
Rational approximation to the Fermi-Dirac function
with applications in Density Functional Theory ∗

Yousef Saad † Roger B. Sidje ‡

February 10, 2009

Abstract

We are interested in computing the Fermi-Dirac matrix function in which the ma-
trix argument is the Hamiltonian matrix arising from Density Function Theory (DFT)
applications. More precisely, we are really interested in the diagonal of this matrix
function. We discuss rational approximation methods to the problem, specifically the
rational Chebyshev approximation and the continued fraction representation. These
schemes are further decomposed into their partial fraction expansions, leading ulti-
mately to computing the diagonal of the inverse of a shifted matrix over a series of
shifts. We descibe Lanczos methods and sparse direct method to address these systems.
Each approach has advanatges and disadvatanges that are illustrated with experiments.

Keywords: Fermi-Dirac, diagonal of the inverse of a matrix, electronic structure calcula-
tion, Density function theory

1 Introduction

The problem considered in this paper is that of computing the diagonal of the matrix function

P = f(H)

where H is the Hamiltonian and

f(z) =
1

1 + exp (z−µ
kBT

)

is the Fermi-Dirac function, in which kB is the Boltzmann’s constant, µ is a real variable
representing the chemical potential, T is the temperature, and z is a complex variable. Thus
in matrix form,

f(H) =

[

I + exp

(

1

kBT
(H − µI)

)]−1

,

∗Work supported by NSF under grant 0325218, by DOE under Grant DE-FG02-03ER25585, and by the
Minnesota Supercomputing Institute

†Computer Science & Engineering, University of Minnesota, Twin Cities. saad@cs.umn.edu
‡Department of Mathematics, The University of Alabama.

1

and therefore, if we let diag(X) denote a vector whose entries are the diagonal elements of the
matrix X, the problem amounts to retrieving diag(f(H)), i.e., literally the diagonal of the
inverse of a shifted matrix exponential where the argument matrix is a sparse Halmitonian
of large dimension.

It is well known that computing the matrix exponential can be a treacherous task, and
if we are to compute the matrix exponential in isolation, it would result in a full matrix
even though the original matrix is sparse. Furthermore in our present case, the difficulty
is compounded with the subsequent inversion before retrieving the diagonal entries. Hence
any approach based on first computing the matrix exponential in full would be impractical
for large realistic problems. Several techniques have been suggested for this problem, the
most promising of which have relied on approximating the Fermi-Dirac function by another
function that is easier to compute. In [2] for example, Bekas, Kokiopoulou and Saad de-
scribed how to construct a polynomial filter approximation based on a conjugate-residual
type algorithm in polynomial space. They considered the particular case where T → 0, in
which case f reduces to the Heaviside (or step) function. Related works have also considered
techniques based on a Chebyshev series expansion of the Heaviside function [1, 13]. Other
recent works include [4].

In this paper, we explore rational approximation methods to the Fermi-Dirac function,
namely the rational Chebyshev approximation and the continued fraction representation.
The resulting rational approximations are further decomposed into their partial fraction
expansions, leading ultimately to a series of shifted matrix inversions. These subproblems
can then be handled using either direct methods if feasible, or iterative methods. It should
however be stressed that we are really interested in the diagonal of the inverse and so further
specialization comes into play. The focus of our presentation in the paper is on how sparse
direct methods or the iterative Lanczos algorithm can be used with rational approximations
to address the problem.

The organization of the paper is as follows. Section 2 outlines the Lanczos algorithm
and its use to approximate matrix functions in general and the Fermi-Dirac function in
particular. Section 3 describes the two rational approximation schemes considered in our
study, with Section 4 and Section 5 respectively detail how the iterative Lanczos process and
sparse direct methods can be used to evaluate each term of their partial fraction expansion.
Section 6 presents some numerical results. Section 7 finally gives some concluding remarks.

2 The Lanczos algorithm

The Lanczos algorithm [14, 10, 7, 24] is the best known method for computing eigenpairs
of a large sparse symmetric real (or Hermitian complex) matrix. This algorithm has also
been used for a wide range of other calculations, such as solving linear systems [20, 25],
computing the action of the matrix exponential on a vector, see, e.g. [23, 27], and even
solving differential equations using exponentially-fitted methods, e.g., [16, 17, 12]. In exact
arithmetic, the algorithm can be recast as a simple three-term recurrence, namely,

βi+1qi+1 = Aqi − αiqi − βiqi−1 (1)

where αi, βi+1 are selected at step i so that the vector qi+1 is of norm unity and orthogonal
to qi and qi−1 (when i > 1). This also shows that only three vectors are required in memory

2

at any step. What is remarkable about this recurrence is that, after m s it has computed an
orthonormal basis of the m-th Krylov subspace

Km(A, q1) = span{q1, Aq1, · · · , A
m−1q1}.

Algorithmic details are outlined below.

Algorithm 2.1 Lanczos algorithm

1. Set β1 := 0, q1 := 0;
2. For i := 1, . . . ,m Do

3. w := Hqi − βiqi−1;

4. αi := qT
i w;

5. w := w − αiqi;

6. βi+1 := ‖w‖2;

7. qi+1 := w/βi+1;

8. EndDo

After m s of the Lanczos algorithm on the Hamiltonian H and a unit norm starting
vector q1 the following factorization holds

HQm = QmTm + βm+1qm+1e
⊤
m, (2)

where Qm = [q1, . . . , qm], qm+1 is the last vector computed by Lanczos and em is the m-
th column of the canonical basis (thus em has 1 at the m−th entry and zeros elsewhere),
Tm = tridiag [βi, αi, βi+1], is the tridiagonal symmetric matrix, with nonzero entries
βi, αi, βi+1 in row i.

In practice, however, it is well known that the algorithm in its simplest form given by
the recurrence in Eq. (1) is unstable and severe loss of orthogonality among the qi’s will take
place after a number of s. The onset of this instability tends to coincide with the convergence
of one or more eigenvalues, as Paige discovered in 1971 [19]. The simplest remedy against
loss of orthogonality is to apply a full reorthogonalization step, whereby the orthogonality
of the basis vector qi is enforced against all previous vectors at each step i. This means that
the vector qi, which in theory is already orthogonal against q1, . . . , qi−1, is orthogonalized
(a second time) against these vectors. The total additional cost at the m-th step will be
of order O(nm2). In addition, all basis vectors must be stored and accessed at each step,
making this approach impractical for runs with a large number of Lanczos s.

An inexpensive alternative is the partial reorthogonalization scheme which performs a
reorthogonalization step only when it is deemed necessary. This scheme does not guarantee
that the vectors are exactly orthogonal, but ensures that they are at least nearly orthogonal.
Typically, the loss of orthogonality is allowed to grow up to roughly the square root of the
machine precision, before a reorthogonalization is performed. This technique relies on the
existence of clever recurrences to estimate the level of orthogonality among the basis vectors
[15, 28]. The cost of updating the recurrences is negligible.

An important side benefit of this procedure, is that it becomes unnecessary to store all
basis vectors in main memory. We can instead use secondary storage and bring these vectors
back to main memory, say a few at a time, when they are needed for reorthogonalization.

3

The rationale is that previous vectors will only be needed infrequently, so the cost of access-
ing secondary storage will not hamper overall performance significantly. The simple regular
access pattern will allow to dampen the high cost of accessing secondary storage by overlap-
ping computations with read/writes from disk and UPC is an ideal language to employ to
efficiently handle such data transfers.

On the implemention side, an appealing characteristic of the Lanczos algorithm is that
the matrix A is only needed in “functional” form: All that is needed is a routine to compute
the product Aqi for any given vector qi. The matrix can be applied in stencil form, meaning
that it is not stored, but its action on a given vector is implemented by working directly on
the vector in the lattice. It can also be stored in a sparse format [22].

If we were to run all n s of Lanczos in exact arithmetic, then H = QnTnQ⊤
n and hence the

matrix function f(H) could be obtained as f(H) = Qnf(Tn)QT
n and from there the problem

becomes that of computing a matrix function whose argument is a tridiagonal matrix. But
it is not necessary to carry all n s to obtain useful approximations. Rather, one can use

f(H) ≈ Qmf(Tm)QT
m.

Bekas et al. [3] used the Lanczos algorithm with partial reorthogonalization and studied this
approach in the case of the Fermi-Dirac function. They evaluated f(Tm) by diagonalization
(as opposed to using a rational approximation as done here). It proved very competitive
with the standard implicitly restarted Lanczos procedure of ARPACK.

Consider as another example a linear system, where f(z) = z−1, one can view the conju-
gate gradient algorithm for solving the linear system Hx = b as a means of approximating
the inverse of H by QmT−1

m QT
m, which is then applied to the right-hand side (or the initial

residual r0 = b−Hx0 to be more accurate). The actual algorithm works by exploiting some
useful recurrences. A way to gain another insight into the derivation of the reduced size
approximation is to post-multiply (2) by Q⊤

m, thereby obtaining

HQmQ⊤
m = QmTmQ⊤

m + βm+1qm+1q
⊤
m,

and thus if we neglect the trailing term, βm+1qm+1q
⊤
m, which usually becomes small as βm+1 →

0 when m increases, we can consider the approximation HQmQ⊤
m ≈ QmTmQ⊤

m. Using the
Taylor series representation of f , it is not difficult to see that we are led to f(H)QmQ⊤

m ≈
Qmf(Tm)Q⊤

m. To recap therefore, Qmf(Tm)Q⊤
m is a candidate approximation to either f(H)

or f(H)QmQ⊤
m. Such a distinction is not significant in the case of a linear system with the

starting vector q1 = Qme1 = r0/β, or when computing the action of the matrix function f(H)
on the operand vector q1. The reason is because the Qm factor is cancelled out when the
approximation is ultimately applied to q1. However this distinction turns out to be insightful
if we are to approximate f(H) in general. Experiments suggest that for certain functions
Qmf(Tm)Q⊤

m can be a significantly better approximation to f(H)QmQ⊤
m than it is to f(H),

and that in general a good approximation to f(H) is achieved only when orthogonality is
maintained. We illustrate this in Figure 1.

We can clearly draw from these observations that for Qmf(Tm)Q⊤
m to be a robust enough

approach, orthogonality must be preserved. We now turn our attention at investigating other
approaches.

4

Figure 1: Approximation errors during the Lanczos iterations with full reorthogonalization.
The first plot uses f(z) = z−1 and the second plot uses f(z) = exp((z − µ)/kBT), both
the same matrix and a random starting vector. Observe in the first plot how the error
‖ diag(Qmf(Tm)Q⊤

m) − diag(f(H))‖2 stagnates. Whereas in the second plot, accuracy is
pretty good when the Lanczos basis is big enough to capture the eigenvectors corresponding
to the eigenvalues ≤ µ as reported in Bekas et al. [3]. In both cases, the approximation
should be exact when m = n, but finite precision arithmetic introduce discrepancies.

3 Rational approximation

Since the exponential function is the main ingredient in the definition of the Fermi-Dirac
function, it is natural to explore how approximation schemes that have been proposed for

5

the exponential function can be extended to the Fermi-Dirac function. However, not all
extensions are suitable because the conversion from the scalar case to the matrix case comes
with some constraints. Matrix decomposition methods or methods such as the popular
Padé method with the so-called scaling-squaring technique would make it necessary to deal
with the matrix in full. This section focuses on two approaches that avoid matrix-matrix
operations, namely the rational Chebyshev approximation and the continued fraction repre-
sentation.

3.1 Rational Chebyshev approximation

When used for the exponential function, the main strength of the rational Chebyshev ap-
proximation is its ability to provide accurate results with a relatively low and fixed degree
(provided that the scheme is used in its proper domain of applicability).

The rational Chebyshev approximation problem comes from extending the minimax
Chebyshev theory to rational functions, specifically: find rd(x) ≡ p(x)/q(x) such that

‖rd(x) − e−x‖L∞[0,+∞) = min
r∈Rd

max
x∈[0,+∞)

|r(x) − e−x| (3)

where Rd denotes the class of rational functions of type (d, d). In general, the degree of
the numerator need not be the same as the degree of the denominator, but we limit our
presentation to this case because it is sufficient for our purposes.

This problem does not have a closed form solution, but it has been solved numerically
for d = 1, ..., 14, by Cody, Meinardus and Varga [6], and subsequently up to degree d = 30
by Carpenter, Ruttan and Varga [5]. Interestingly, the problem does have a closed form
solution if it is instead formulated (in the unit disk) over the extended approximation space
R̃d ⊃ Rd of rational functions such that

r̃d(z) =
d

∑

k=−∞

akz
k

/

d
∑

k=0

bkz
k . (4)

Dropping the terms of negative degree of the numerator in (4) gives a near-best approxima-
tion (see Trefethen [29] or Trefethen and Gutknecht [30] for details)

rcf
d (z) =

d
∑

k=0

akz
k

/

d
∑

k=0

bkz
k .

What is noteworthy in this approach is that there is a constructive algorithm based on an
earlier result of Carathéodory and Fejér to compute the coefficients ak and bk on the fly for
any arbritrary degree d using the singular value decomposition (SVD) of a Hankel matrix
that is populated by the coeffients of the Taylor series expansion.

While we could interchangeably use this approach (and have tested that it works), we
continue our presentation with the ordinary rational Chebyshev approximation for which
the coefficients of the best approximants p(x) and q(x) have been computed and listed for
d = 1, 2, ..., 30 in [6, 5]. Starting therefore with e−x ≈ rd(x), we can derive an approximation
to the Fermi-Dirac function as

f(x) =
1

ex + 1
≈

1
q(x)
p(x)

+ 1
=

p(x)

p(x) + q(x)
. (5)

6

Figure 2: Contour plots of the error in the respective rational Chebyshev approximations of
the exponential function and the Fermi-Dirac function.

From the rational approximation (5), we can compute the partial fraction expansion

f(x) ≈ R0 +
d

∑

k=1

Rk

x − zk

7

to obtain

diag(f(H)) ≈ R0I +
d

∑

k=1

Rk diag(H − zkI)−1. (6)

We have therefore turned the problem into computing the diagonal of the inverse of a shifted
matrix across a few number of known shifts. Because the poles are complex and H is
symmetric and thus with real eigenvalues, H − zkI is guaranteed to be invertible. As we
indicated at the beginning, the main caveat on the Chebyshev approach is the domain of
applicability specified in (3), which makes the approach more suited for symmetric definite
matrices. In fact it has been shown for the exponential that

‖ exp(−H) − rd(H)d‖2 ≤ λd,

where λd is an explicitly known constant alternatively referred to as the uniform rational
Chebyshev constant [31] or the Halphen constant due to its earlier origin [11]. It is now known
that λd ≈ 10−d which means that a type (d, d)-approximation yields about d-digit accuracy.
Note however that the bound only holds for a symmetric real matrix (or Hermitian complex
matrix), and not for any general matrix with a complex spectrum and/or a poorly conditioned
system of eigenvectors. As can be seen in Figure 2, these approximants become invalid and
are subject to large errors if employed where not intended. Shifting the exponential as
ez = ese(z−s) ≈ esrd(−(z − s)) only works for small s since es quickly becomes large and
magnifies the error. While this straightforward adaptation of the Chebyshev approach is
very efficient due to its low degree, our experiments confirmed that it can not be used in all
circumstances. Its restricted domain of applicability prevents using the scheme in its basic
form as a black-box, general purpose method for the Fermi-Dirac function.

Table 1: Residues and poles of the rational Chebyshev approximation of type (14,14) to the
Fermi-Dirac function. They come in conjugate pairs and so only half of the set is listed.

R0 = 1.832174378254008e−14
R1 = 7.153332540307382e−05 + 1.436536356343437e−04i
R2 = −9.372540241863129e−03 − 1.659031409384731e−02i
R3 = 1.081135621732985e+00 − 7.781250683748498e−01i
R4 = 6.007249618115624e−01 − 7.563702806572788e−01i
R5 = 9.903908361025214e−01 − 3.162473096388244e−01i
R6 = −1.662954347498257e+00 + 2.014087581978868e−01i
R7 = −9.999960653156149e−01 + 5.974185742799262e−07i
z1 = 8.897701648364055e+00 + 1.663083898786899e+01i
z2 = 3.712681837943989e+00 + 1.367325588180097e+01i
z3 = −6.407114925441066e−01 + 1.074407843430750e+01i
z4 = −6.242676963830224e+00 + 8.370140270020642e+00i
z5 = −9.787553309337540e+00 + 3.234733921618516e+00i
z6 = −1.052768339150649e−01 + 9.647884870240162e+00i
z7 = 8.144083801508994e−07 + 3.141591911938352e+00i

8

3.2 Continued fraction approximation

Any rational approximation corresponds to a truncated continued fraction and vice-versa.
In [18], Ozaki evaluated the Fermi-Dirac function using a continued fraction representation
that can further be decomposed into a partial fraction expansion via a generalized eigenvalue
problem. This continued fraction representation is equivalent to a Padé approximation,
although Ozaki derived it differently using the ratio of two hypergeometric functions. We
briefly summarize the key results. Writing

1

1 + ex
=

1

1 + 1+tanh(x/2)
1−tanh(x/2)

=
1

2
−

1

2
tanh(x/2)

and using the continued fraction expansion of the hyperbolic tangent function, it follows
that the one of the Fermi-Dirac function is

1

1 + ex
=

1

2
−

1

2

(x/2)

1 +
(x/2)2

3 +
(x/2)2

5 +
(x/2)2

· · ·

(2k − 1) +
. . .

(7)

and, if truncated at length d, its partial fraction expansion can be written as

1

1 + ex
≈ R0 +

d/2
∑

k=1

Rk

x − izk

+

d/2
∑

k=1

Rk

x + izk

. (8)

where the degree d is chosen to be even for convenience, and also to make it clear that only
half of the evaluation is done because the poles come in conjugate pairs. It turns out that
the residues Rk are real and identical for conjugate poles, and that the poles are purely
imaginary. They can be computed on the fly in an elegant manner owing to the property
that the (1, 1) element of the inverse of the tridiagonal matrix

C =













c11 c12

c21 c22 c23

c32 c33
. . .

. cd−1,d

cd,d−1 cdd













is given by

eT
1 C−1e1 =

1

c11 −
c12c21

c22 −
c23c32

c33 −
c34c43

· · ·

cdd

.

9

This property has been used elsewhere, for example in Filipponi [9], and earlier in Haydock,
Heine and Kelly [21] and others. Setting in particular ckk = 2k − 1 and ck,k+1 = ck,k+1 = ix

2

allows approximating the Fermi-Dirac function as done by Ozaki [18]. Specifically, with

C =















1 ix
2

ix
2

3 ix
2

ix
2

5
. . .

. ix
2

ix
2

2d − 1















= D + ixN,

where

D =













1
3

5
. . .

2d − 1













, N =
1

2













0 1
1 0 1

1 0
. . .

. 1
1 0













,

we infer from (7) that

1

1 + ex
≈

1

2
−

x

4
eT
1 C−1e1 =

1

2
−

x

4
eT
1 (D + ixN)−1e1

=
1

2
−

x

4
eT
1 D−1/2(I + ixD−1/2ND−1/2)−1D−1/2e1

=
1

2
−

x

4
eT
1 U(I + ixΛ)−1UT e1

with the observation that D−1/2e1 = e1 and using the eigen decomposition

D−1/2ND−1/2 = UΛUT , Λ = diag(−λd/2, . . . ,−λ1, λ1, . . . , λd/2).

The result simplifies to (8) with

R0 =
1

2
, Rk = −

1

4

(

eT
1 Uek

λk

)2

, zk =
1

λk

, k = 1, . . . , d/2.

Given the relevance of the method in other contexts, we include a Matlab script to
perform the partial fraction decomposition for interested readers.

10

function [zk, Rk, R0] = cfracgen(halfdeg)

% Generate the zeros and residues of a continued fraction expansion for

% the Fermi-Dirac function terminated at 2*halfdeg.

d = 2*halfdeg; % degree of the continued fraction

v = [1:2:2*d-1]; % setup the

w = 0.5 ./ sqrt(v(1:end-1).*v(2:end));% underlying

T = diag(w,1) + diag(w,-1); % eigenvalue problem

[U,D] = eig(T);

zk = 1./diag(D); % poles are inverse of eigenvalues

Rk = U(1,:); Rk = Rk(:); % unscaled residues

Rk = -(1/4)*(Rk./diag(D)).^2; % scale them to their final values

R0 = 1/2;

[dummy, order] = sort(zk); % sort to select the negative half

zk = zk(order); zk = i*zk(1:halfdeg); % make them purely imaginary and

Rk = Rk(order); Rk = Rk(1:halfdeg); % collect their associated residues

Figure 3: Approximation error of the continued fraction expansion of the Fermi-Dirac func-
tion truncated at length d. Points of the curves that dip below the machineilon 2.2 ·10−16

are left out for readability. It is clear that targeting a wide range of x requires a high degree.

As in the Chebyshev approach, once the partial fraction expansion is known the problem
becomes that of computing the diagonal of the inverse of a shifted matrix across a number
of known shifts. This is discussed next.

11

4 Computing diag(H − θI)−1 via the Lanczos algorithm

We showed earlier how the Lanczos algorithm can in principle be used to define the basic
approximation

diag((H − θI)
−1

) ≈ diag(Qm(Tm − θI)−1QT
m).

We shall now describe how the diagonal can be updated in an elegant way by using re-
currences that are similar to those of the Conjugate Gradient (CG) algorithm. What this
suggests is that the Lanczos algorithm can be used as in Bekas et al. [3], but combined with
a rational approximation to the Fermi-Dirac function for f(Tm) instead of diagonalization.

Lanczos algorithm for computing
diag(inv(H − θI))
The algorithm starts with a random vec-
tor q1, d0 = p0 = q0 = 0; and β1 = η1 = 0.
In the algorithm, dj represents the se-
quence of vectors whose entries approx-
imate the diagonal of H−1. The notation
u⊙v stands for the component-wise prod-
uct of the vectors u and v. Thus pj ⊙ pj

is simply the vector of the squares of the
entries of pj.

For j = 1, 2, · · · , Do:
{Compute next Lanczos vector & scalars}
βj+1qj+1 = Hqj − αjqj − βjqj−1

{Compute next direction & diagonal iterate }
pj := qj − ηjpj−1

δj := αj − θ − βjηj

dj := dj−1 +
pj⊙pj

δj

ηj+1 :=
βj+1

δj

EndDo

The directions pj are scaled versions of the conjugate directions of CG. Indeed to justify
the algorithm, assume that we have the LDLT decomposition of Tm − θI,

Tm =











α1 β2

β2 α2
. . .

. βm

βm αm











, Lm =









1 0
η2 1

.

0 ηm 1









, Dm =









δ1 0
δ2

. . .

0 δm









,

where the coefficients of the decomposition can be shown to satisfy the following relations:
δ1 = α1 and for j = 2 : m, ηj = βj/δj−1, δj = αj − βjηj. From there,

diag(Qm(Tm − θI)−1QT
m) = diag(QmL−T

m D−1
m L−1

m QT
m) =

m
∑

j=1

pj ⊙ pj

δj

,

where we set QmL−T
m = (p1 . . . pm) and we have pj = qj − ηjpj−1 given that

QjL
−T
j = (Qj−1 qj)

(

Lj−1 0
ηje

T
j−1 1

)−T

= (Qj−1L
−T
j−1 qj − ηjQj−1L

−T
j−1ej−1) .

To summarize the overall procedure for (6), the basis Qm and the tridiagonal matrix Tm

are the same for a series of θk, and the extra cost comes only from a loop over different
sequences, say pk

j and dk
j corresponding to each pole θk. From there the dk

j are summed up
to obtain the final approximation in the way shown in (6). Interestingly, approximating (6)

12

acurately may generally take fewer iterations than approximating each term in the partial
sum individually. As we pointed out earlier, Qmf(Tm)Qm behaves differently depending on
f . When considering each term individualy, it is as if each term aims at the inverse function
f(z) = z−1, in which case, a good approximation needs the entire spectrum, whereas when
taken collectively, we in effect take the Fermi-Dirac function f(z) = exp((z − µ)/kBT), and
in this case only the eigenvalues less than the Fermi level µ are significant, as can be seen in
Bekas et al. [3].

In applications such as those envisioned in this work, the Hamiltonian can be very large,
requiring a large number of Lanczos s to get to a good approximation. In this situation,
the cost of reorthogonalization becomes prohibitive and dominates the overall calculation.
Having highlighted the strong connection with Bekas et al. [3], we now focus the rest of
presentation on sparse direct methods.

5 Computing diag(H − θI)−1 via sparse direct methods

As can be seen for example in Duff, Erisman and Reid [8], the standard way of extracting the
diagonal of the inverse of a matrix is through its LU decomposition, or through the square-
root free Cholesky LDL∗ decomposition in the Hermitian case. However, direct techniques
create an extra fill-in that can make them very demanding in terms of storage. Another
aspect is that, unlike the Lanczos algorithm, which allows us to extract several diagonals at
once, a new factorization must be performed for every new θ. But the stability concerns that
we have illustrated earlier with the Lanczos approach are serious enough to warrant giving
a consideration to the more accurate sparse direct methods nowithstanding their higher
cost. Moreover, we will see later that incomplete factorizations can possibly be attempted
to reduce their cost.

We start by briefly outlining the approach described in Duff, Erisman and Reid [8] for
computing entries of the inverse of a matrix. Let Z = A−1, where we assume to begin with
that A is general, and that we have computed a sparse factorization

A = LDU,

with L unit lower triangular, D diagonal, and U unit upper triangular. We can exploit the
sparsity pattern of L and U to get the entries of Z = A−1 in an economical way, owing to
these relations due to Takahashi, Fagan, and Chin

Z = U−1D−1 + Z(I − L),

Z = D−1L−1 + (I − U)Z.

Now, (I − L) is strictly lower triangular and (I − U) is strictly upper triangular, and so

zij = eT
i Z(I − L)ej = −

n
∑

k=j+1

ziklkj, i > j,

zij = eT
i (I − U)Zej = −

n
∑

k=i+1

uikzkj, i < j,

zii = d−1
ii + eT

i Z(I − L)ei,

zii = d−1
ii + eT

i (I − U)Zei.

13

What these relations imply is that we can develop a computational sequence, starting from
znn = d−1

nn and moving backwards such that the computation of any entry zij only involves
the entries zst (s > i, t > j) that have already been computed, and this, importantly, while
exploiting the sparsity pattern of L and U in the products ziklkj and uikzkj to economize the
computations.

5.1 Using the LDL∗ decomposition

Consider the case where the matrix A is Hermitian, which permits the root-free Cholesky
decomposition A = LDL∗ where L is unit lower triangular and D is diagonal real. We
show below two possible algorithms (in the MATLAB language1) to compute Z = A−1,
also Hermitian, by recasting the above relations in the Hermitian context. The sequence in
the first algorithm is row oriented while it is column oriented in the second one. Another
variant (not shown here) is also possible by organizing the sequence to compute the trailing
submatrix, i.e., starting with znn and expanding to Z(n − 1: n, n − 1: n) and so on.

function Z = invLDL1(L, D)

% Given A = LDL’, compute Z = inv(A)

% row oriented version

[n,n] = size(L); Z = zeros(n,n);

for i = n:-1:1

Z(i,i) = 1/D(i,i)-Z(i,i+1:n)*L(i+1:n,i);

for j = i-1:-1:1

Z(i,j) = -Z(i,j+1:n)*L(j+1:n,j);

Z(j,i) = conj(Z(i,j));

end

end

function Z = invLDL2(L, D)

% Given A = LDL’, compute Z = inv(A)

% column oriented version

[n,n] = size(L); Z = zeros(n,n);

for j = n:-1:1

Z(j,j) = 1/D(j,j)-L(j+1:n,j)’*Z(j+1:n,j);

for i = j-1:-1:1

Z(i,j) = -L(i+1:n,i)’*Z(i+1:n,j);

Z(j,i) = conj(Z(i,j));

end

end

The algorithms above are not optimized and they only serve to illustrate possible com-
putational sequences as per our early discussion. Sparse data structures normally entail
programming practices vastly more intricate than shown in the algorithms. Our presenta-
tion is geared toward readability, but a final implementation should make the most of sparse
data structures. Since our real interest is in the diagonal of the inverse, our main goal is to
tune the computations for this situation. If we partition the decomposition of A = LDL∗ as

L =

(

Ln−1 0
l∗n 1

)

, D =

(

Dn−1 0
0 dn

)

,

then

Z = L−∗D−1L−1 =

(

L−∗
n−1D

−1
n−1L

−1
n−1 + d−1

n L−∗
n−1lnl∗nL

−1
n−1 −d−1

n L−∗
n−1ln

−d−1
n l∗nL

−1
n−1 d−1

n

)

.

1For readers not familiar with the Matlab notation: X ′ denotes the conjugate transpose, X\Y performs
X−1Y whereas X/Y performs XY −1, but either case relies on Gaussian elimination and the matrix inverse
is never computed. We will also often use x(:) in our listings to handily turn a row vector into a column
vector so as to operate with consistent dimensions when appropriate.

14

This suggests these possible algorithmic sequences for obtaining diag(Z) in the Hermitian
case. Note the use of the identity diag(uv∗) = u ⊙ v̄ in the algorithms, and that it cannot
be interchanged with ū ⊙ v unless u = v.

function z = diaginvLDL1(L, D)

% Given A = LDL’, compute z = diag(inv(A)), recursive

[n,n] = size(L);

z = zeros(n,1);

z(n) = 1/D(n);

if n > 1

v = L(n,1:n-1)/L(1:n-1,1:n-1); v = v(:);

z(1:n-1) = z(n)*v.*conj(v) + ...

diaginvLDL1(L(1:n-1,1:n-1),D(1:n-1));

end

function z = diaginvLDL2(L, D)

% Given A = LDL’, compute z = diag(inv(A))

[n,n] = size(L);

z = zeros(n,1);

z(1) = 1/D(1);

for i = 2:n

z(i) = 1/D(i);

v = L(i,1:i-1)/L(1:i-1,1:i-1); v = v(:);

z(1:i-1) = z(1:i-1) + z(i)*v.*conj(v);

end

While the recursive version is more readable, it has the disadvantage that it will not scale
well because the recursion stack will become too deep to the point of exceeding runtime limits.
Matlab for example has by default a maximum recursion limit of 100. It can be changed
with set(0,’RecursionLimit’,N), but in general, exceeding the available stack space can
crash Matlab and/or the computer system. The non-recursive version is immune to this
issue. The major caveat in both cases, however, is that they assume that the matrix is
Hermitian. Recall in our particular situation that we are dealing with H − θI, which is
not Hermitian even if H is, because the pole θ is complex. Thus we need to handle this
specific case. Although this might look like an innocuous change from the Hermitian case, it
has a far reaching consequence: the more economical LDL∗ decomposition cannot be used
anymore. We are compelled to revert to the general case.

5.2 Using the LDU decomposition

Going back to a general matrix A, if we partition its decomposition A = LDU as

L =

(

Ln−1 0
l∗n 1

)

, D =

(

Dn−1 0
0 dn

)

, U =

(

Un−1 un

0 1

)

,

then

Z = U−1D−1L−1 =

(

U−1
n−1D

−1
n−1L

−1
n−1 + d−1

n U−1
n−1unl

∗
nL−1

n−1 −d−1
n U−1

n−1un

−d−1
n l∗nL

−1
n−1 d−1

n

)

.

15

This suggests these possible coding sequences for obtaining diag(Z) in the general case. The
first variant uses recursion and so the reservation that we mentioned earlier applies here too.

function z = diaginvLDU1(L, D, U)

% Given A = LDU, compute z = diag(inv(A)), recursive

[n,n] = size(L);

z = zeros(n,1);

z(n) = 1/D(n);

if n > 1

u = U(1:n-1,1:n-1)\U(1:n-1,n);

v = L(n,1:n-1)/L(1:n-1,1:n-1); v = v(:);

z(1:n-1) = z(n)*u.*v + ...

diaginvLDU1(L(1:n-1,1:n-1),D(1:n-1),U(1:n-1,1:n-1));

end

function z = diaginvLDU2(L, D, U)

% Given A = LDU, compute z = diag(inv(A))

[n,n] = size(L);

z = zeros(n,1);

z(1) = 1/D(1);

for i = 2:n

z(i) = 1/D(i);

u = U(1:i-1,1:i-1)\U(1:i-1,i);

v = L(i,1:i-1)/L(1:i-1,1:i-1); v = v(:);

z(1:i-1) = z(1:i-1) + z(i)*u.*v;

end

Although we are compelled to use the LDU decomposition even though H is symmetric,
we should point out that the poles and residues come in conjugate pairs as indicated in
Table 1, and this yields substantial savings. Indeed we only need to perform half of the work
because (H − z̄kI)−1 = (H − zkI)−∗, thus

diag
(

Rk(H − zkI)−1 + R̄k(H − z̄kI)−1
)

= diag
(

Re[2Rk(H − zkI)−1]
)

. (9)

5.3 Using the LDU decomposition with partial pivoting

It is well known that a nonpivoting direct solver tends to suffer from rounding errors that
are much more significant than the rounding errors observed when pivoting is used. Hence
pivoting may be needed in certain cases to ensure robustness. We limit ourselves to partial
pivoting, which is usually sufficient in general. Consider the factorization

PA = LDU

where P is a permutation matrix and so

Z = A−1 = U−1D−1L−1P.

16

The product L−1P is not unit lower triangular, but L is and partitioning as before

L =

(

Ln−1 0
l∗n 1

)

, D =

(

Dn−1 0
0 dn

)

, U =

(

Un−1 un

0 1

)

,

and

P =

(

Pn−1 cn

r∗n δnn

)

,

we can write

diag(Z) =

(

diag
[

U−1
n−1D

−1
n−1Ln−1Pn−1 + d−1

n U−1
n−1un

(

l∗nL−1
n−1Pn−1 − r∗n

)]

d−1
n (δnn − l∗nL−1

n−1cn)

)

.

Note that the submatrix Pn−1 is not necessarily a permutation matrix and should not
be treated as such. The main difference (and extra cost) compared to the nonpivoting
version is that at each step we need to account for the action of this submatrix, as well
as the interference of r∗n, cn and δnn in the computational sequences. The above relation
establishes a recurrence involving diag(U−1

n−1D
−1
n−1Ln−1Pn−1) and thus it can be translated

into an algorithm as done earlier. However, it is inefficient to setup the permutation matrix
P explicitly. It is sufficient, economical, and more efficient by far, to keep the permutation
information into a vector, and this is all the more important given that we target large
problems. We provide further details as to how to cast the algorithm with this in mind
since such details are important to make good use of sparse data structures in practice.
Let σr be the permutation vector that characterizes P row-wise, and let σc be the one that
characterizes P column-wise. They are related through the relation σc(σr) = 1:n = σr(σc),
and we have

P =







e∗σr(1)
...

e∗σr(n)






=

(

eσc(1) · · · eσc(n)

)

,

which shows how to easily extract rows or columns of P knowing σr or σc. In fact, the
quantities r∗n, cn, δnn introduced earlier in the partitioning of P can all be null as the
recurrence unwinds into the principal submatrices of P because P is made up of permuted
rows (or columns) of the identity matrix. For this same reason, if δnn = 1, then r∗n and cn

must necessarily be null, and if either r∗n or cn is non null, then δnn = 0. In this latter case
there must only be a single non null component with value one in r∗n and/or cn. Computations
can be tuned to only rely on the index of this single non null entry. Also, in the course of
the algorithm, we need to compute v∗Ps where v is a (sparse) vector of length s < n and Ps

is the s-th leading principal submatrix of P . To perform this, we just write

v∗Ps = v∗[Is 0]P

[

Is

0

]

= (ṽσc(1) · · · ṽσc(s)), ṽ∗ = (v∗ 0).

The following algorithm takes these observations into account. Of all the algorithms dis-
cussed so far, this is the most robust and general purpose, albeit the downside of par-
tial pivoting is in general a much increased fill-in. In the listing, σr is represented by
the variable pr while σc is represented by the variable pc. It is clear that most of the

17

compute time of the algorithm will come from the sparse triangular system solves for u =

U(1:i-1,1:i-1)\U(1:i-1,i) and v = L(i,1:i-1)/L(1:i-1,1:i-1) at each step. These
need to be performed with efficient sparse data structures in a production code.

function z = diaginvLDUpiv(L, D, U, pr)

% Given PA = LDU where the permutation matrix P is characterized

% row-wise by the vector pr, compute z = diag(inv(A)).

[n,n] = size(L);

pc(pr) = 1:n;

z = zeros(n,1);

if pr(1) == 1

z(1) = 1/D(1);

end

for i = 2:n

d = 1/D(i);

u = U(1:i-1,1:i-1)\U(1:i-1,i);

v = L(i,1:i-1)/L(1:i-1,1:i-1);

vp = zeros(n,1);

vp(1:i-1) = v;

vp = vp(pc(1:i-1));

ir = pr(i);

ic = pc(i);

if ir == i % r and c are null

z(i) = d;

else

if ir < i % r = e_{ir}

vp(ir) = vp(ir) - 1;

end

if ic < i % c = e_{ic}

z(i) = -d*v(ic);

end

end

z(1:i-1) = z(1:i-1) + d*u.*vp;

end

6 Numerical results

When we put together all the elements that we have discussed so far, we obtain an over-
all algorithm for our stated problem. The following Matlab template provides a basis for
developing a more advanced code in Fortran or C/C++.

18

function f = ratfermidirac(H, mu, kBT, R0, Rk, zk)

% Compute f = diag(inv(I + expm[(H - mu*I)/kBT])).

% This only uses half of the poles, hence length(zk) is d/2.

I = speye(size(H));

f = R0*ones(size(H,1),1);

for k = 1:length(zk)

z = diaginv(H - (mu+kBT*zk(k))*I);

f = f + real((2*kBT*Rk(k))*z);

end;

On input the poles and residues can either be the Chebyshev ones given on Table 1 (if
using the Chebyshev approach is suitable for the problem), or, more generally, the ones of the
continued fraction as computed in section 3.2. We have already stressed in our presentation
that the core task needed for for each pole is common to either approach as (9) shows. The
Chebyshev approach, if applicable, just requires fewer terms in its partial fraction expan-
sion. The experiments reported here are performed with the continued fraction, with the
understanding that the Chebyshev would be cheaper if it was applicable for the problem at
the hand. Hence we will not dwell further on the difference between these two approaches.
The computer system that we use for the experiments is a Dell workstation called syphax in
our environment and running Linux. It has 16GB of RAM and 2 dual core AMD Opteron
processors (thus 4 core processors total), each with a 2.2 Ghz clock, but it should be under-
stood that our code entails sequential computations. The generic function diaginv shown
in the script is meant to compute the diagonal of the inverse. Our Fortran code performs an
LU decomposition without pivoting to limit the fill-in, and this is then used to compute the
diagonal of the inverse as explained in our presentation. On the tables, z1 and zn represent
the first and last diagonal entries of the matrix function. In addition to experimenting with
a complete factorization, we also report experiments where we attempted obtaining the LU
factors with an incomplete factorization using various drop tolerance thresholds. Although
incomplete factorizations are generally used as preconditioners instead of one-shot solvers in
their own right, Sidje and Stewart [26] observed that they can be useful as solvers in the
Newton phase of implicit integrators. This motivates trying similar experiments here given
the need to compute the diagonal of the inverse over potentially numerous shifts. Results of
our experiments are listed in the tables below. We set in the code kB = 6.33327186 · 10−6,
the Fermi level µ = 7, the Fermi temperature T = 103, and we use a continued fraction of
degree d = 200, that is the effective number of systems to deal with is d/2 = 100.

If we denote by λmin and λmax the smallest and largest eigenvalues of the matrix, then
it is important to ensure that domain of accuracy of the continued fraction is big enough to
include (λmin − µ)/kBT and (λmax − µ)/kBT . We report these quantities on Table 2, and it
can be seen from Figure 3 that the range for a continued fraction of degree d = 200 is big
enough to cover all the test problems.

19

Matrix n nz density λmin λmax
λmin−µ

kBT
λmax−µ

kBT

si2 769 17801 0.030 -0.3844 41.3813 -1.1660e+03 5.4287e+03
Si 2sym 1647 69701 0.026 -0.7064 35.9969 -1.2168e+03 4.5785e+03
Si sym 2777 102703 0.013 -0.7595 36.4485 -1.2252e+03 4.6498e+03

Na5 sym 5832 305630 0.009 -0.1638 25.6604 -1.1311e+03 2.9464e+03
benzene sym 8219 242669 0.004 -0.7296 58.3937 -1.2205e+03 8.1149e+03

gr 30 30 900 7744 0.010 0.0615 11.9591 -1.0956e+03 7.8302e+02

Table 2: Problems characteristics. To illustrate the effect of bandness we include in the tests
the banded matrix gr 30 30 from the Harwell-Boeing collection.

Figure 4: Sparsity partten of the matrix si2.

Matrix si2: n = 769; nz = 17801
fill-in Time z1 zn ‖zLU − zILU‖∞

LU 468343 4.3e+02 1.64567257e-01 1.04394207e-02
ILUTH(10−5) 445892 3.6e+02 1.64567673e-01 1.04394258e-02 3.1e-06
ILUTH(10−4) 401972 3.0e+02 1.64570421e-01 1.04395151e-02 4.7e-05
ILUTH(10−3) 334131 2.1e+02 1.64376532e-01 1.04367885e-02 5.3e-04
ILUTH(10−2) 233226 1.2e+02 1.64285585e-01 1.04288876e-02 1.2e-02

20

Figure 5: Sparsity partten of the matrix Si 2sym.

Matrix Si 2sym: n = 1647; nz = 69701
fill-in Time z1 zn ‖zLU − zILU‖∞

LU 1787271 3.3e+03 1.46619766e-02 2.41112218e-02
ILUTH(10−5) 1677064 2.4e+03 1.46618411e-02 2.41111652e-02 1.0e-03
ILUTH(10−4) 1497547 1.8e+03 1.46583863e-02 2.41108016e-02 2.3e-03
ILUTH(10−3) 1228400 1.2e+03 1.46924738e-02 2.41128873e-02 3.2e-02
ILUTH(10−2) 849297 5.8e+02 1.48429178e-02 2.42608149e-02 6.0e-01

Matrix Si sym: n = 2777; nz = 102703
fill-in Time z1 zn ‖zLU − zILU‖∞

LU 4656279 1.4e+04 4.79197023e-02 4.81102302e-02
ILUTH(10−5) 4341197 9.5e+03 4.79193415e-02 4.81103693e-02 1.9e-04
ILUTH(10−4) 3824245 7.0e+03 4.79174357e-02 4.81082004e-02 4.7e-04
ILUTH(10−3) 3078775 4.3e+03 4.80198014e-02 4.80819374e-02 2.6e-02
ILUTH(10−2) 2082093 2.0e+03 4.78236221e-02 4.83636722e-02 6.2e-01

Matrix Na5 sym: n = 5832; nz = 305630
fill-in Time z1 zn ‖zLU − zILU‖∞

LU 17546710 1.1e+05 1.41527931e-01 1.53972605e-01
ILUTH(10−5) 16122088 5.7e+04 1.41527719e-01 1.53972497e-01 1.5e-04
ILUTH(10−4) 14080028 3.9e+04 1.41523559e-01 1.53969451e-01 3.8e-04
ILUTH(10−3) 11170122 2.2e+04 1.41574902e-01 1.53960797e-01 2.6e-02
ILUTH(10−2) 7433217 9.2e+03 1.41680342e-01 1.54277648e-01 1.4e-01

21

Figure 6: Sparsity partten of the matrix Si sym.

Figure 7: Sparsity partten of the matrix Na5 sym.

Matrix benzene sym: n = 8219; nz = 242669
fill-in Time z1 zn ‖zLU − zILU‖∞

LU 32403625 3.2e+05 6.91951271e-02 9.07962363e-03
ILUTH(10−5) 29278196 1.8e+05 6.91949792e-02 9.07966677e-03 6.5e-06
ILUTH(10−4) 24720088 1.4e+05 6.92091920e-02 9.07948568e-03 7.2e-05
ILUTH(10−3) 18800858 8.2e+04 6.90126254e-02 9.07945655e-03 8.2e-04
ILUTH(10−2) 11526582 3.3e+04 6.92235099e-02 9.18450982e-03 3.7e-02

22

Figure 8: Sparsity partten of the matrix benzene sym.

Figure 9: Sparsity partten of the matrix gr 30 30.

23

Matrix gr 30 30: n = 900; nz = 7744
fill-in Time z1 zn ‖zLU − zILU‖∞

LU 54840 5.6e+01 2.29625553e-01 2.29625553e-01
ILUTH(10−5) 54840 4.6e+01 2.29625553e-01 2.29625553e-01 6.9e-10
ILUTH(10−4) 54840 4.2e+01 2.29625543e-01 2.29625555e-01 6.4e-08
ILUTH(10−3) 54838 3.5e+01 2.29626450e-01 2.29626340e-01 5.8e-06
ILUTH(10−2) 54663 2.7e+01 2.30416964e-01 2.29646851e-01 7.9e-04

7 Conclusion

We have explored how the Fermi-Dirac function can be evaluated using rational approxima-
tions. We discussed the uniform rational Chebyshev approximation, which has the advantage
of being of low degree, but has the disadvantage of being restricted to only half of the real
line. We also discussed a truncated continued fraction approximation, which has the advan-
tage of being applicable to a wider class of problems, but has the disadvantage of requiring
a high degree to achieve accuracy.

In terms of execution time, the impact of the degree in either rational scheme is evident
by the fact that the rational scheme is ultimately converted into a partial fraction expansion
that must be evaluated via shifted matrix inversions with complex shifts. The lower the
degree, the fewer the number of terms to evaluate in the expansion. Because our interest is
really in the diagonal of the inverse, we showed that the Lanczos method could in principle
provide a very elegant mechanism for the problem in exact arithmetic. However, we observed
in practice that loss of orthogonally in finite arithmetic can be detrimental, and the remedy
against such loss of orthogonality involving some sort of reorthogonalization as done in
Bekas et al. [3]. We also implemented sparse direct methods in Fortran and performed
numerical tests that showed that while accuracy is achieved with such methods, the execution
time can be high for large problems. To reduce the cost of the computations, we used
incomplete factorizations that drop a certain amount of the extra fill-in created by the
sparse direct methods. We observed that such incomplete methods can trade accuracy for
substantial savings, albeit the extent of the lost of accuracy is not predicted.

On the whole, we can conclude that the fact that the rational approximation method
converts the original Fermi-Dirac problem into computing the diagonal of a series of matrix
inverses makes the approach particular suitable for special matrices (e.g., narrowly banded
matrices). It also means that the information gather from one one solve could help guide th
next solve, although strategies remain open issues. Finally in parallel computing environ-
ments, the systems can be solved concurrently so that the nominal cost of the method could
become the cost of only one solve.

References

[1] C. Bekas, E. Kokiopoulou, and Y. Saad. An estimator for the diagonal of a matrix.
Applied Numerical Mathematics, 2006. To appear.

24

[2] C. Bekas, E. Kokiopoulou, and Y. Saad. Polynomial filtered Lanczos iterations with
applications in density functional theory. SIAM Journal on Matrix Analysis and Appli-
cations, pages –, 2008. To appear.

[3] C. Bekas, Y. Saad, M. L. Tiago, and J. R. Chelikowsky. Computing charge densities with
partially reorthogonalized Lanczos. Computer Physics Communications, 171(3):175–
186, 2005.

[4] M. Benzi and N. Razouk. Decay bounds and O(N) algorithms for approximating func-
tions of sparse matrices. ETNA, 28:16–39, 2007.

[5] A. J. Carpenter, A. Ruttan, and R. S. Varga. Extended numerical computations on
the 1/9 conjecture in rational approximation theory. In Lecture Notes in Mathematics
1105, pages 383–411, Berlin, 1984. Springer-Verlag.

[6] W. J. Cody, G. Meinardus, and R. S. Varga. Chebyshev rational approximation to
exp(−x) in [0, +∞) and applications to heat conduction problems. J. Approx. Theory,
2:50–65, 1969.

[7] J. Cullum and R. A. Willoughby. Lanczos algorithms for large symmetric eigenvalue
computations. Volumes 1 and 2. Birkhäuser, Boston, 1985.

[8] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Method for Sparse Matrices. Clarendon
Press, Oxford, 1989.

[9] A. Filipponi. Continued fraction expansion for the x-ray absorption cross section. J.
Phys.: Condens. Matter, 3:6489–6507, 1991.

[10] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University
Press, Baltimore, MD, 3rd edition, 1996.

[11] A. A. Goncar and E. A. Rakhmanov. On the rate of rational approximation of analytic
functions. In Lecture Notes in Mathematics 1354, pages 25–42, Berlin-Heidelberg, 1988.
Springer-Verlag.

[12] M. Hochbruck, C. Lubich, and H. Selhofer. Exponential integrators for large systems of
differential equations. SIAM Journal on Scientific Computing, 19:1552–1574, 1998.

[13] L. O. Jay, H. Kim, Y. Saad, and J. R. Chelikowsky. Electronic structure calculations
using plane wave codes without diagonlization. Comput. Phys. Comm., 118:21–30, 1999.

[14] C. Lanczos. An iteration method for the solution of the eigenvalue problem of lin-
ear differential and integral operators. Journal of Research of the National Bureau of
Standards, 45:255–282, 1950.

[15] R. M. Larsen. Efficient Algorithms for Helioseismic Inversion. PhD thesis, Dept.
Computer Science, University of Aarhus, DK-8000 Aarhus C, Denmark, October 1998.

[16] B. Nour-Omid. Applications of the Lanczos algorithm. Computer Physics Communica-
tions, 53, 1989.

25

[17] B. Nour-Omid and R. W. Clogh. Dynamic analysis of structures using Lanczos coordi-
nates. Earthquake Eng. and Struct. Dynamics, 12:565–577, 1984.

[18] T. Ozaki. Continued fraction representation of the Fermi-Dirac function for large-scale
electronic structure calculations. Phys. Rev. B, 75:035123(9), 2007.

[19] C. C. Paige. The computation of eigenvalues and eigenvectors of very large sparse ma-
trices. PhD thesis, London University, Institute of Computer Science, London, England,
1971.

[20] B. N. Parlett. A new look a the Lanczos algorithm for solving symmetric systems of
linear equations. Linear Algebra and its Applications, 29:323–346, 1980.

[21] V. Heine R. Haydock and M. J. Kelly. Electronic structure based on the local atomic
environment for tight-binding bands: Ii. J. Phys.: Solid State Phys., 8:2591–2605, 1975.

[22] Y. Saad. SPARSKIT: A basic tool kit for sparse matrix computations. Technical
Report RIACS-90-20, Research Institute for Advanced Computer Science, NASA Ames
Research Center, Moffett Field, CA, 1990.

[23] Y. Saad. Analysis of some Krylov subspace approximations to the matrix exponential
operator. SIAM Journal on Numerical Analysis, 29:209–228, 1992.

[24] Y. Saad. Numerical Methods for Large Eigenvalue Problems. Halstead Press, New York,
1992.

[25] Y. Saad. Iterative Methods for Sparse Linear Systems, 2nd edition. SIAM, Philadelpha,
PA, 2003.

[26] R. B. Sidje and W. J. Stewart. A numerical study of large sparse matrix exponentials
arising in Markov chains. Computional Statistics & Data Analysis, 29(3):345–368, 1999.

[27] R.B. Sidje. EXPOKIT: A software package for computing matrix exponentials. ACM
Transactions on Mathematical Software, 24(1):130–156, 1998. http://www.expokit.org.

[28] H. D. Simon. The Lanczos algorithm with partial reorthogonalization. Math. Comp.,
42(165):115–142, 1984.

[29] L. N. Trefethen. Rational Chebyshev approximation on the unit disk. Numer. Math.,
37(2):297–320, 1981.

[30] L. N. Trefethen and M. H. Gutknecht. The Carathéodory–Féjer method for real rational
approximation. SIAM J. Numer. Anal., 20(2):420–436, 1983.

[31] R. S. Varga. Scientific Computation on Mathematical Problems and Conjectures. CBMS-
NSF, Regional Conference Series in Applied Mathematics, Vol. 60. SIAM, Philadelphia,
1990.

26

