
Divide and Conquer Strategies for Effective Information
Retrieval∗

Jie Chen and Yousef Saad
Department of Computer Science and Engineering

University of Minnesota at Twin Cities
Minneapolis, MN 55455

{jchen, saad}@cs.umn.edu

ABSTRACT
The standard application of Latent Semantic Indexing (LSI),
a well-known technique for information retrieval, requires
the computation of a partial Singular Value Decomposition
(SVD) of the term-document matrix. This computation is
infeasible for large document collections, since it is very
demanding both in terms of arithmetic operations and in
memory requirements. This paper discusses two divide and
conquer strategies applied to LSI, with the goal of allevi-
ating these difficulties. These strategies process a data set
by dividing it in subsets and conquering the LSI results on
each subset. Since each sub-problem resulting from the di-
vide and conquer strategy has a smaller size, the process-
ing of large scale document collections requires much fewer
resources. In addition, the computation is highly parallel
and can be easily adapted to a parallel computing environ-
ment. To reduce the computational cost of the LSI analysis
of the subsets, we employ an approximation technique that is
based on the Lanczos algorithm. This technique is far more
efficient than the truncated SVD, while its accuracy is com-
parable. Experimental results confirm that the proposed
divide and conquer strategies are effective for information
retrieval problems.

Categories and Subject Descriptors
H.3 [Information Search and Retrieval]: Retrieval mod-
els; H.3 [Content Analysis and Indexing]: Indexing
methods

General Terms
Algorithms

Keywords
Information retrieval, latent semantic indexing, divide and

∗This work was supported by NSF grants DMS 0510131 and
DMS 0528492 and by the Minnesota Supercomputing Insti-
tute.

conquer, multilevel, graph partitioning

1. INTRODUCTION
Techniques of information retrieval extract relevant doc-

uments in a collection, in response to a user query. As
is well-known [2] information retrieval techniques based on
exact literal matching, i.e., on direct comparisons between
the columns of the term-document matrix and the query,
may be inaccurate due to common problems of word usage
such as synonymy and polysemy. Latent Semantic Indexing
(LSI) [12] is a well-known method which was developed to
deal with these difficulties. LSI projects the original term-
document matrix into a reduced rank subspace by resorting
to the Singular Value Decomposition (SVD). The compar-
ison of the query with the documents is then performed in
this subspace and produces in this way a more meaningful
result.

To be specific, let a collection of m terms and n documents
be represented in an m× n term-document matrix

X = [xij]

where xij is the weight of term i in document j. The weights
xij depend on how often the term i appears in document j
but also on other scalings used, see, e.g., [2, 11] for details.
A term-document matrix is generally very sparse because a
given term typically occurs only in a small subset of docu-
ments.

A query is represented as a pseudo-document in a similar
form, q = [qi], where qi represents the weight of term i in
the query. The vector space model (VSM) computes the
similarity between the query q and a document vector xj ,
which is the j-th column of X, simply as the cosine of the
angle between the two vectors:

cos(q, xj) =
qT xj

‖q‖2 ‖xj‖2
.

With this approach, we can rank all documents in the collec-
tion with respect to their relevance to q by simply computing
the n-dimensional vector

s = qT X (1)

and scaling the results with the norms of the corresponding
columns of X.

The vector space model just described is too simple and it
is ineffective in practice as it relies on exact litteral matches
between entries in q and those in X. LSI addresses this
problem by projecting the data matrix X into a small di-
mensional subspace with the help of the SVD. Let X have

the SVD

X = UΣV T , (2)

with the truncated rank-k version:

Yk = UkΣkV T
k , (3)

where Uk (resp. Vk) consists of the first k columns of U (resp.
V), and Σk is the k-th principal submatrix of Σ. The matrix
Yk is the best rank-k approximation of X in the 2-norm or
Frobenius norm sense [13, 15]. Up to scalings, the vector
produced by LSI is given by

sk = qT Yk, (4)

which replaces the expression (1) of the vector space model.
Current implementations of LSI mainly rely on matrix de-

compositions (see e.g., [4, 20]), predominantly the truncated
SVD [2, 3]. A notorious difficulty with this approach is that
it is computationally expensive for large X. In addition, fre-
quent changes in the data require some update of the SVD,
and this is a not an easy task. Much research has been de-
voted to the problem of updating the (truncated) SVD [24,
26, 7, 22], but these methods have not exploited the sparsity
of X. In addition the resulting SVD will lose accuracy after
frequent updates.

To bypass the truncated SVD computation, Kokiopoulou
and Saad [19] introduced polynomial filtering techniques,
and Chen and Saad [10] proposed approximations using the
Lanczos vectors. These methods all efficiently compute a se-
quence of vectors that progressively approximate the vector
sk defined in (4), without resorting the expensive singular
value decomposition.

While a number of papers have addressed the issue of com-
putational cost of LSI, few considered the divide and conquer
paradigm as a means to lessen the computational burden.
In this paper we propose two divide and conquer strategies
with a primary goal of reducing cost at the expense of a
minimal loss in accuracy. Divide and conquer is particularly
attractive for very large problems when performing the SVD
is difficult. In the proposed strategies, we recursively divide
the data set using spectral partitioning techniques, and sep-
arately perform LSI analysis on each subset. (This analysis
can be done via the standard SVD approach, or through
an efficient method based on the Lanczos algorithm.) Then
partial analysis results are conquered to form the final an-
swer. The two proposed strategies differ in how the data
set is partitioned, as well as in the subsequent conquering
process.

One advantage of dividing the term-document matrix X
into smaller subsets is that the analysis of each subset be-
comes feasible, say on a single machine, even when X is
large. In a parallel environment, all the subsets can be an-
alyzed in parallel and the partial results can be combined.
Furthermore, the computation and analysis on smaller sub-
sets will be much cheaper than that on X itself. These ad-
vantages will be demonstrated in the experiment section on
two different types of data sets: either the number of distinct
terms exceeds the number of documents, or the reverse.

The rest of the paper is organized as follows. Section 2
presents the two divide and conquer strategies. Section 3
discusses the efficient alternative to the truncated SVD for
the LSI analysis on the subsets. These two sections com-
bined constitute the main algorithmic contributions of the
paper. Then in Section 4 a few experiments are shown, and
concluding remarks are given in Section 5.

2. DIVIDE AND CONQUER STRATEGIES
A paradigm known for its effectiveness when solving very

large scale scientific problems is that of multilevel approaches.
The term ‘multilevel’ can have different meanings depending
on the application and general methodology being used. In
the context of linear systems of equations, powerful strate-
gies, specifically multigrid or algebraic multigrid methods [9,
8, 16], have been devised to solve linear systems by essen-
tially resorting to divide and conquer strategies that exploit
the relationship between the mesh and the eigenfunctions of
the operator.

In the context of information retrieval, divide and con-
quer strategies will consist of splitting the original data into
smaller subsets in which the analysis of similarities between
the query and the documents is performed. Because the sets
are smaller, the analysis, be it done by the SVD or Lanczos
([10, 5]), will tend to be much less expensive. The main
motivation for divide and conquer strategies is the simple
fact that it is usually much cheaper to solve k eigenprob-
lems of size n× n than one of size (kn)× (kn). Though we
are computing only partial spectra and the problem is that
of the SVD instead of the eigen decomposition, the general
argument remains valid. We consider two ways to perform
divide and conquer in this section. The first one, column
partitioning, is generally useful for data matrices X with
many more rows than columns, while the second one, row
partitioning, is for matrices that have many more columns
than rows. Note that this is somewhat counter-intuitive. In-
deed, one is inclined to partitioning the column set if there
are many more columns than rows and the row set in the
opposite situation. However, a little cost analysis along with
experimentation show that the opposite is computationally
more appealing.

2.1 Divide and conquer on the document set
(column partitioning)

It may be most natural to think of grouping documents
in subsets by invoking similarities between the documents.
Given a set of n documents represented in matrix form
as X = [x1, x2, . . . , xn] ∈ Rm×n, the top-down approach
to clustering the document set is to partition the set (of
columns) recursively in two subsets until a desirable num-
ber of clusters is reached. This partitioning can be done in
a number of ways. We select spectral partitioning, a simple-
to-implement technique whose effectiveness has been well
documented in the literature, see, e.g., [6, 23, 18, 14].

The main ingredient used by spectral techniques in order
to divide a set in two is the property that the largest left
singular vector1 u of X̄ = X−ceT yields a hyperplane which
separates the set X in two good clusters, namely

X+ = {xi | uT (xi−c) ≥ 0} and X− = {xi | uT (xi−c) < 0}.
(5a)

Here c is the centroid of the data set and e is the column
vector of all ones. Incidentally, this is equivalent to splitting
the set into the subsets

X+ = {xi | vi ≥ 0} and X− = {xi | vi < 0}, (5b)

where v is the largest right singular vector of X̄. If it is
preferred that the sizes of the clusters are balanced, an al-

1By abuse of language we will use the term largest singu-
lar vector to mean the singular vector associated with the
largest singular value. Similarly for eigenvectors.

ternative is to replace the above criterion by

X+ = {xi | vi ≥ m(v)} and X− = {xi | vi < m(v)}, (6)

where m(v) represents the median of the entries of vector v.
These ideas were discussed in [6, 23, 18] and a few im-

provements to the technique were considered in [14]. In par-
ticular, the largest left/right singular vectors can be com-
puted via the Lanczos algorithm in a very cheap cost by
exploiting the sparsity of X [6].

Note that from the point of view of graph partitioning,
the technique just described partitions the set of columns
by looking at the signs of vi. In this way we are implicitly
partitioning the hypergraph which is canonically associated
with the matrix X when the hyperedges are defined from
the columns of X.

X
(2)
1 X

(2)
2 X

(2)
3 X

(2)
4

X
(1)
1

u
(1,1)

X
(1)
2

u
(1,2)

X
(0)
1

u
(0,1)

Figure 1: A 2-level division of a term-document ma-
trix X. The vectors u(i,j) shown for levels 0 and 1
are perpendicular to the separating hyperplanes as-
sociated with the nodes. Note that this figure is
not drawn to scale—column partitioning is better
applied to tall and thin matrices.

The bisection tool just described can be employed to re-
cursively divide the data set; see Figure 1 for an illustration.

At level zero (initial level) we have only one set X
(0)
1 ≡ X.

This set is partitioned into two subsets X
(1)
1 and X

(1)
2 , which

are further partitioned into X
(2)
1 , X

(2)
2 , X

(2)
3 and X

(2)
4 . A

binary tree structure results from this recursive partitioning
procedure, which selects the largest leaf node to partition
each time until a desired number of leaf nodes are created.

At each node in the hierarchy tree, a vector of size m
(denoted by u(i,j) in the figure) is needed when a further

subdivision of the set X
(i)
j is required. Indeed, this node

can only be a non-leaf node in the final tree. The vector

u(i,j) is the largest left singular vector of X
(i)
j after centering.

The separating hyperplane associated with this node has a
normal in direction u(i,j) and passes through the centroid

c(i,j) of X
(i)
j . The vector u(i,j) always points towards the

left child of X
(i)
j . For consistency, we label the two children

X
(i+1)
2j−1 and X

(i+1)
2j . See Figure 2 for an illustration.

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b b

b

b

b

b
b

b

b

b

b
b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b b

c
(i,j)

b

u
(i,j)

X
(i+1)
2j−1

left child

X
(i+1)
2j

right child

d

Figure 2: Illustration of partitioning a node X
(i)
j into

two children X
(i+1)
2j−1 and X

(i+1)
2j . The vector u(i,j) al-

ways points towards the left child. The two dashed
frames indicate the actual configuration of the two
subsets, which share a margin of width d around the
hyperplane.

In practice we create a margin around the separating hy-
perplane, and both children share this margin. This small
overlapping of the subsets helps improve accuracy. The anal-
ysis on both sides of the hyperplane may result in discrepan-
cies for the similarity between a document inside the margin
and a specific query. Overlapping the two children allows
flexibility when deciding the relevance scores of the docu-
ments inside the margin.

2.1.1 Query response
For a query q, the standard LSI works by performing anal-

ysis on the whole data set X. Specifically, the k largest sin-
gular vectors of X are extracted and they form a subspace
with regard to which the similarities between q and columns
of X are computed. In our divide and conquer strategy, X is
partitioned into several subsets (leaf nodes), hence LSI anal-
ysis can be performed on each subset and similarity scores
are produced. In Section 3 we will see a more efficient way
to perform this analysis instead of computing the truncated
SVDs for the subsets. In this section, let us temporally dis-
regard how the analysis is performed and simply consider
that similarity scores are available.

If a document appears in only one leaf node, the similar-
ity score for this document is just the one resulting from the
analysis on this node. If it appears in multiple leaf nodes, we
select the maximum of all analysis scores from these nodes
to be the similarity score for this document. A document
appears in multiple leaf nodes because it is residing within
the margin of some dividing hyperplane. The recursive par-
titioning procedure essentially performs clustering on the
whole document collection, hence the document being con-
sidered is on the boarder of several clusters. The question
“how relevant this document is to the query” may yield dif-
ferent answers if the analysis is performed separately on each
clusters. The maximum score from the analysis captures the
most probable relevance of the document to the given query.

This divide and conquer strategy based on column parti-
tioning is summarized in Algorithm 1.

Algorithm 1 D&C-LSI: Column Partitioning

1: Recursively bisect the columns of X. (Hierarchical bi-
section.)

2: For a given query q, compute similarity scores between
q and those in the leaf nodes of the hierarchy. (By trun-
cated SVD, or by Lanczos described in Section 3.)

3: The similarity score of a document is the maximum of
all the scores computed in the previous step for this doc-
ument.

2.2 Divide and conquer on the term set (row
partitioning)

It is also possible to partition terms instead of documents
and this can be a better approach than that of the preceding
section when m ≤ n. The partitioning approach is identical
to that of the previous section with the simple exception
that it is applied to the transpose of X.

X4

X3

X2

X1

q4

q3

q2

q1

m4

m3

m2

m1

n

Figure 3: A term-wise subdivision of a term-
document matrix X into 4 subsets. The query q is
subdivided accordingly. Note that this figure is not
drawn to scale—row partitioning is better applied
to wide and short matrices.

The matrix X is now partitioned row-wise into p subsets
and the query q is split accordingly, i.e.,

X =

2
64

X1

...
Xp

3
75 and q =

2
64

q1

...
qp

3
75 . (7)

See Figure 3 for an illustration. Here each Xi represents a
matrix of size mi × n containing mi rows of X, obtained by
a recursive spectral bisection technique applied to the rows
rather than the columns. For example, X1, . . . , X4 in Fig-
ure 3 can be obtained the same way as shown in Figure 1,

with the illustration rotated 90◦ counter clockwise. For sim-
plicity, here we use 1, 2, . . . , p to index all the subdivisions
(leaf nodes) instead of using the (i, j) tuple to index all the
subsets in the hierarchy as in the previous section.

2.2.1 Query response
The question now is how to compute the similarities be-

tween a query and the columns of the original matrix X.
If we had just computed the inner products of the partial
columns of X and the corresponding parts of q and then
added the results, the result would be no different from that
of the standard VSM. We need instead to perform an LSI
analysis on each subdivision of X and combine the partial
results. In this section we illustrate how this is done using
the truncated SVD approach. This approach can be eas-
ily modified into a more efficient one based on the Lanczos
algorithm as described in Section 3.

Let the local SVD of each Xi be

Xi = UiΣiV
T

i (8)

with the truncated rank-k version

Yi,k = Ui,kΣi,kV T
i,k. (9)

Then the similarity scores for all the documents are

s′k =

pX
i=1

qT
i Yi,k (10)

followed by a scaling with the norms of the corresponding
columns of

X̂ =

2
64

Y1,k

...
Yp,k

3
75 .

Note that formula (10) is very similar to (4), except that
both q and X are partitioned.

The sparsity of the query vector can be exploited to reduce
the computational cost. It is likely that some parts of q are
completely zero, hence it is not necessary to compute qT

i Yi,k

for some i’s. The cost will be greatly reduced if only one
or two subdivisions of q have non-zero elements, which is
common in practice.

This divide and conquer strategy based on row partition-
ing is summarized in Algorithm 2.

Algorithm 2 D&C-LSI: Row Partitioning

1: Recursively bisect the rows of X, resulting in submatri-
ces X1, X2, . . . , Xp.

2: For a given query q, subdivide the rows of q accordingly.
3: Perform analysis on each subdivision and sum up the

results as in (10).
4: Scale each entry of s′k by the norm of the corresponding

column of X̂.

2.2.2 Rationale of the use of X̂

Comparing Equation (10) with (4), this divide and con-
quer strategy essentially performs an analysis with the ma-
trix X̂ replacing X in a standard LSI. The validity of this
approach comes from the fact that the best rank-k approxi-
mation of X and that of X̂ are the same under certain con-
ditions. All this means is that we do not lose information by

performing LSI analysis on each individual subdivision of X
instead of on X itself.

The proof that the two approximations just mentioned are
equal is based on the following theorem:

Theorem 1. Let bestk(·) denote the best rank-k approx-
imation of a matrix. Consider

X =

»
X1

X2

–
and X̂ =

»
bestk(X1)
bestk(X2)

–
,

where X1 ∈ Rm1×n and X2 ∈ Rm2×n with m1+m2 ≤ n. As-
sume that there exists a symmetric positive semi-definite ma-
trix Y of rank k and a positive number σ such that XXT =
Y + σI, then

bestk(X) = bestk(X̂).

This theorem is essentially the row-wise version of Theo-
rem 4.2 in [27]. (Also see the remark thereafter.) Hence the
proof is omitted here. Note that the theorem is restricted
to situations when m ≤ n, since otherwise XXT is singular.

Theorem 1 indicates that if XXT has a low-rank-plus-
shift structure, then the best rank-k approximation of X
is the same as that of X̂. Hence by induction, when X
is subdivided in p partitions as in (7), then bestk(X) =

bestk(X̂) still holds, assuming that X, as well as all the
submatrices to be partitioned in the subdivision process,
has the low-rank-plus-shift structure when being multiplied
by its transpose.

As pointed out in [27] after a perturbation analysis, it is
not unrealistic to assume the low-rank-plus-shift structure
for real-life data. Hence it is reasonable to use X̂ in place
of X in a divide and conquer analysis. As was mentioned
above, the theorem implicitly assumes that m ≤ n, that is,
the term-document matrix X is wide and short. Though this
is not true for many small-scale existing experimental data
sets, one should expect that in practice it is the dominant
situation, since vocabulary is limited while text corpora are
growing in size. We use two such data sets in Section 4 for
experiments.

2.3 More divide and conquer strategies
The two partitioning strategies previously described can

be combined to devise other divide and conquer strategies.
When X itself is considered a hypergraph, the subdivision
of X amounts to partitioning the edges or vertices of the
graph. A number of articles applying hypergraph partition-
ing techniques, e.g., [17, 1], have exploited the sparsity of
X and considered reordering the rows and columns of X
into block form or near block form. Then the data matrix
X is naturally partitioned into blocks according to the spar-
sity patterns, and analysis can be performed on the diagonal
blocks. An illustration is given in Figure 4. In this paper we
will not consider this reordering approach further and leave
it for future investigations.

3. ANALYSIS USING LANCZOS APPROX-
IMATION

As mentioned earlier, the LSI analysis (formula (4)) is
expensive due to the computation of the truncated SVD.
In the divide and conquer strategies previously described,
this analysis can be replaced by an efficient technique called
Lanczos approximation [10]. This technique essentially com-
putes a good approximation to the vector sk defined in (4).

0 50 100 150 200

0

50

100

150

200

250

300

350

400

nz = 4893
0 50 100 150 200

0

50

100

150

200

250

300

350

400

nz = 4893

Figure 4: A small rectangular sparse matrix before
and after reordering in block diagonal form.

The effectiveness of this technique applied to the whole data
set X has been demonstrated in the previous report [10]. In
this paper we can apply this technique to each subdivision
of X. In the sequel we first briefly review the symmetric
Lanczos algorithm, which is later used to develop the ap-
proximation technique.

3.1 The symmetric Lanczos algorithm
Given a symmetric matrix A ∈ Rn×n and an initial unit

vector q1, the Lanczos algorithm builds an orthonormal basis
of the Krylov subspace

Kk(A, q1) = span{q1, Aq1, A
2q1, . . . , A

k−1q1}.
The vectors qi, i = 1, . . . , k computed by the algorithm sat-
isfy the 3-term recurrence

βi+1qi+1 = Aqi − αiqi − βiqi−1

with β1q0 ≡ 0. The coefficients αi and βi+1 are computed
so as to ensure that 〈qi+1, qi〉 = 0 and ‖qi+1‖2 = 1. In exact
arithmetic, it turns out that qi+1 is orthogonal to q1, . . . , qi

so the vectors qi, i = 1, . . . , k form an orthonormal basis
of the Krylov subspace Kk(A, q1). In practice some form of
reorthogonalization is needed, as orthogonality is lost fairly
soon in the process.

If Qk = [q1, . . . , qk] ∈ Rn×k then an important equality
resulted from the algorithm is

QT
k AQk = Tk =

2
666664

α1 β2

β2 α2 β3

. . .
. . .

. . .

βk−1 αk−1 βk

βk αk

3
777775

.

An eigenvalue θ of Tk is called a Ritz value, and if y is
an associated eigenvector, Qky is called the associated Ritz
vector. As k increases more and more Ritz values and vectors
will converge towards eigenvalues and vectors of A [15, 21].

3.2 Lanczos approximation

A good approximation of the vector sk defined in (4) can
be efficiently obtained by exploiting the Lanczos procedure
reviewed in the previous section. Let A = XT X be applied
to the Lanczos algorithm which yields equality

QT
k XT XQk = Tk. (11)

By defining

wi := qT XQiQ
T
i , i = 1, 2, . . . (12)

i.e., letting wi be the projection of s = qT X onto the sub-
space ran(Qi), it can be proved that the difference between
wi and s in the right singular direction vj of X decays at
least with the same order as T−1

i−j(γj), where Ti−j(·) is the
Chebyshev polynomial of the first kind of degree i− j, and
γj is a constant independent of i and larger than 1. This
means that as i increases, wi is progressively closer to s in
major singular directions of X. Hence when i = k, wi is
considered good approximation of sk.

The vector wk can be most efficiently computed via matrix-
vector multiplications ((qT X)Qk)QT

k . The computation of
wk in this way is much cheaper than the computation of
sk. In fact, computing sk requires computing the truncated
SVD of X. A typical way of computing the k largest singu-
lar components of X is to go through the Lanczos process
as in (11) with k′ > k iterations, and then compute the
eigen-elements of Tk′ . We see that the gain in efficiency
of computing wk instead of sk comes from running Lanc-
zos using only k iterations and not pursuing an extra eigen
decomposition.

The computation of an approximation vector to sk can
be further explored by considering the relative size of m and
n—shape of the matrix. When m ≥ n, the matrix A = XT X
is of size n × n, and wk defined in (12) is the appropriate
one to approximate sk. However, when m < n, we consider
another approximation. Let Ã = XXT be applied to the
Lanczos algorithm which yields equality

Q̃T
k XXT Q̃k = T̃k. (13)

Define

ti := qT Q̃iQ̃
T
i X, i = 1, 2, . . . (14)

It can be similarly proved that the difference between ti and
s in the right singular direction vj of X decays at least with
the same order as T−1

i−j(γ̃j). This in turn means that ti is
progressively closer to s in major singular directions of X as
i increases, and tk is considered good approximation of sk.
The most economic way of computing tk is ((qT Q̃k)Q̃T

k)X.
The choice of using wk or tk to approximate sk solely de-

pends on the relative size of m and n. The cost of computing
wk, including the Lanczos process, is O(k(nnz + n)), where
nnz is the number of non-zero elements in X. On the other
hand, the cost of computing tk is O(k(nnz +m)). It is clear
that wk is a better choice when m ≥ n, while tk is more
appropriate when m < n.

In summary, in order to efficiently implement the divide
and conquer strategies, the scores vector computed in line 2
of Algorithm 1 (column-partitioning version) is replaced by
wk defined in (12), and the scores vector computed in line 3
of Algorithm 2 (row-partitioning version) is replaced by tk

defined in (14). Entries of wk (or tk) are then scaled with the

norms of the corresponding columns of XQkQT
k (or Q̃kQ̃T

k X).

4. EXPERIMENTAL RESULTS

We present several experimental results that show that
the proposed divide and conquer strategies are effective, at
least comparable to LSI, and are far more efficient. Most of
the experiments were performed in Matlab 7 under a Linux
workstation with two P4 3.00GHz CPUs and 4GB memory.
The only exception is that the truncated SVD of the TREC
data set was computed on a machine with 16GB of memory.

4.1 Data sets
Four data sets were used in the experiments:

MEDLINE and CRANFIELD2.
These are the two early benchmark data sets for informa-

tion retrieval. Their typical statistics is that the number of
distinct terms is more than the number of documents. The
reason to use these two data sets is that they are relatively
small and thus convenient for numerous prototyping tests.
Statistics is shown in Table 1.

NPL2.
This data set is larger than the previous two, with a dis-

tinct property that the number of documents is more than
the number of distinct terms. Statistics is also shown in
Table 1.

TREC3.
This is a very large data set which is popularly used for

experiments in serious text mining applications. Similar to
NPL, the term-document matrix extracted from this data
set has more documents than distinct terms. Specifically,
the whole data set consists of four document collections (Fi-
nancial Times, Federal Register, Foreign Broadcast Informa-
tion Service, and Los Angeles Times) from the TREC CDs
4 & 5 (copyrighted). The queries are from the TREC-8 ad
hoc task45. We used the software TMG [25] to construct
the term-document matrix. The parsing process included
stemming, deleting common words according to the stop-list
provided by the software, and removing words with no more
than 5 occurrences or with appearance in more than 100,000
documents. Also, 125 empty documents were ignored. This
resulted in a term-document matrix of size 138232×528030.
For the queries, only the title and description parts were
extracted to construct query vectors.

Table 1: Data sets statistics.
MED CRAN NPL TREC

terms 7,014 3,763 7,491 138,232
docs 1,033 1,398 11,429 528,030
queries 30 225 93 50
ave terms/doc 52 53 20 129

4.2 Implementation specs
The weighting scheme of all the term-document matrices

was term frequency-inverse document frequency (tf-idf). To
include marginal data points in subsets during bisection, we

2ftp://ftp.cs.cornell.edu/pub/smart/
3http://trec.nist.gov/data/docs_eng.html
4Queries: http://trec.nist.gov/data/topics_eng/index.html
5Relevance: http://trec.nist.gov/data/qrels_eng/index.html

used the following criterion:

X+ = {xi | vi ≥ vmin/10} and X− = {xi | vi < vmax/10}
(15)

instead of formula (5b). The only exception is that for
TREC we used criterion (6). The reason will be explained
later in Section 4.4.

4.3 Column partitioning
The divide and conquer strategy with column partition-

ing was applied to MEDLINE and CRANFIELD, since their
term-document matrices have more rows than columns. Fig-
ure 5 shows the performance of this strategy (using p = 2
and 4 subdivisions) compared with that of the standard LSI.
The figure indicates that the accuracy obtained from divide
and conquer is comparable to that of LSI, while in prepro-
cessing the former runs orders of magnitude faster than the
latter. The accuracy is measured using the 11-point inter-
polated average precision, as shown in (a) and (d). More in-
formation is provided by plotting the precision-recall curves.
These plots are shown using a specific k for each data set in
(b) and (e). They suggest that the retrieval accuracy for di-
vide and conquer is close to that of LSI (and is much better
than that of the baseline model VSM).

The preprocessing of the data set(s) includes, for divide
and conquer, subdividing the term-document matrix and
computing the Lanczos vectors for each subdivision; and
for LSI, computing the truncated SVD. As shown in (c)
and (f), divide and conquer is superior to LSI—while being
far more econimical. This is expected for two reasons: (1)
The subdividing process involves computing only the largest
singular vector(s), which is very inexpensive; (2) the Lanczos
approximation is an economical alternative to the truncated
SVD for this particular task. We also report the average
query times in Table 2. The computational complexities for
both methods are the same. Since the subdivisions in the
divide and conquer strategy overlap, it is not surprising to
see that it takes a little more time to answer queries using
this strategy. However, since the times recorded are in the
same order (milliseconds), this extra time does not impact
the overall efficiency of the divide and conquer strategy.

Table 2: Average query time (msec).
MED LSI D&C,2 D&C,4

k = 40 4.0897 9.6917 14.3992
k = 60 6.2982 9.5132 15.2941
k = 80 8.3144 9.8150 15.8666
k = 100 9.9056 9.9923 16.2019
k = 120 12.3475 10.1446 16.4957

CRAN LSI D&C,2 D&C,4
k = 120 7.3504 13.2534 17.7076
k = 150 9.0561 13.5225 18.5583
k = 180 10.8678 14.0904 19.3488
k = 210 12.4254 14.7360 19.8805
k = 240 14.0872 15.3105 20.8624

4.4 Row partitioning
The divide and conquer strategy with row partitioning

was applied to NPL and TREC, since their term-document
matrices have more columns than rows. Figure 6 shows the
performance of this strategy when applied to NPL. Similar

to Figure 5 (the column partitioning strategy), Figure 6 in-
dicates that divide and conquer with row partitioning yields
comparable accuracy to LSI, while it is orders of magnitude
more efficient for preprocessing. The query times are again
in the order of milliseconds; see Table 3.

Table 3: Average query time (msec).
NPL LSI D&C,2 D&C,4

k = 260 33.7209 76.2982 77.9623
k = 280 36.9476 78.7518 81.1645
k = 300 39.0302 80.6269 82.8548
k = 320 41.4048 82.7120 84.7012
k = 340 44.5710 85.7431 87.9671

Figure 7 plots the precision-recall curves for the TREC
data set, which is partitioned into p = 4 and 8 divisions
in the divide and conquer technique. As shown in the fig-
ure, divide and conquer improves over LSI, especially at low
recalls, which represent the earliest appearance of relevant
documents.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

recall

pr
ec

is
io

n

LSI
D&C,p=4
D&C,p=8

Figure 7: TREC: precision-recall (k = 300).

Besides the above encouraging result, two facts are worth
being mentioned here. The first is that in contrast with other
experiments which used criterion (15) to bisect the data set,
for TREC we used criterion (6), that is, dividing the data
set into perfectly balanced subsets. This follows from an
observation of the very skewed distribution of the terms in
TREC. Figure 8 illustrates this phenomenon. The entries of
the largest right singular vector v of the matrix XT−ceT (c.f.
Section 2.1) are proportional to the distances between data
points (terms in this case) and the dividing hyperplane. As
shown in Figure 8, only a little more than 10% of all terms
are on one side of the hyperplane, and the remaining ones,
on the other side, are located very close to this plane. If we
had divided the data set using criterion (15), it would have
resulted in very imbalanced subsets. This not only affected
the effectiveness of the parallelism of the proposed strategy,
but also yielded poor results. This unusual skewness of the
distribution is by itself an interesting phenomenon worth
further investigation.

The second important fact is that the overall accuracy is
not high. While our main effort is to design strategies that

40 50 60 70 80 90 100 110 120
0.5

0.55

0.6

0.65

0.7

0.75

k

av
er

ag
e

pr
ec

is
io

n

VSM LSI D&C,p=2 D&C,p=4

(a) MED: average precision.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

recall

pr
ec

is
io

n

LSI
D&C,p=2
D&C,p=4

(b) MED: precision-recall (k = 80).

40 50 60 70 80 90 100 110 120
0

2

4

6

8

10

12

14

16

18

k

pr
ep

ro
ce

ss
in

g
tim

e

LSI
D&C,p=2
D&C,p=4

(c) MED: preprocessing time.

120 140 160 180 200 220 240
0.4

0.405

0.41

0.415

0.42

0.425

0.43

0.435

0.44

k

av
er

ag
e

pr
ec

is
io

n

VSM LSI D&C,p=2 D&C,p=4

(d) CRAN: average precision.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

recall

pr
ec

is
io

n

LSI
D&C,p=2
D&C,p=4

(e) CRAN: precision-recall (k = 200).

120 140 160 180 200 220 240
0

5

10

15

20

25

30

35

40

45

k

pr
ep

ro
ce

ss
in

g
tim

e

LSI
D&C,p=2
D&C,p=4

(f) CRAN: preprocessing time.

Figure 5: Performance (accuracy and time) tests on MEDLINE and CRANFIELD.

0 2 4 6 8 10 12 14

x 10
4

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

sorted entries

en
tr

y
va

lu
es

Figure 8: Entry values of the largest right singular
vector v of the matrix XT −ceT where X is the term-
document matrix of TREC. The dashed vertical line
separates the negative entries from the positive en-
tries.

can compete with LSI, we note that for this example LSI
did not perform as well as expected. This may be due to
the weighting scheme of the term-document matrix or the
indexing method/tool we used.

5. CONCLUSIONS AND FUTURE WORK
Two divide and conquer strategies were proposed to effec-

tively retrieve relevant documents for text mining problems,

along with efficient techniques to use as alternatives to the
classical truncated SVD approach of LSI. Experimental re-
sults show that these strategies yield comparable retrieval
accuracy to the standard LSI, and are orders of magnitude
faster. In addition, these strategies are easily amenable to
parallel implementations. Because of their inherent paral-
lelism, they can be deployed for solving much larger prob-
lems than be handled by standard LSI.

Several aspects are worth future investigation following
this work. As mentioned in Section 2.3, reordering tech-
niques of sparse matrices can be exploited to devise more
divide and conquer strategies. In Section 4.4, the skewed
distribution of terms implies that spectral partitioning tech-
niques may not be effective in clustering the data for certain
data sets, or at least modifications of the techniques are
needed. Finally, it would be interesting to see how indexing
methods and weighting schemes can impact the effectiveness
of the divide and conquer strategies.

6. REFERENCES
[1] C. Aykanat, A. Pinar, and U. urek. Permuting sparse

rectangular matrices into block-diagonal form.
Technical report, Computer Engineering Department,
Bilkent University, 2002.

[2] M. Berry and M. Browne. Understanding search
engines: Mathematical Modeling and Text etrieval.
SIAM, 2nd edition, 2005.

[3] M. Berry, S. Dumais, and G. O. Brien. Using linear
algebra for intelligent information retrieval. SIAM
Rev., 37(4):573–595, 1995.

[4] M. Berry and R. Fierro. Low-rank orthogonal
decompositions for information retrieval applications.
Numer. Lin. Alg. Appl., 1:1–27, 1996.

260 270 280 290 300 310 320 330 340
0.22

0.225

0.23

0.235

0.24

0.245

k

av
er

ag
e

pr
ec

is
io

n

VSM LSI D&C,p=2 D&C,p=4

(a) NPL: average precision.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

recall

pr
ec

is
io

n

LSI
D&C,p=2
D&C,p=4

(b) NPL: precision-recall (k = 300).

260 270 280 290 300 310 320 330 340
0

50

100

150

200

250

300

350

k

pr
ep

ro
ce

ss
in

g
tim

e

LSI
D&C,p=2
D&C,p=4

(c) NPL: preprocessing time.

Figure 6: Performance (accuracy and time) tests on NPL.

[5] K. Blom and A. Ruhe. A krylov subspace method for
information retrieval. SIAM J. Matrix Anal. Appl.,
26(2):566–582, 2005.

[6] D. Boley. Principal direction divisive partitioning.
Data Mining and Knowledge Discovery, 2(4):325–344,
1998.

[7] M. Brand. Fast low-rank modifications of the thin
singular value decomposition. Linear Algebra Appl.,
415(1):20–30, 2006.

[8] A. Brandt. Multi-level adaptive solutions to boundary
value problems. Mathematics of Computation,
31:333–390, 1977.

[9] W. L. Briggsa, V. E. Henson, and S. F. Mc Cormick.
A multigrid tutorial. SIAM, 2nd edition, 2000.

[10] J. Chen and Y. Saad. Filtered matrix-vector products
via the Lanczos algorithm with applications to
dimension reduction. Technical Report UMSI 2008/2,
University of Minnesota Supercomputing Institute,
2008.

[11] E. Chisholm and T. Kolda. New term weighting
formulas for the vector space method in information
retrieval. Technical report, Oak Ridge National
Laboratory, 1999.

[12] S. Deerwester, S. Dumais, G. Furnas, T. Landauer,
and R. Harshman. Indexing by latent semantic
analysis. J. Soc. Inf. Sci., 41:391–407, 1990.

[13] C. Eckart and G. Young. The approximation of one
matrix by another of lower rank. Psychometrika,
1(3):211–218, 1936.

[14] H.-R. Fang and Y. Saad. Farthest centroids divisive
partitioning. Technical Report UMSI 2008/5,
University of Minnesota Supercomputing Institute,
2008.

[15] G. H. Golub and C. F. V. Loan. Matrix Computations.
Johns Hopkins University Press, 3rd edition, 1996.

[16] W. Hackbusch. Multi-Grid Methods and Applications,
volume 4 of Springer Series in Computational
Mathematics. Springer-Verlag, Berlin, 1985.

[17] B. Hendrickson and T. G. Kolda. Partitioning
rectangular and structurally unsymmetric sparse
matrices for parallel processing. SIAM J. Sci.
Comput., 21(6):2048–2072, 2000.

[18] F. Juhász and K. Mályusz. Problems of cluster
analysis from the viewpoint of numerical analysis,
volume 22 of Colloquia Mathematica Societatis Janos

Bolyai. North-Holland, Amsterdam, 1980.

[19] E. Kokiopoulou and Y. Saad. Polynomial filtering in
latent semantic indexing for information retrieval. In
ACM-SIGIR Conference on research and development
in information retrieval, 2004.

[20] T. Kolda and D. O. Leary. A semi-discrete matrix
decomposition for latent semantic indexing in
information retrieval. ACM Trans. Inf. Syst.,
16(4):322–346, 1998.

[21] Y. Saad. Numerical Methods for Large Eigenvalue
Problems. Halstead Press, New York, 1992.

[22] J. E. Tougasa and R. J. Spiteri. Updating the partial
singular value decomposition in latent semantic
indexing. Comput Statist. Data Anal., 52(1):174–183,
2007.

[23] D. Tritchler, S. Fallah, , and J. Beyene. A spectral
clustering method for microarray data. Comput
Statist. Data Anal., 49:63–76, 2005.

[24] D. I. Witter and M. W. Berry. Downdating the latent
semantic indexing model for conceptual information
retrieval. The Computer J., 41(8):589–601, 1998.

[25] D. Zeimpekis and E. Gallopoulos. TMG: A MATLAB
toolbox for generating term document matrices from
text collections, pages 187–210. Springer, Berlin, 2006.

[26] H. Zha and H. D. Simon. On updating problems in
latent semantic indexing. SIAM J. Sci. Comput.,
21(2):782–791, 1999.

[27] H. Zha and Z. Zhang. Matrices with
low-rank-plus-shift structure: Partial SVD and latent
semantic indexing. SIAM J. Matrix Anal. Appl.,
21(2):522–536, 1999.

