤

Tr [UT AU ]

Tr [UT BU ]
≤ max

V T V =I

Tr [V T AV ]

Tr [V T BV ]
= ρ∗.

For the right-hand side inequality, we exploit the fact that for any unitary matrix U
we have Tr [UT AU ] ≤ λ1(A) + · · · + λp(A), Tr [UT BU ] ≥ λn(B) + λn−1(B) + · · · +
λn−p+1(B). Hence, for any unitary U ,

Tr [UT AU ]

Tr [UT BU ]
≤

λ1(A) + · · · + λp(A)

λn(B) + λn−1(B) + · · · + λn−p+1(B)
,

which is therefore an upper bound for ρ∗.
Finding the optimal solution will involve a search for the (unique) root of f(ρ).

In [15] and [5] algorithms were proposed to solve (2.3) by computing this root and
by exploiting the above relations. No matter what method is used it appears at the
outset that it will be more complicated to solve (2.3) than (2.2), because the search
for the root ρ∗ may involve solving several eigenvalue problems instead of just one.
However, this does not necessarily mean that it will be more costly. The use of
Newton’s method combined with the Lanczos procedure will alleviate this search. In
this regard, an interesting connection to known methods can be established and this
is taken up in the next section.

4.2. The derivative of f . To obtain the derivative of the function f , we first
assume that the eigenvalues of G(ρ) are all simple. Then the derivative of each indi-
vidual eigenvalue µi(ρ) with respect to ρ is explicitly known in terms of the associated
eigenvector. When ρ is perturbed to ρ + δ, the matrix G(ρ) is perturbed by −δB.
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The corresponding infinitesimal perturbation to the individual eigenvalue µi(ρ) is then
given by (see, e.g., [12]):

µi(ρ + δ) − µi(ρ) = −δ(Bvi(ρ), vi(ρ))

where vi(ρ) is a unit eigenvector of G(ρ) associated with µi(ρ), and (x, y) denotes the
inner product of the two vectors x and y. As a result the derivative of µi(ρ) is simply

µ′
i(ρ) = −(Bvi(ρ), vi(ρ))

and this is translated for f(ρ) by

f ′(ρ) = −Tr [V (ρ)T BV (ρ)].

We now consider the extension of this expression to the general case where there
may be multiple eigenvalues. For this, we will consider the differential of V (ρ)T (A −
ρB)V (ρ) which is the diagonal matrix of eigenvalues. This is doable provided some
care is exercised in defining V (ρ). Indeed, we need to define the eigenvectors so the
mapping V (ρ) is differentiable.

In what follows the notation is simplified: V (ρ) which is assumed to be a dif-
ferentiable function of ρ, is denoted simply by V . In addition, we assume that V
diagonalizes A−ρB and that we have (A−ρB)V = V D where D is a diagonal matrix
of size p × p. (note that D is a function of ρ).

First observe that from the equality V T V = I it follows that

0 =
d

dρ
[V T V ] =

dV T

dρ
V + V T dV

dρ
= 0 → Diag

[

V T dV

dρ

]

= 0. (4.13)

This means that the matrix V T dV/dρ has a zero diagonal, a property which will be
expoited shortly. Next we proceed with the differentiation of f(ρ). First, consider

d

dρ
[V T (A − ρB)V ] =

d

dρ
[V T AV ] −

d

dρ
[V T ρB)V ]

=
dV T

dρ
AV + V T A

dV

dρ
−

dV T

dρ
ρBV − V T [BV + ρB

dV

dρ
]

=
dV T

dρ
[A − ρB]V + V T [A − ρB]

dV

dρ
− V T BV

=
dV T

dρ
V D + DV T dV

dρ
− V T BV .

Now, taking the trace in the above final expression yields:

df(ρ)

dρ
= Tr

[

dV T

dρ
V D + DV T dV

dρ
− V T BV

]

= 2 Tr

[

DV T dV

dρ

]

− Tr [V T BV ]

= −Tr [V T BV ].

The last equality comes from the fact that the matrix V T dV/dρ has a zero diagonal
as was established above, see Eq. (4.13). Therefore, we can state the following result.
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Proposition 4.4. The function f(ρ) admits the derivative −Tr [V (ρ)T BV (ρ)].
In particular, under the assumption that B is positive semi-definite with fewer than p
zero eigenvalues, f is a strictly decreasing function.

Proof. Only the second part remains to be shown which is a consequence of
Lemma 3.1.

There is an alternative for deriving the above result - which is based on the
Dunford integral formula. The advantage of this viewpoint is that it bypasses the need
to restrict the mapping V (ρ) to being differentiable. This is based on the alternative
expression (4.9). Taking the derivative of f(ρ) from the expression yields:

f ′(ρ) =
−1

2πi
Tr

∫

Γ

z
d

dρ
Rρ(z)dz

=
−1

2πi
Tr

∫

Γ

zRρ(z)BRρ(z)dz

=
−1

2πi

∫

Γ

zTr [Rρ(z)BRρ(z)]dz

=
−1

2πi

∫

Γ

zTr [Rρ(z)2B]dz

=
−1

2πi

∫

Γ

Tr
(

[(A − ρB) − (A − ρB − zI)]Rρ(z)2B
)

dz

=
−1

2πi

∫

Γ

Tr
[

(A − ρB)Rρ(z)2B − Rρ(z)B
]

dz

=
−1

2πi
Tr

∫

Γ

(A − ρB)Rρ(z)2Bdz −
−1

2πi
Tr

∫

Γ

Rρ(z)Bdz

= 0 − Tr [P (ρ)B]

The integral in the first term of the above expression is zero because the term
(Rρ(z))2 in the integrand is the exact derivative (with respect to z) of Rρ(z). The
integral in the second bracketed term is just P (ρ). This gives the expression:

f ′(ρ) = −Tr [P (ρ)B] = −Tr [V (ρ)V (ρ)T B] = −Tr [V (ρ)T BV (ρ)] .

4.3. Practical implementation via Newton’s method. From the expression
of the differential of f , Newton’s method takes the form

ρnew = ρ −
Tr [V (ρ)T (A − ρB)V (ρ)]

−Tr [V (ρ)T BV (ρ)]
=

Tr [V (ρ)T AV (ρ)]

Tr [V (ρ)T BV (ρ)]

Remarkably, Newton’s method for finding the zero of f amounts to a form of fixed
point iteration. The function on the right side of the above equality is

g(ρ) =
Tr [V T (ρ)AV (ρ)]

Tr [V T (ρ)BV (ρ)]
,

in which V (ρ) was defined above. An approach of this type was proposed in the
literature and it was observed that convergence is fast. The reason for this is that it
is in essence a Newton method.

It is possible to exploit the Lanczos algorithm to provide a highly effective pro-
cedure.

Algorithm 4.1. Newton-Lanczos algorithm for Trace Ratio maximization
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1. Input: A,B and a dimension p.

2. Select initial n × p unitary matrix V ; compute ρ = Tr [V T AV ]/Tr [V T BV ] .

3. Until convergence Do:

4. Call the Lanczos algorithm to compute the p largest eigenvalues

5. of G(ρ) = A − ρB and associated eigenvectors [v1, v2, · · · , vp] ≡ V

6. Set ρ := Tr [V T AV ]

Tr [V T BV ]

7. EndDo

A number of practical refinements can make the above procedure highly effective.
The most important of these is based on the observation that variable accuracy tech-
niques can exploited to reduce cost. Initially, when we are away from the solution,
there is no need to compute the eigenspace accurately at all. As we get closer to
the solution ρ∗, it becomes essential to tighten the accuracy of the eigenvectors in
order for the procedure to enjoy a superlinear convergence. The well-known paper [2]
discusses the theory and the practical application of these inexact Newton methods.

4.4. Relation to repulsion Laplaceans. Graph-based methods for supervised
learning employ a Laplacean graph based on classes: edges (i, j) of the graph are
associated with the binary relation “i and j belong to the same class”. The Laplacean
weights are often defined simply as Wij = 1 if i and j are adjacent and Wij = 0
otherwise. The graph Laplacean is the matrix defined as L = D−W , where D is the
diagonal of the row-sums of W . As a result of these definitions D−W is singular and
admits the vector of all ones as a null vector.

A dimension reduction technique based on these graphs and called Locality Pre-
serving Projections (LPP) produces a set Y of data from the original set X by mini-
mizing the objective function, see [6]:

Ψ(Y ) ≡ Tr [Y LY ⊤] =
1

2

n
∑

i,j=1

Wij‖yi − yj‖
2
2. (4.14)

Intuitively, when two points xi and xj are similar, the corresponding weight Wij will
be large. Then, minimizing (4.14) will tend to force the distances ‖yi − yj‖

2
2 to be

small, i.e., it encourages points yi and yj to be placed close by in the low dimensional
space. A similar principle was advocated in the Orthogonal Neighborhood Preserving
Projections (ONPP) approach [7] by using a similarity graph borrowed from the
Locally Linear Embedding approach [11]. In ONPP (as in LLE), a weighted graph is
built by writing each data point xi as best as possible as a convex combination of its
k nearest neighbors,

xi ≈
∑

j ∈ N(i)

wijxj . (4.15)

Once this is done, projected points yi = V T xi are sought in a low dimensional space,
so that the relationships (4.15) between the original points are ‘optimally’ preserved.
This means that the following objective function:

Φρ(Y ) =
∑

i

‖yi −
∑

j

wijyj‖
2
2 with Y = V T X, (4.16)

is minimized with respect to all possible unitary matrices V of size n × p. The
minimization of the objective functions (4.14) and (4.16) will yield points that are
close by in the low-dimensional space, when they are close-by in the original space.
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Fig. 4.1. Illustration of the repulsion graph. The repulsion graph is obtained by only retaining
among the k nearest neighbors of a node i, those nodes that are not in the same class as i (illustrated
in red).

In [8], it was observed that this mechanism was often inadequate because it did
not take into account nearness of points that are from different classes. Two points xi

and xj may exist that are close by, but which do not belong to the same class. When
a projection is performed, there is a risk that these two points which are close-by, will
get incorrectly projected to the same class. To remedy this the paper introduced a
method based on the concept of repulsion graphs.

A repulsion graph is one that is extracted from the kNN graph, based on class label
information, and whose goal is to create repulsion forces between nearby points which
are not from the same class. For example, when a k-nearest neighbor graph is used, a
repulsion graph can be created by only retaining among the k-nearest neighbors of a
node i, those nodes that are not in the same class as i (see Fig. 4.1). For simplicity,
we assume that the kNN graph is symmetrized by including the edge (j, i) whenever the
edge (i, j) exists. The weight matrix can be defined in the same way as for Laplacean
graphs.

In the following, the original graph is only referenced as the class graph and
requires no further notation. Its associated Laplacean is denoted by L. The repulsion
graph is derived from a certain kNN graph, which we denote by G = (V, E). The
repulsion graph itself is denoted by G(r) = (V(r), E(r)), and its associated Laplacean
by L(r). Accordingly, the adjacency list for a given node i is now N (r)(i). Assume

for a moment that the weights are of the simple ‘uniform’ type, i.e., l
(r)
ij = −1 for

(i, j) ∈ E(r) and i 6= j and l
(r)
ii = −

∑

j l
(r)
ij . In other words, if we denote by ℓ(k)

the class label of item k, then the Laplacean matrix L(r) is derived from the weight
matrix

W
(r)
ij =

{

1 for (i, j) ∈ E , i 6= j, and ℓ(i) 6= ℓ(j)
0 otherwise

(4.17)

by defining L(r) = D(r) − W (r), in which D(r) is the matrix of row-sums of W (r).
This is a valid graph Laplacean as the row sums of the matrix are all zero, and the
off-diagonal entries are non-positive. By the assumption of the indirection of the kNN
graph (see above), L(r) is symmetric.

The key idea is that any objective function which will utilize the repulsion graph
will tend to maximize, rather than minimize (4.14), where the Laplacean matrix now
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is associated with the repulsion graph. This ‘repulsion Laplacean’ will model a force -
or rather an energy - which will tend to repel near-by points in different classes away
from each other. This is achieved by adding a negative term to the original objective
function (4.16):

Φρ(Y ) =
∑

i

‖yi −
∑

j

wijyj‖
2
2 − ρ

∑

i

∑

j∈ N(r)(i)

‖yi − yj‖
2
2. (4.18)

Here, N (r)(i) represents the set of neighbors of node i, with respect to the repulsion
graph. A similar device was used for the LPP approach [8]. The second term in the
above expression was referred to as the penalty term and to the parameter ρ as the
penalty parameter. If two projected entries xi and xj are not in the same class but
they are close, then the edge (i, j) is part of the graph G(r) and there is a penalty for
having the two nodes close in Y . Due to the negative sign, the penalty term will tend
to be larger in absolute value in order to minimize the objective function.

It can be shown from relation (4.18) that the above objective function can be
expressed as (see [8]):

Φρ(V ) = Tr
[

V T X(M − ρL(r))XT V
]

, (4.19)

where M = (I −WT )(I −W ). If we impose orthogonality constraints i.e., V T V = I,
then V is obtained from the d bottom eigenvectors of matrix X(M − ρL(r))XT .

In the end the optimization problem solved when repulsion Laplaceans are used
is of the form:

min
V T V =I

Tr
[

V T (A − ρB)V
]

, (4.20)

with A = XLXT , and B = XL(r)XT and V ∈ Up. This problem is clearly of the
form (4.2), except that the max is replaced by the min. In other words, the method of
repulsion Laplaceans amounts to just selecting ρ arbitrarily (i.e., not optimally) and
computing the optimal subspace of G(ρ). For the problems and applications seen in
[8], the performance of the method varied very smoothly in terms of ρ. The numerical
experiments section will illustrate how this technique compares with one based on the
techniques presented in earlier sections.

5. Necessary conditions for optimality. In this section we consider the op-
timization problem (1.1) under the common framework of necessary conditions of
optimality. The Lagrangian function of the problem (2.3) (where C is the identity
and B satisfies the conditions of Lemma 3.1) is

L(W,Γ) =
Tr [WT AW ]

Tr [WT BW ]
− Tr [Γ(WT W − I)].

According to the Karush-Kuhn-Tucker (KKT) optimality conditions, since (2.3) has
a global maximizer W∗ then there exist a Lagrangian multiplier matrix Γ∗ such that,

∂L(W∗,Γ∗)

∂W
= 0 with WT

∗ W∗ = I.

Given a matrix M we need to derive an expression for the partial derivative of
ϕM (W ) = Tr [WT MW ] with respect to W .

11



The function ϕM (W ) is a scalar function which depends on W . When M is
symmetric, the gradient of ϕM (W ) with respect to W satisfies

∇ϕM (W ).E = 2Tr
[

WT ME
]

so that ∂ϕM (W )/∂W = 2MW. Therefore, we obtain (A and B are symmetric)

∂L(W,Γ)

∂W
=

2ϕB(W )AW − 2ϕA(W )BW

(ϕB(W ))2
− W (ΓT + Γ).

Hence, the optimal solutions W∗ and Γ∗ verify

(A − ρ∗B) W∗ =
ϕB(W∗)

2
W∗(Γ

T
∗ + Γ∗), (5.1)

where ρ∗ = ϕA(W∗)/ϕB(W∗). Let Q be the matrix which diagonalizes ΓT
∗ + Γ∗ :

ΓT
∗ + Γ∗ = Q Σ∗ QT , QT Q = I,

where Σ∗ is a diagonal matrix. Observe that

Tr [ΓT
∗ + Γ∗] = 2

Tr [WT
∗ (A − ρ∗B)W∗]

ϕB(W∗)
= 0 and Tr [Σ∗] = 0.

Define U∗ = W∗Q. We have UT
∗ U∗ = 1 and we can rewrite Equation 5.1 as

(A − ρ∗B) U∗ = U∗Λ∗, where Λ∗ =
ϕB(W∗)

2
Σ∗. (5.2)

Equation (5.2) above is the necessary condition for the pair ρ∗, U∗ to be optimal with
Tr [UT

∗ (A − ρ∗B) U∗] = Tr [Λ∗] = 0. This provides another viewpoint to the analysis
seen in earlier sections.

6. Experiments. This section illustrates the methods discussed in this paper
with applications in dimensionality reduction for face recognition and handwritten
digit recognition.

The classical dimensionality reduction technique leading to optimizing the trace
ratio is Fisher Linear Discriminant Analysis (LDA) [3], where A corresponds to the
between-class covariance matrix and B corresponds to the within-class covariance
matrix. LDA can be seen as a global approach to supervised dimensionality reduc-
tion since the computation of the covariance matrices involves all data points. From
a graph-based point of view, the method employs two globally-binary-relationship
graphs: within-class graph (or class graph), GW , where edge (i, j) exists if i and j be-
long to the same class; and between-class graph (or repulsion graph), GB , where edge
(i, j) exists if i and j belong to different classes. In this view, A and B correspond
to the graph Laplacean of GB and GW , respectively. Local Discriminant Embedding
(LDE) [1], ONPP-R and OLPP-R [8] are local versions of LDA in which local vari-
ances are exploited by using only k nearest neighbors to form between-class graphs
and within-class graphs. Moreover, the weights can be generalized to any similarity
measures other than binary relationships and different methods construct the weights
in different ways.

LDE optimizes the ratio by relying on the eigenvectors of B−1A. In contrast,
ONPP-R and OLPP-R rely on the eigenvectors of A − ρB, where ρ is penalty term

12



set a priori. In our experiments, we will compare the results of the iterative method
based on maximizing the trace ratio, and represented by Algorithm 4.1, against these
two methods. We will consider both the global (or non-local) way and a local way of
forming A and B.

Here, by local way we simply mean a method based on some graph (e.g., kNN)
to capture local structures. By global way we mean a method, such as LDA, which
uses dense matrices to capture similarities between data samples in the data set.

The notation used for the various methods tested is as follows:
• LDA and LDE refer to methods that rely on the eigenvectors of B−1A. LDA

uses non-local matrices and LDE uses a local matrices.
• LDA-ITR and LDE-ITR refer to methods which optimize the trace ratio

iteratively, using the Newton approach described in Section 4.3. The matrices
A and B are formed in a non-local way for LDA-ITR and in a local way for
LDE-ITR.

• LDA-R and LDE-R refer to methods which exploit repulsion Laplaceans.
They utilize the eigenvectors of A − ρB. Again, A and B are nonlocal for
LDA-R and local for LDE-R.

6.1. Experimental setup. We experimented on six different datasets: ORL,
AR, UMIST, PIE, Essex (can be found at http://face-rec.org/databases/) and USPS
hanwritten dataset. Each image in ORL, AR and UMIST is downsampled to 38× 31
and is represented as a 1178 dimensional vector. Similarly, each image in PIE is
represented as a 1024 dimensional vector. The ORL dataset contains 40 individuals
with 10 images for each individual under variation in facial expression and pose.
From the AR dataset, we use 126 subjects, each of which has 8 images taken under
different facial expressions and lightning conditions. The UMIST database contains
20 people with different poses and the number of images per person varies from 19 to
48. The PIE dataset contains 68 subjects, each of them has about 170 images. The
Essex database contains 4 different sets, from easy to hard: face94, face95, face96,
and grimaces. We use the collection face95 which has 72 individuals, 20 images
per individual. Each individual was photographed using a fixed camera, while the
subject took one step towards the camera. Each image in Essex dataset is cropped
by removing the top 20 rows, 10 bottom rows and 20 columns each side and yields
a 36 × 43 image or equivalently, a 1548-dimensional vector. We use a portion of the
USPS dataset which consists of 1100 grayscale images of handwritten digits with 110
images for each digit. Each image is represented as a 256-dimensional vector.

Images of the same subject are divided randomly into training sets and test sets.
We perform 5 different random realizations of the training/testing sets and average
the errors. The numbers of training samples for ORL, AR, UMIST, PIE, Essex and
USPS are 5, 4, 10, 10, 10 and 20, respectively.

For local methods, within-class graphs and repulsion graphs are formed separately
using k-nearest neighbors. We use k = 3 for within graphs and k = 10 for repulsion
graphs. The heat kernel is used to compute distances between nodes in graphs.

In all experiments, both matrices A and B are scaled to have unit trace before
optimization. In addition, a preliminary PCA using Lanczos algorithm (see e.g., [4])
is employed before all of these methods to reduce the dimensionality of data to n− c,
where n is the number of training samples and c is the number of classes. To make
sure that A and B are positive definite, we regularize them by adding small numbers
to their diagonals.

Nearest neighbor classifier is used on the reduced spaces to classify images into
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Dims 10 20 30 40 50 60 70
LDE-ITR 32.4648 19.3766 13.6758 11.7107 28.2914 16.9605 13.7062

LDE 23.5373 13.5477 9.4640 8.0027 20.0822 12.7405 9.5377

Fig. 6.1. Values of tr[W T AW ]/tr[W T BW ].

subjects. Classification rates are shown to illustrate the performance of dimensionality
reduction.

6.2. Results and discussions. Because they optimize the ratio of the traces,
the Newton-Lanczos iterative procedure yielded significantly better trace ratios than
did non-iterative ones. This is depicted in table 6.1 for the PIE dataset. However, in
a few cases, results generated by the Newton-Lanczos iterative method were slightly
worse than those generated by the other techniques. This usually happens when the
dimension of the reduced space d is small and does not happen when d > 50. One
possible explanation for this is that in those cases, largest eigenvalues of intermediate
matrix A−ρB are very close to each other and Matlab (the algorithm under Matlab)
fails to capture the eigenvectors corresponding to true largest eigenvalues.

Figure 6.2 compares LDA-ITR and LDE-ITR against LDA and LDE for face
recognition on different datasets with the dimensions of reduced spaces ranging from
10 to 100. We can see that the LDA-ITR/LDE-ITR outperforms LDA/LDE for ORL,
AR, and UMIST. The improvement gets more significant as the dimension gets bigger.

However, for the PIE dataset, the iterative method based on Algorithm 4.1 per-
formed worse than LDA and LDE for low dimensional spaces and started to perform
better when d ≥ 50. This is in spite of the fact that in all experiments with the PIE
dataset, the optimal ratios obtained by the trace-ratio based variants LDA-ITR and
LDE-ITR are always better than those of their non-ratio-based sibblings LDA and
LDE.

Figure 6.3 shows the results of 2-D projection for PIE dataset using LDA and
LDA-ITR. On the left hand side are projected training data and on the right handside
are projected testing data. Only 3 random subjects are displayed, but the whole 68
subjects give similar pattern. We can see that trace-ratio based iterative methods
tends to minimize inner-class variance. They also tend to overfit the training data .
In this case, the projected data on 2-D space almost lie on a 1-D subspace and this
may provide a clue for the poor results seen in the low dimensional case.

We can also see that for some small datasets such as ORL, the results of LDA
and LDE are very similar due to the fact that training sets are small and therefore
local information used in LDE is roughly the same with global information used in
LDA.

LDA-ITR and LDE-ITR usually take 6-11 iterations to converge to the optima,
which is quite fast. One implementation issue we may mention when using Matlab is
that often Matlab’s eigs function, drops eigenvalues down to 0 which causes conver-
gence difficulties for the Newton-based iterative methods. We do not expect this to
be an issue in a production-type procedure implemented in C, C++, or Fortran.

Finally, we compare LDA, LDE, LDA-ITR and LDE-ITR against LDA-R and
LDE-R. Surprisingly, LDA-R and LDE-R with suitable penalty terms (0.2 in all of
our experiments) give better results in all datasets. The results tend to be the same as
LDA-ITR and LDE-ITR for high dimensional spaces. Especially, LDA-R and LDE-
R quickly reach high recognition rates at very low dimensions. Figure 6.4 shows
recognition rates for ORL, PIE, UMIST and USPS with dimensions ranging from 10
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Fig. 6.2. Recognition rates for the (A) UMIST, (B) ORL, (C) AR, (D) PIE, (E) Essex and
(F) USPS.

to 100 and from 2 to 30. 2-D projections for ORL in figure 6.5 show that LDE-R
gives similar point clouds for both training and testing data (LDA-R gives similar
results). Meanwhile, other methods demonstrate overfitting with very sticky clouds
for training data but scatter clouds for testing data.

7. Conclusion. We conclude with three observations. First, maximizing the
trace ratio in (1.1) need not be expensive. In fact our experiments show that with a
judicious use of the Lanczos procedure, a good initialization, and inexact eigenvector
calculations in the early stages of the Newton procedure, the overall procedure may
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Fig. 6.3. 2-D projections of the PIE dataset. Top: LDA; Bottom: LDA-ITR. Left side:
Training samples; Right side: test samples.

be much less expensive than one which relies on solving the generalized eigenvalue
problem associated with the common approach based on (1.2). Secondly, if one com-
pares two methods based on the same principle, one of which maximizes the trace
ratio (1.1) and the other the constrained trace (1.2), then generally the former will do
better. This confirms observations made by other researchers. Our third observation
is that when a good penatly parameter is used, the technique of repulsion Laplaceans
appears to perform generally better than one based on optimizing the trace ratio. In
other words, in most cases, there are values of ρ 6= ρ∗ which will yield better observed
performance than when using the optimal ρ∗. This is rather suprising, and merits
further investigation, because the method of repulsion Laplaceans can be viewed as a
simplification of the trace ratio optimization approach.
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