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We introduce a new implementation of time-dependent density-functional theory which allows the entire
spectrum of a molecule or extended system to be computed with a numerical effort comparable to that of a
single standard ground-state calculation. This method is particularly well suited for large systems and/or large
basis sets, such as plane waves or real-space grids. By using a super-operator formulation of linearized time-
dependent density-functional theory, we first represent the dynamical polarizability of an interacting-electron
system as an off-diagonal matrix element of the resolvent of the Liouvillian super-operator. One-electron opera-
tors and density matrices are treated using a representation borrowed from time-independent density-functional
perturbation theory, which permits to avoid the calculation of unoccupied Kohn-Sham orbitals. The resolvent of
the Liouvillian is evaluated through a newly developed algorithm based on the non-symmetric Lanczos method.
Each step of the Lanczos recursion essentially requires twice as many operations as a single step of the iterative
diagonalization of the unperturbed Kohn-Sham Hamiltonian. Suitable extrapolation of the Lanczos coefficients
allows for a dramatic reduction of the number of Lanczos steps necessary to obtain well converged spectra,
bringing such number down to hundreds (or a few thousands, at most) in typical plane-wave pseudopotential
applications. The resulting numerical workload is only a few times larger than that needed by a ground-state
Kohn-Sham calculation for a same system. Our method is demonstrated with the calculation of the spectra of
benzene, C60 fullerene, and of chlorofyll a.

PACS numbers: 31.15.-p 71.15.Qe 31.15.Ew 71.15.Mb 33.20.Lg

I. INTRODUCTION

Time-dependent density-functional theory (TDDFT) [1]
stands as a promising alternative to cumbersome many-body
approaches to the calculation of the electronic excitation spec-
tra of molecular and condensed-matter systems [2]. Accord-
ing to a theorem established by Runge and Gross [1], for any
given initial (t = 0) state of an interacting-electron system,
the external, time-dependent, potential acting on it is uniquely
determined by the time evolution of the one-electron density,
n(r, t), for t > 0. Using this theorem, one can formally estab-
lish a time-dependent Kohn-Sham (KS) equation from which
various one-particle properties of the system can be obtained
as functions of time. Unfortunately, if little is known about
the exchange-correlation (XC) potential in ordinary density-
functional theory (DFT) [3, 4], even less is known about it
in the time-dependent case. Most of the existing applications
of TDDFT are based on the so-called adiabatic local density
or adiabatic generalized gradient approximations (generically
denoted in the following by the acronym ADFT) [5], which
amount to assuming the same functional dependence of the
XC potential upon density as in the static case. Despite the
crudeness of these approximations, optical spectra calculated
from them are in some cases almost as accurate as those ob-
tained from more computationally demanding many-body ap-
proaches [2]. TDDFT is in principle an exact theory. Progress
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in understanding and characterizing the XC functional will
substantially increase the predictive power of TDDFT, while
(hopefully) keeping its computational requirements at a sig-
nificantly lower level than that of methods based on many-
body perturbation theory.

Linearization of TDDFT with respect to the strength of
some external perturbation to an otherwise time-independent
system leads to a non-Hermitean eigenvalue problem whose
eigenvalues are excitation energies, and whose eigenvectors
are related to oscillator strengths [6]. Not surprisingly, this
eigenvalue problem has the same structure that arises from the
time-dependent Hartree-Fock theory [7, 8], and the dimension
of the resulting matrix (the Liouvillian) is twice the product of
the number of occupied (valence) states, Nv , with the num-
ber of unoccupied (conduction) states, Nc. The calculation
of the Liouvillian is by itself a hard task that is often tackled
directly in terms of the unperturbed KS eigen-pairs. This ap-
proach requires the calculation of the full spectrum of the un-
perturbed KS Hamiltonian, a step that one may want to avoid
when very large basis sets are used. The diagonalization of
the resulting matrix can be accomplished using iterative tech-
niques [9, 10], often, but not necessarily, in conjunction with
the Tamm-Dancoff approximation [11–13], which amounts to
enforcing Hermiticity by neglecting the anti-Hermitean com-
ponent of the Liouvillian. The use of iterative diagonalization
techniques does not necessarily entail the explicit construc-
tion of the matrix to be diagonalized, but just the availability
of a black-box routine that performs the product of the ma-
trix with a test vector (“Hψ products”). An efficient way to
calculate such a product without explicitly calculating the Li-
ouvillian can be achieved using a representation of the per-
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turbed density matrix and of the Liouvillian super-operator
borrowed from time-independent density-functional perturba-
tion theory (DFPT) [14–18]. Many applications of TDDFT
to atoms, molecules, and clusters have been performed within
such a framework, see for example Refs. [5, 19, 20]. This
approach is most likely to be optimal when a small number of
excited states is required. In large systems, however, the num-
ber of quantum states in any given energy range grows with
the system size. The number of pseudo-discrete states in the
continuum also grows with the basis-set size even in a small
system, thus making the calculation of individual eigen-pairs
of the Liouvillian more difficult and not as meaningful. This
problem is sometimes addressed by directly calculating the
relevant response function(s), rather than individual excitation
eigenpairs [2, 9, 17]. The price paid in this case is the cal-
culation and further manipulation (inversion, multiplication)
of large matrices for any individual frequency, a task which
may again be impractical for large systems/basis sets, partic-
ularly when an extended portion of a richly structured spec-
trum is sought after. For these reasons, a method to model the
absorption spectrum directly—without calculating individual
excited states and not requiring the calculation, manipulation,
and eventual disposal of large matrices—would be highly de-
sirable.

Such an alternative approach to TDDFT, which avoids diag-
onalization altogether, was proposed by Yabana and Bertsch
[21]. In this method, the TDDFT KS equations are solved in
the time domain and susceptibilities are obtained by Fourier
analyzing the response of the system to appropriate perturba-
tions in the linear regime. This scheme has the same computa-
tional complexity as standard time-independent (ground-state)
iterative methods in DFT. For this reason, real-time methods
have recently gained popularity in conjunction with the use of
pseudopotentials (PPs) and real-space grids [22], and a simi-
lar success should be expected using plane-wave (PW) basis
sets [23, 24]. The main limitation in this case is that, because
of stability requirements, the time step needed for the integra-
tion of the TDDFT KS equations is very small (of the order of
10−3 fs in typical pseudopotential applications) and decreas-
ing as the inverse of the PW kinetic-energy cutoff (or as the
square of the real-space grid step) [24]. The resulting number
of steps necessary to obtain a meaningful time evolution of
the TDDFT KS equations may be exceedingly large.

In a recent letter a new method was proposed [25] to cal-
culate optical spectra in the frequency domain—thus avoiding
any explicit integration of the TDDFT KS equations—which
does not require any diagonalization (of either the unperturbed
KS Hamiltonian, or the TDDFT Liouvillian), nor any time-
consuming matrix operations. Most important, the full spec-
trum is obtained at once without repeating time-consuming
operations for different frequencies. In this method, which
is particularly well suited for large systems and PW, or real-
space grid, basis sets, a generalized susceptibility is repre-
sented by a matrix element of the resolvent of the Liouvillian
super-operator, defined in some appropriate operator space.
This matrix element is then evaluated using a Lanczos recur-
sion technique. Each link of the Lanczos chain—that is calcu-
lated once for all frequencies—requires a number of floating-

point operations which is only twice as large as that needed
by a single step of the iterative calculation of a static polariz-
ability within time-independent DFPT [14–16]. This number
is in turn the same as that neede in a single step of the iterative
diagonalization of a ground-state KS Hamiltonian, or a single
step of Car-Parrinello molecular dynamics.

The purpose of the present paper is to provide an extended
and detailed presentation of the method of Ref. [25] and to in-
troduce a few methodological improvements, including a new
and more efficient approach to the calculation of off-diagonal
elements of the resolvent of a non Hermitean operator, and
an extrapolation technique that allows one to substantially re-
duce the number of Lanczos recursion steps needed to calcu-
late well converged optical spectra. The paper is organized
as follows. In Sec. II we introduce the linearized Liouville
equation of TDDFT, including the derivation of an expres-
sion for generalized susceptibilities in terms of the resolvent
of the Liovillian super-operator, the DFPT representation of
response operators and of the Liouvillian super-operator (Sec.
II A), and the extension of the formalism to ultrasoft PPs (see
Sec. II B) [26]; in Sec. III we describe our new Lanczos algo-
rithm for calculating selected matrix elements of the resolvent
of the Liouvillian super-operator; in Sec. IV we present a
benchmark of the numerical performance of the new method,
and we introduce an extrapolation technique that allows for an
impressive enhancement of it; Sec. V contains applications of
the new methodology to the spectra of C60 fullerene and to
clorofill A; Sec. VI finally contains our conclusions.

II. LINEARIZED TIME-DEPENDENT
DENSITY-FUNCTIONAL THEORY

The time-dependent KS equations of TDDFT read [1]:

i
∂ϕv(r, t)

∂t
= ĤKS(t)ϕv(r, t), (1)

where

ĤKS(t) = −1
2
∂2

∂r2
+ vext(r, t) + vHXC(r, t) (2)

is a time-dependent KS Hamiltonian, vext(r, t) and
vHXC(r, t) being the time-dependent external and Hartree
plus XC potentials, respectively. In the above equation,
as well as in the following, quantum-mechanical opera-
tors are denoted by a hat, “ ˆ ”, and Hartree atomic units
(~ = m = e = 1) are used. When no confusion can arise,
local operators, such as one-electron potentials, V̂ , will be
indicated by the diagonal of their real-space representation,
v(r), as in Eq. (2).

Let us now assume that the external potential is split into
a time-independent part, v◦ext(r), plus a time-dependent per-
turbation, v′ext(r, t), and let us assume that the ϕ’s satisfy the
initial conditions:

ϕv(r, 0) = ϕ◦v(r), (3)
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where ϕ◦v are ground-state eigenfunctions of the unperturbed
KS Hamiltonian, Ĥ◦

KS :

Ĥ◦
KSϕ

◦
v(r) = εvϕ

◦
v(r). (4)

To first order in the perturbation, the TD KS equations can be
cast into the form:

i
∂ϕ′v(r, t)

∂t
=

(
Ĥ◦

KS − ε◦v

)
ϕ′v(r, t)+(

v′ext(r, t) + v′HXC(r, t)
)
ϕ◦v(r), (5)

where

ϕ′v(r, t) = eiεvtϕv(r, t)− ϕ◦v(r) (6)

are the orbital response functions, which can be chosen to be
orthogonal to all of the unperturbed occupied orbitals, {ϕ◦v}.

Eq. (1) can be equivalently expressed in terms of a quantum
Liouville equation:

i
dρ̂(t)
dt

=
[
ĤKS(t), ρ̂(t)

]
, (7)

where ρ̂(t) is the reduced one-electron KS density matrix
whose kernel reads:

ρ(r, r′; t) =
Nv∑
v=1

ϕv(r, t)ϕ∗v(r′, t), (8)

and the square brackets indicate a commutator. Linearization
of Eq. (7) with respect to the external perturbation leads to:

i
dρ̂′(t)
dt

=
[
Ĥ◦

KS , ρ̂
′(t)

]
+

[
V̂ ′

HXC(t), ρ̂◦
]

+
[
V̂ ′

ext(t), ρ̂
◦
]
,

(9)
where ρ̂◦ is the unperturbed density matrix, ρ̂′(t) = ρ̂(t) −
ρ̂◦, V̂ ′

ext is the perturbing external potential, and V̂ ′
HXC is the

variation of the Hartree plus XC potential linearly induced by
n′(r, t) = ρ′(r, r; t):

v′HXC(r, t) =∫ (
1

|r− r′|
δ(t− t′) +

δvXC(r, t)
δn(r′, t′)

)
n′(r′, t′)dr′dt′. (10)

In the ADFT, the functional derivative of the XC potential is
assumed to be local in time, δvXC(r,t)

δn(r′,t′) = κXC(r, r′)δ(t− t′),
where κXC(r, r′) is the functional derivative of the ground-
state XC potential, calculated at the ground-state charge den-
sity, n◦(r): κXC(r, r′) = δvXC(r)

δn(r′)

∣∣∣
n(r)=n◦(r)

. In this approx-

imation the perturbation on the XC potential, Eq. (10), reads
therefore:

v′HXC(r, t) =
∫
κ(r, r′)n′(r′, t)dr′, (11)

where κ(r, r′) = 1
|r−r′| + κXC(r, r′). By inserting Eq. (11)

into Eq. (9), one sees that the linearized Liouville equation
can be cast into the form:

i
dρ̂′(t)
dt

= L · ρ̂′(t) +
[
V̂ ′

ext(t), ρ̂
◦
]
, (12)

where the action of the Liouvillian super-operator, L, onto ρ̂′,
L · ρ̂′, is defined as:

L · ρ̂′ .=
[
Ĥ◦

KS , ρ̂
′
]

+
[
V̂ ′

HXC [ρ̂′], ρ̂◦
]
, (13)

and V̂ ′
HXC [ρ̂′] is the linear operator functional of ρ̂′ whose

(diagonal) kernel is given by Eq. (11). By Fourier analysing
Eq. (12) we obtain:

(ω − L) · ρ̃′(ω) =
[
Ṽ ′

ext(ω), ρ̂◦
]
, (14)

where the tilde indicates the Fourier transform and the hat,
which denotes quantum operators, has been suppressed in ρ̃′

and Ṽ ′
ext in order to keep the notation simple. In the absence

of any external perturbations (Ṽext(ω) = 0), Eq. (14) be-
comes an eigenvalue equation for ρ̂′, whose eigenpairs de-
scribe free oscillations of the system, i.e. excited states [6].
Eigenvalues correspond to excitation energies, whereas eigen-
vectors can be used to calculate transition oscillator strengths,
and/or the response of system properties to external perturba-
tions.

One is hardly interested in the response of the more general
property of a system to the more general perturbation. When
simulating the results of a specific spectroscopy experiment,
one is instead usually interested in the response of a specific
observable to a specific perturbation. The expectation value
of any one-electron operator can be expressed as the trace of
its product with the one-electron density matrix. The Fourier
transform of the dipole linearly induced by the perturbing po-
tential, V̂ ′

ext, for example, reads therefore:

d(ω) = Tr (r̂ρ̃′(ω)) , (15)

where r̂ is the quantum-mechanical position operator, and ρ̂′ is
the solution to Eq. (14). Let us now suppose that the external
perturbation is a homogeneous electric field:

ṽ′ext(r, ω) = −E(ω) · r. (16)

The dipole given by Eq. (15) reads therefore:

di(ω) =
∑

j

αij(ω)Ej(ω), (17)

where the dynamical polarizability, αij(ω), is defined by:

αij(ω) = −Tr
(
r̂i(ω − L)−1 · [r̂j , ρ̂◦]

)
. (18)

Traces of products of operators can be seen as scalar products
defined on the linear space of quantm mechanical operators.
Let Â and B̂ be two general one-electron operators. We define
their scalar product as:〈

Â|B̂
〉
≡ Tr

(
Â†B

)
. (19)

Eq. (18) can therefore be formally written as:

αij(ω) = −
〈
r̂i|(ω − L)−1 · ŝj

〉
, (20)



4

where

ŝj = [r̂j , ρ̂◦] (21)

is the commutator between the position operator and the un-
perturbed one-electron density matrix. The results obtained
so far and embodied in Eq. (20) can be summarized by say-
ing that within TDDFT the dynamical polarizabilty can be ex-
pressed as an appropriate off-diagonal matrix element of the
resolvent of the Liouvillian super-operator. A similar conclu-
sion was reached in Ref. [17] in the context of a slightly differ-
ent formalism. This statement can be extended in a straight-
forward way to the dynamic linear response of any observable
to any local one-electron perturbation. It is worth noticing
that the operators that enter the definition of the scalar prod-
uct in Eq. (20) are orthogonal because r̂i is Hermitean and
ŝj anti-Hermitean (being the commutator of two Hermitean
operators), and the trace of the product of one Hermitean and
one anti-Hermitean operators vanishes.

A. Representation of density matrices and other one-electron
operators

The calculation of the polarizability using Eqs. (18) or (20)
implies that we should be able to compute (L−ω)−1 · [r̂j , ρ̂◦]
in a super-operator linear system. The latter task, in turn,
requires an explicit representation for the density-matrix re-
sponse, ρ̃′, for its commutator with the unperturbed Hamilto-
nian, for local operators, such as r̂j of V̂ ′

HXC , for their com-
mutators with the unperturbed density matrix, as well as for
the Liouvillian super-operator, or at least for its product with
any relevant operators, Â, such as L · Â.

A link between the orbital and density-matrix representa-
tions of TDDFT expressed by Eqs. (5) and (9) can be obtained
by linearizing the expression (8) for the time-dependent den-
sity matrix:

ρ′(r, r′; t) =
∑

v

[
ϕ◦v(r)ϕ′∗v(r′, t) + ϕ′v(r, t)ϕ◦∗v (r′)

]
, (22)

whose Fourier transform reads:

ρ̃′(r, r′;ω) =∑
v

[
ϕ◦v(r)ϕ̃′∗v(r′,−ω) + ϕ̃′v(r, ω)ϕ◦∗v (r′)

]
. (23)

Eq. (23) shows that ρ̃(ω) is univocally determined by the
two sets of orbital response functions, x′ = {ϕ′v(r, ω)} and
y′ = {ϕ′∗v(r,−ω)}. A set of a number of orbitals equal to
the number of occupied states, such as x′ or y′, will be nick-
named a batch of orbitals. Notice that ρ̃(ω) is not Hermitian
because the Fourier transform of a Hermitian, time-dependent,
operator is not Hermitian, unless the original operator is even
with respect to time inversion. Because of the orthogonality
between occupied and response orbitals (〈ϕ◦v|ϕ′v′〉 = 0), Eq.
(22) implies that the matrix elements of ρ̂′ between two un-
perturbed KS orbitals which are both occupied or both empty
vanish (ρ′vv′ = ρ′cc′ = 0), as required by the idempotency of

density matrices in DFT. As a consequence, in order to cal-
culate the variation of the expectation values of a Hermitian
operator, Â, such as in Eq. (15), one only needs to know and
represent the occupied-empty (vc) and empty-occupied (cv)
matrix elements of Â, Avc and Acv . In other terms, if we
define as P̂ =

∑
v |ϕ◦v〉〈ϕ◦v|

.= ρ̂◦ and Q̂ .= 1 − P̂ as the
projectors onto the occupied- and empty-state manifolds, re-
spectively, one has that:

Tr(Âρ̃′(ω)) = Tr(Â′ρ̃′(ω)), (24)

where Â′ = P̂ ÂQ̂ + Q̂ÂP̂ is the vc-cv component of Â,
which can be easily and conveniently represented in terms of
batches of orbitals. To this end, let us define the orbitals:

ax
v(r) = Q̂Âϕ◦v(r) =

∑
c

ϕ◦c(r)Acv, (25)

ay
v(r) =

(
Q̂Â†ϕ◦v(r)

)∗
=

∑
c

ϕ◦∗c (r)Avc. (26)

One has then:

Acv = 〈ϕ◦c |ax
v〉, (27)

Avc = 〈ϕ◦∗c |ay
v〉. (28)

If Eqs. (27) and (28) are used to represent density matrices
instead of Eqs. (25) and (26), then the free oscillations corre-
sponding to setting Ṽ ′

ext = 0 in Eq. (14) would be described
by Casida’s eigenvalue equations [6].

For simplicity and without much loss of generality, from
now on we will assume that the unperturbed system is time-
reversal invariant, so that the unperturbed KS orbitals, ϕ◦v and
ϕ◦c , can be assumed to be real. The two batches of orbitals
ax ≡ {ax

v(r)} and ay = {ay
v(r)} will be called the batch rep-

resentation of the Â operator, and indicated with the notation
(ax,ay) or ({ax

v}, {ay
v}). Scalar products between operators

(traces of operator products) can be easily expressed in terms
of their batch representations. Let ({bxv}, {byv}) be the batch
representation of the operator B̂. If either of the two opera-
tors, Â or B̂, has vanishing vv and cc components, one has:〈

Â|B̂
〉

= Tr
(
Â†B

)
=

∑
cv

(A∗
cvBcv +A∗

vcBvc)

=
∑

v

(〈ax
v |bxv〉+ 〈ay

v|byv〉) . (29)

If Â is Hermitian, its batch representation satisfies the rela-
tion: ay(r) = ax(r)∗, whereas anti-Hermiticity would imply:
ay(r) = −ax(r)∗. Due to time-reversal invariance and the
consequent reality of the unperturbed KS orbitals, the batch
representation of a real (imaginary) operator is real (imag-
inary), and the batch representation of a local operator, V̂
(which is Hermitean, when real, or non Hermitean, when
complex), satisfies: vy

v (r) = vx
v (r).

In order to solve the super-operator linear system, Eq. (14),
using the batch representation, one needs to work out the batch
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representation of Ṽ ′
HXC(r,ω) as a functional of ρ̃′, as well as

of the various commutators appearing therein. The charge-
density response to an external perturbation reads:

n′(r) =
∑

v

ϕ◦v(r)
(
ϕ̃′v(r, ω) + ϕ̃′∗v(r′,−ω)

)
=

∑
v

ϕ◦v(r)
(
x′v(r) + y′v(r)

)
, (30)

where ({x′v}, {y′v}) is the batch representation of the density-
matrix response, ρ̃′. The Hartree-plus-XC potential response
is:

v′HXC [ρ̃′](r) =
∫
κ(r, r′)n′(r′)dr′

=
∑

v

∫
κ(r, r′)ϕ◦v(r′)

×
(
x′v(r′) + y′v(r′)

)
dr′. (31)

Using Eqs. (25) and (26) the batch representation of the
Hartree-plus-XC potential response reads therefore:

v′xHXC,v(r) = Q̂
∑
v′

∫
ϕ◦v(r)κ(r, r′)ϕ◦v′(r

′)

×
(
x′v′(r

′) + y′v′(r
′)

)
dr′ (32)

.= Q̂
∑
v′

∫
Kvv′(r, r′)

×
(
x′v′(r

′) + y′v′(r
′)

)
dr′ (33)

v′yHXC,v(r) = v′xHXC,v(r), (34)

where:

Kvv′(r, r′) =
(

1
|r− r′|

+ κXC(r, r′)
)
ϕ◦v(r)ϕ◦v′(r

′). (35)

Let ({v′xv}, {v′yv}) be the batch representation of a local oper-
ator, V̂ ′. The batch representation of the commutator between
V̂ ′ and the unperturbed density matrix, V̂ ′′ = [V̂ ′, ρ̂◦], reads:

v′′xv(r) = Q̂[V̂ ′, ρ̂◦]ϕ◦v(r)
= v′xv(r) (36)

v′′yv(r) = −v′′xv(r). (37)

The batch representation of the commutator between the un-
perturbed Hamiltonian and the density-matrix response, ρ̃′′ =
[Ĥ◦, ρ̃′], reads:

x′′v(r) = Q̂[Ĥ◦, ρ̃′]ϕ◦v(r)

= (Ĥ◦ − εv)x′v(r) (38)

y′′v (r) = −(Ĥ◦ − εv)y′v(r). (39)

The batch representation of the action of the Liouvillian on
the density-matrix response appearing in Eq. (14) reads:

L
(

x′

y′

)
=

(
D +K K
−K −D −K

) (
x′

y′

)
, (40)

where the action of the D and K super-operators on batches
of orbitals is defined as:

D{xv(r)} = {(Ĥ◦ − εv)xv(r)} (41)

K{xv(r)} =

{
Q̂

∑
v′

∫
Kvv′(r, r′)xv′(r′)dr′

}
. (42)

Note that, according to Eqs. (40), (41), and (42), the calcu-
lation of the product of the Liouvillian with a general one-
electron operator in the batch representation only requires
operating on a number of one-electron orbitals equal to the
number of occupied KS states (number of electrons), with-
out the need to calculate any empty states. In particular, the
calculation of Eq. (42) is best performed by first calculating
the HXC potential generated by the fictitious charge density
n̄(r) =

∑
v xv(r)ϕ◦v(r), and then applying it to each unper-

turbed occupied KS orbital, ϕ◦v(r). The projection of the re-
sulting orbitals onto the empty-state manifold implied by the
multiplication with Q̂ is easily performed using the identity:
Q̂ = 1−

∑
v |ϕ◦v〉〈ϕ◦v|.

Following Tsiper [27], it is convenient to perform a 45◦
rotation in the space of batches and define:

qv(r) =
1
2
(
xv(r) + yv(r)

)
(43)

pv(r) =
1
2
(
xv(r)− yv(r)

)
. (44)

Eqs. (43) and (44) define the standard batch representation
(SBR) of the density-matrix response. The SBR of the re-
sponse charge density is:

n′(r) = 2
∑

v

ϕ◦v(r)qv(r). (45)

The SBR of a general one-electron operator is defined in a
similar way. In particular, the SBR of a real Hermitian opera-
tor has zero p component, wheres the SBR of the commutator
of such an operator with the unperturbed density matrix has
zero q component. The standard batch representation of the
TDDFT Liouville equation, Eq. (14), reads:(

ω −D
−D − 2K ω

) (
q′

p′

)
=

(
0

{Q̂vext(r)ϕ◦v(r)}

)
.

(46)
In conclusion, the batch representation of response density

matrices and of general one-electron operators allows one to
avoid the explicit calculation of unoccupied KS states, as well
as of the Liouvillian matrix, which is mandatory when (very)
large one-electron basis sets (such as PW’s or real-space grids)
are used to solve the ground-state problem. This representa-
tion is the natural extension to the time-dependent regime of
the practice that has become common since the introduction
of time-independent DFPT [14, 16, 29].

B. Ultra-soft pseudopotentials

The formalism outlined above applies to all-electron as
well as to pseudopotential calculations performed using norm-
conserving pseudopotentials, which give rise to an ordinary
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KS ground-state eigenvalue problem. Ultra-soft pseudo-
potentials (USPPs) [26], instead, give rise to a generalized
KS ground-state eigenvalue problem and the time evolution
within TDDFT has to be modified accordingly [23, 24]. The
generalization of the TDDFT formalism to USPPs has been
presented in full detail in Ref. [24], and here we limit our-
selves to report the main formulas.

In the framework of USPPs, the charge density is written
as a sum n(r, t) = nUS(r, t) + naug(r, t). The delocalized
contribution, nUS, is represented as the sum over the squared
moduli of the KS orbitals: nUS(r, t) =

∑
v |ϕv(r, t)|2. The

augmentation charge naug, instead, is written in terms of so-
called augmentation functions QI

nm(r):

naug(r, t) =
∑

v

∑
n,m,I

QI
nm(r)〈ϕv(t)|βI

n〉〈βI
m|ϕv(t)〉. (47)

The augmentation functions, as well as the functions βI
n(r) ≡

βn(r−RI) are localized in the core region of atom I . The βn

each consist of an angular momentum eigenfunction times a
radial function that vanishes outside the core radius. Typically
one or two such functions are used for each angular momen-
tum channel and atom type. The indices n and m in Eq. (47)
run over the total number of such functions for atom I . In
practice, the functions Qnm(r) and βn(r) are provided with
the pseudopotential for each type of atom.

The advantage of using USPPs over standard norm-
conserving pseudopotentials comes from this separation of the
strongly localized contributions to the charge density from the
more delocalized contributions. The square moduli of the KS
orbitals only represent the latter part of n(r, t), and therefore
lower Fourier components in the representation of the orbitals
are sufficient for a correct representation of the charge den-
sity. The kinetic energy cutoff which determines the size of
the basis set can thus be chosen much smaller in typical USPP
applications than in corresponding calculations with norm-
conserving PPs. As shown in Ref. 24, the smaller basis set not
only reduces the dimensions of the matrices during the com-
putation, but it allows also for a faster convergence of spectro-
scopic quantities, when calculated both with real-time or with
spectral Lanczos techniques.

The generalized expression for the USPP charge density
given above entails a more complicated structure of the KS
eigenvalue problem. Instead of the standard eigenvalue equa-
tion (4), one now has

Ĥ◦
KSϕ

◦
v(r) = εvŜϕ

◦
v(r), (48)

where the overlap operator Ŝ is defined as

Ŝ = 1̂+
∑

n,m,I

qI
nm|βI

n〉〈βI
m|, (49)

with qI
nm =

∫
drQI

nm(r) and 1̂ the identity operator. Con-
sequently, the equation for the time-dependent KS orbitals,
Eq. (5), also contains the overlap operator in the USPP for-
malism:

iŜ
∂ϕ′v(r, t)

∂t
=

(
Ĥ◦

KS − Ŝε◦v

)
ϕ′v(r, t)+(

v′ext(r, t) + v′HXC(r, t)
)
ϕ◦v(r). (50)

Using the same derivation as before, but starting from
Eq. (50) instead of Eq. (5), we arrive at a standard batch rep-
resentation of the TDDFT Liouville equation in the USPP for-
malism. It has the same form as Eq. (46) above, but with the
super-operators D and K replaced by:

DUS{xv(r)} = {(Ŝ−1Ĥ◦ − εv)xv(r)} (51)

KUS{xv(r)} =

{
Ŝ−1Q̂

∑
v′

∫
Kvv′(r, r′)xv′(r′)dr′

}
,

(52)

and the right hand side of Eq. (46) by(
0

{Ŝ−1Q̂vext(r)ϕ◦v(r)}

)
, (53)

where in this case the projector onto the empty-state manifold
is defined as

Q̂ = Ŝ −
∑

v

Ŝ|ϕ◦v〉〈ϕ◦v|. (54)

The inverse overlap operator, Ŝ−1, appearing in these expres-
sions can be cast in the form

Ŝ−1 = 1̂+
∑

n,m,I,J

λIJ
nm|βI

n〉〈βJ
m|, (55)

which is very similar to the Ŝ operator itself, given in Eq. (49),
except for the fact that Ŝ−1 generally connects β-functions lo-
calized on different atoms. The numbers λIJ

nm can be obtained
from the condition ŜŜ−1 = 1̂. If the atoms are kept at fixed
positions, as it is the case here, the overlap operator is inde-
pendent of time and the λIJ

nm need to be calculated only once
for all.

III. GENERALIZED SUSCEPTIBILITIES FROM
LANCZOS RECURSION CHAINS

According to Eq. (20), the polarizability can be expressed
as an appropriate off-diagonal matrix element of the resolvent
of the non-Hermitian Liouvillian (super-) operator between
two orthogonal vectors. The standard way to calculate such a
matrix element is solve first a linear system whose right-hand
side is the ket of the matrix element. One then calculates the
scalar product between the solution of this linear system and
the bra [9, 17]. The main limitation of such an approach is
that solving linear systems entails the manipulation and stor-
age of a large amount of data and that a different linear sys-
tem has to be solved from scratch for each different value of
the frequency. In the case of a diagonal element of a Hermi-
tian operator, a very efficient method, based on the Lanczos
factorization algorithm [30, p. 185 and ff.] is known, which
allows to avoid the solution of the linear system altogether
[31–34]. Using such a method (known as the Lanczos recur-
sion method) a diagonal matrix element of the resolvent of a
Hermitean operator can be efficiently and elegantly expressed
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in terms of a continued fraction generated by a Lanczos re-
cursion chain starting from the vector with respect to which
one wants to calculate the matrix element [31–34]. The gen-
eralization of the Lanczos recursion method to non-Hermitian
operators is straightforward, based on the Lanczos biorthog-
onalization algorithm [35, p. 503]. Less evident is how to
encompass the calculation of non-diagonal matrix elements
between non-orthogonal vectors. In Ref. [25] such matrix
elements were treated using a block version of the Lanczos
bi-orthogonalization. This approach has the drawback that a
different Lanczos chain has to be calculated for the response
of each different property to a given perturbation (i.e. for each
different bra in the matrix element corresponding to a same
ket). In the following, we generalize the recursion method
of Haydock, Heine, and Kelly [31–34], so as to encompass
the case of an off-diagonal element of the resolvent of a non-
Hermitean operator without resorting to a block variant of the
algorithm and allowing to deal with the case in which the left
and the right vectors are orthogonal. This will allow us to cal-
culate the full dynamical response of any dynamical property
to a given perturbation, from a single scalar Lanczos chain.

We want to calculate quantities such as:

g(ω) =
〈
u|(ω −A)−1v

〉
, (56)

where A is a non-Hermitean matrix defined in some linear
space, whose dimension will be here denoted n, and u and
v are elements of this linear space, which we suppose to be
normalized: ‖ u ‖=‖ v ‖= 1, where ‖ v ‖2= 〈v|v〉. For sim-
plicity, and without loss of generality in view of applications
to time-reversal invariant quantum-mechanical problems, we
will assume that the linear space is defined over real numbers.
To this end, let us define a sequence of left and right vectors,
{p1, p2, · · · pk, · · · } and {q1, q2, · · · qk, · · · }, from the follow-
ing procedure, known as the Lanczos bi-orthogonalization al-
gorithm [35, p. 503]:

γ1q0 = β1p0 = 0, (57)
q1 = p1 = v, (58)

βj+1qj+1 = A qj − αjqj − γjqj−1, (59)

γj+1pj+1 = A>pj − αjpj − βjpj−1, (60)

where:

αj = 〈pj |Aqj〉, (61)

and βj+1 and γj+1 are scaling factors for the vectors qj+1 and
pj+1, respectively, so that they will satisfy:

〈qj+1|pj+1〉 = 1. (62)

Thus, from an algorithmic point of view, the right-hand sides
of Eqs. (59-60) are evaluated first with αj obtained from Eq.
(61). Then, the two scalars βj+1 and γj+1 are determined so
that Eq. (62) is satisfied. Eq. (62) only gives a condition on
the product of βj+1 and γj+1. If we call q̄ and p̄ the vectors
on the right-hand sides of Eqs. (59), (60) respectively, this
condition is that βj+1γj+1 = 〈q̄|p̄〉. In practice one typically

sets:

βj+1 =
√
|〈q̄|p̄〉| (63)

γj+1 = sign(〈q̄|p̄〉)× βj+1. (64)

The set of q and p vectors thus generated are said to be links of
a Lanczos chain. In exact arithmetic, it is known that these two
sequences of vectors are mutually orthogonal to each other,
i.e., 〈qi|pj〉 = δij , where δij is the Kronecker symbol.

The resulting algorithm is described in detail, e.g., in Refs.
[30, 35]. Let us define Qj and P j as the (n× j) matrices:

Qj = [q1, q2, · · · , qj ], (65)

P j = [p1, p2, · · · , pj ], (66)

and let em
k indicate the k-th unit vector in a m-dimensional

space (when there is no ambiguity on the dimensionality of
the space, the superscript j will be dropped). The following
Lanczos factorization holds in terms of the quantities calcu-
lated from the recursions equations (58-60):

A Qj = QjT j + βj+1qj+1e
j>
j , (67)

A>P j = P jT j> + γj+1pj+1e
j>
j , (68)

P j>Qj = Ij , (69)

where Ij indicates the (j×j) unit matrix, and T j is the (j×j)
tridiagonal matrix:

T j =



α1 γ2 0 · · · 0

β2 α2 γ3 0
...

0 β3 α3
. . . 0

... 0
. . . . . . γj

0 · · · 0 βj αj


. (70)

In the present case, because of the special block structure of
the Liouvillian super-operator and of the right-hand side ap-
pearing in Eq. (46), at each step of the Lanczos recursion one
has that Lqj is always orthogonal to pj , so that, according to
Eq. (61), αj = 0. Let us now rewrite Eq. (67) as:

(ω −A)Qj = Qj(ω − T j)− βj+1qj+1e
j>
j . (71)

By multiplying Eq. (71) by u>(ω − A)−1 on the left and by
(ω − T j)−1ej

1 on the right, we obtain:

u>Qj(ω − T j)−1ej
1 = u>(ω −A)−1Qjej

1−

βj+1u
>(ω −A)−1qj+1e

j>
j (ω − T j)−1ej

1. (72)

Taking the relation Qje
j
1 = q1

.= v into account, Eq. (72) can
be cast as:

g(ω) =
〈
ζj |(ω − T j)−1ej

1

〉
+ εj(ω), (73)

where:

ζj = Qj>u (74)



8

is an array of dimension j, and:

εj(ω) = βj+1

〈
u|(ω −A)−1qj+1

〉 〈
ej
j |(ω − T j)−1ej

1

〉
.

(75)
is the error made when truncating the Lanczos chain at the
j-th step. Neglecting εj(ω) we arrive at the following approx-
imation to g(ω) defined in Eq. (56)

ḡj(ω) =
〈
ζj |(ω − T j)−1ej

1

〉
. (76)

This approximation is the scalar product of two arrays of di-
mension j: ḡj(ω) = 〈ζj |wj〉, wherewj is obtained by solving
a tridiagonal linear system:

(ω − T j)wj = ej
1, (77)

T j is the tridiagonal matrix of Eq. (70), and ζj is given by Eq.
(74).

Three important practical observations should be made at
this point. The first is that solving tridiagonal systems is ex-
tremely inexpensive (its operation count scales linearly with
the system size). The second is that the calculation of the
sequence of vectors ζj from Eq. (74) does not require the
storage of the Qj matrix. In fact, each component ζj is the
scalar product between one known vector (u) and the Lanczos
recursion vector qj , and it can be therefore calculated on the
fly along the Lanczos recursion chain. We note that a slightly
better approach to evaluating Eq. (76) would be via the LU
factorization of the matrix ω − T j . If ω − Tj = Lω,jUω,j ,
then ḡ(ω) =

〈
U−>

ω,j ζ
j |L−1

ω,je1
〉
, which can be implemented

as the scalar product of two sequences of vectors. We finally
observe that the components of ζj decrease rather rapidly as
functions of the iteration count, so that only a relatively small
number of components have to be explicitly calculated. This
will turn out to be essential for extrapolating the Lanczos re-
cursion, as proposed and discussed in Sec. IV. The compo-
nents of wj = (ω − T j)−1ej also tend to decrease, although
not as rapidly. In fact this is used to measure convergence of
the Lanczos, or Arnoldi algorithms for solving linear systems,
see, e.g., [36].

From the algorithmic point of view, much attention is usu-
ally paid in the literature to finding suitable preconditioning
strategies that would allow one to reduce the number of steps
that are needed to achieve a given accuracy within a given iter-
ative method [9]. Although preconditioning can certainly help
reduce the number of iterations, it will in general destroy the
nice structure of the Lanczos factorization, Eq. (67), which is
essential to avoid repeating the time-consuming factorization
of the Liouvillian for different frequencies. In the next sec-
tion we will show how a suitable extrapolation of the Lanczos
coefficient allows for a substantial reduction of the number
of iterations without affecting (but rather exploiting) the nice
structure of the Lanczos factorization, Eqs. (68) and (67).

We conclude that the non-symmetric Lanczos algorithm al-
lows one to easily calculate a systematic approximation to
the off-diagonal matrix elements of the resolvent of a non-
Hermitean matrix. It is easily seen that, in the case of a di-
agonal matrix element, this same algorithm would lead to a

continued-fraction representation of the matrix element. Al-
though the representation of Eq. (73), which is needed in
the case of a non-diagonal element, is less elegant than the
continued-fraction one, its actual implementation in practice
is no more time consuming from the numerical point of view.

The idea of using the Lanczos algorithm to compute func-
tions such the one in Eq. (56) is not new. In control theory,
this function is called a transfer function and it is used to an-
alyze the frequency response of a system much like it is done
here. Using the Lanczos algorithm for computing transfer
functions has been considered in, e.g., [37, 38]. The Lanczos
and Arnoldi methods are also important tools in the closely
related area of model reduction in control, see, e.g., [39].

IV. BENCHMARKING THE NEW ALGORITHM AND
ENHANCING ITS NUMERICAL PERFORMANCE

In this section we proceed to a numerical benchmark of
the new methodology against the test case of the benzene
molecule, a system for which several TDDFT studies already
exist and whose optical spectrum is known to be accurately
described by ADFT [22, 23, 25, 40]. A careful inspection of
the convergence of the calculated spectrum with respect to the
length of the Lanczos chain allows us to formulate a simple
extrapolation scheme that dramatically enhances the numeri-
cal performance of the method.

A. Numerical benchmark

The benchmark has been performed using the Perdew-
Burke-Ernzerhof (PBE) [41] XC functional and USPP’s [24,
26, 42] with a PW basis set up to a kinetic energy cut-off of
30 Ry (180 Ry for the charge density). This corresponds to
a wavefunction basis set of about 25000 PW’s, resulting in a
Liouvillian superoperator whose dimension is of the order of
750,000. Periodic boundary conditions have been used, with
the molecule placed horizontally flat in a tetragonal supercell
of 30× 30× 20 a3

0. The absorption spectrum is calculated as
I(ω) ∝ ωIm (ᾱ(ω)), where ᾱ is the spherical average (aver-
age of the diagonal elements) of the molecular dipole polar-
izability. A small imaginary part has been added to the fre-
quency argument, ω → ω + iε, so as to regularize the spec-
trum. This shift into the complex frequency plane has the ef-
fect of introducing a spurious width into the discrete spectral
lines. In the continuous part of the spectrum, truncation of
the Lanczos chain to any finite order results in the discretiza-
tion of the spectrum which appears then as the superposition
of discrete peaks. The finite width of the spectral lines has in
this case the effect of broadening spectral features finer than
the imaginary part of the frequency, thus re-establishing the
continuous character of the spectrum. The optimal value of
the imaginary part of the frequency is slightly larger than the
average distance between pseudo-discrete peaks and depends
in principle on the details of the system being studied, as well
as on the length of the Lanczos chain and on the spectral re-
gion. Throughout our benchmark we have rather arbitrarily
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Figure 1: Absorption spectrum calculated using Lanczos method
with ultrasoft pseudo-potentials. The figure shows the curve at dif-
ferent numbers of recursive steps.

Figure 2: Comparison with experimental results of the converged
spectrum of benzene for two different sizes of the cell; for the larger
cell the structure in the continuum decreases and reproduces the ex-
perimental curve better. Theoretical results have been scaled so as to
obtain the same integrated intensity as experimental data.

set ε = 0.02 Ry. Later in this section, we will see that the
length of the Lanczos chain can be effectively and inexpen-
sively increased up to any arbitrarily large size. By doing
so, the distance between neighboring (pseudo-) discrete states
in the continuum correspondingly decreases, thus making the
choice of ε noncritical.

In Fig. 1 we report our results for the absorption spectrum
of the benzene molecule. The agreement is quite good with
both experimental data [43] and previous theoretical work
[22, 23, 25, 40]. Above the ionization threshold the TDDFT
spectrum displays a fine structure (wiggles), which is not ob-
served in experiments and that was suggested in Ref. [40]
to be due to size effects associated to the the use of a finite
simulation cell. Finite-size effects on the fine structure of the
continuous portion of the spectrum are illustrated in Fig. 2
where we display the spectrum of benzene as calculated using
two simulation cells of different size.

Our purpose here is not to analyze the features of the ben-
zene absorption spectrum, which are already rather well un-
derstood (see, e.g., Ref. 25), nor to dwell on the comparison

between theory and experiment, but rather to understand what
determines the convergence properties of the new method and
how they can be possibly improved. The number of iterations
necessary to achieve perfect convergence lies in this case in-
between 2000 and 3000: the improvement with respect to Ref.
[25] is due to the smaller basis set, made possible by the use
of ultrasoft pseudo-potentials, as discussed in Ref. [24]. It is
worth noting that the convergence is faster in the low-energy
portion of the spectrum. This does not come as a surprise be-
cause the lowest eigenvalues of the tridiagonal matrix gener-
ated by the Lanczos recursion converge to the corresponding
lowest eigenvalues of the Liouvillian, and the lower the state
the faster the convergence.

A comparison between the performance of the new method
with a more conventional approach based on the diagonaliza-
tion of the Liouvillian is not quite possible because the two
methodologies basically address different aspects of a same
problem. While the former addresses the global spectrum of
a specific response function, the latter focuses on individual
excited states, from which many different response functions
can be obtained, at the price of calculating all of the individual
excited states in a given energy range. It suffices to say that
it would be impractical to obtain a spectrum over such a wide
energy range as in Fig. 1 by calculating all the eigenvalues of
a Liouvillian. Using a localized basis set, which is the com-
mon choice in most implementations of Casida’s equations,
it would be extremely difficult to resolve the high lying por-
tion of the one-electron spectrum with the needed accuracy;
using PW or real-space grid basis sets, instead, the calculation
of very many individual eigen-pairs of the Liouvillian matrix
whose dimension easily exceeds several hundreds thousands
would be extremely difficult.

The comparison with time-propagation schemes is instead
straightforward and more meaningful. Typical time steps and
total simulation lengths in a time propagation approach are of
the order of 10−18 s, and 10−14 s, respectively, which amounts
to about 10,000 time propagation steps [24]. In each time step,
several applications of the Hamiltonian to the KS orbitals are
performed, and the Hartree plus exchange-correlation poten-
tials must be evaluated at least once. In the Lanczos approach,
each step requires two applications of the Hamiltonian and
one evaluation of the Hartree potential. What is more, the re-
sponse orbitals must be kept orthogonal to the ground-state
orbitals at each step. Therefore, the computational workload
in one time step is roughly comparable to the workload in one
recursion step. This results in a computational effort which is
3-4 times lower using the recursion method than using a time
propagation scheme.

B. Analysis

In Fig. 3 we report the values of the β coefficients and of
the last component of the ζ vectors (see Eqs. 63 and 74), as
functions of the Lanczos iteration count, as calculated when
the direction of both the perturbing electric field and the ob-
served molecular dipole are parallel to each other and lying
in the molecular plane (this would correspond to calculating,



10

Figure 3: (a) Numerical behavior of the components of the ζj vector
given by equation 74. Apart for some out of scale oscillation they
tend rapidly to a value near zero. (b) Numerical behavior of βj co-
efficients given by Eq. (63). They tend rapidly to a constant value
even if some larger scale oscillation is present. In the inset the same
data are shown on a different scale and with different colors for odd
(green) and even (red) coefficients.

say, the xx component of the polarizability tensor). It is seen
that the ζ components rapidly tend toward zero, whereas the
β’s tend to a constant. Closer inspection of the behavior of
the latter actually shows that the values of the β’s are scat-
tered around two close, but distinct, values for even and odd
iteration counts. The γ coefficients (see Eq. 64) are in general
equal to the β’s, and only in correspondence with few iterative
steps they assume a negative sign.

All the calculated quantities, β, γ, and ζ, are subject to
occasional oscillations off their asymptotic values. The ob-
served oscillations in the coefficients γj and βj can be partly
explained from their definitions, namely Eqs. (63-64). Note
at first that there is a risk of a division by zero in Eq. (63).
The occurrence of a zero scalar product 〈q̄|p̄〉 is known as a
breakdown. Several situations can take place. A lucky break-
down occurs when one of the vectors q̄ or p̄ is zero. Then the
eigenvalues of the tridiagonal matrix are exact eigenvalues of
the matrix A, as the space spanned by Qj (when q̄ = 0) be-
comes invariant under A, or the space spanned by P j (when
p̄ = 0) becomes invariant under A>. Another known situa-
tion is when neither q̄ nor p̄ are zero but their inner product
is exactly zero. This situation has been studied extensively in
the literature: see, e.g., [44–46]. One of the main results is
that when this breakdown takes place at step j say, then it is
often still possible to continue the algorithm by essentially by-
passing step j and computing qj+2, pj+2, or some qj+l, pj+l

where l > 1, directly. Intermediate vectors are needed to
replace the missing qj+1, ...qj+l−1 and pj+1, ...pj+l−1, but

these vectors are no longer bi-orthogonal, resulting in the
tridiagonal matrix being spoiled by “bumps” in its upper part.
The class of algorithms devised to exploit this idea are called
“look-ahead Lanczos” algorithms (LALAs), a term first em-
ployed in [44]. Finally an incurable breakdown occurs when
no pair qi+l, pj+l with some l ≥ 1 can be constructed which
has the desired orthogonality properties. Note that this type
of breakdown cannot occur in the Hermitian Lanczos algo-
rithm, because it is a manifestation of the existence of vectors
in the right subspace (linear span ofQj) that are orthogonal to
all the vectors of the left subspace (linear span of P j), which
is impossible when these spaces are the same (Qj = P j in
the Hermitian case). Clearly, exact breakdowns (inner prod-
uct 〈q̄|p̄〉 exactly equal to zero) almost never occur in prac-
tice. Near breakdowns correspond to small values of these
inner products that determine the observed jumps in the co-
efficients βj , γj .The components of the ζj’s can also show
jumps in their magnitude since the vectors qj will occasion-
ally have large variations in norm. In finite-precision arith-
metics the occurrence and precise location of (near-) break-
downs would also depend on the numerical details of the im-
plementation. Nevertheless in our experience the Lanczos re-
cursion always converges to the same final spectrum whose
calculation is therefore robust.

In order to understand what determines this robustness,
we note that our algorithm amounts to implicitly solving a
linear system by an iterative procedure based on a Lanczos
scheme. This procedure is mathematically equivalent to the
Bi-Conjugate Gradient algorithm (BiCG) [36]. The observed
robustness is therefore consistent with what is known of BiCG
[36]. In BiCG, the vector iterates lose their theoretical (bi-)
orthogonality and the scalars used to generate the recurrence
may correspondingly display very large oscillations, yet the
solution of the linear system, which is a linear combination of
the vector iterates, may converge quite well.

Because of this inherent robustness of the algorithm, we
preferred not to use any of the several available LALAs. The
shortcomings which these algorithms are designed to cure not
being critical, the marginal advantages that they may possibly
provide are outweighed by the drawback of losing the nice
tridiagonal structure of the Tj matrices generated by them.

Another difficulty with generic Lanczos algorithms is the
loss of bi-orthogonality of the Lanczos vectors. As was men-
tioned earlier, in exact arithmetic, the left and right Lanc-
zos vectors are orthogonal to each other. In the presence
of round-off, a severe loss of orthogonality eventually takes
place. This loss of orthogonality is responsible for the ap-
pearance of so-called ghost or spurious eigenvalues and vec-
tors of the matrix to be inverted. As soon as the linear span
of the Lanczos iterates is large enough as to contain a repre-
sentation of an eigenvector to within numerical accuracy, the
subsequent steps of the Lanczos process will tend to gener-
ate new copies of this eigenvector. At this point the Lanczos
bases (left or right spaces) become linear dependent to within
machine precision. From the point of view of solving the sys-
tems (ω−A)x = v, the effect of these replicated eigenvalues
is not very important. Indeed, when thinking in terms of the
BiCG algorithm, after the underlying sequence of approxima-
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Figure 4: Convergence of the absorption spectrum of benzene using
the extrapolation procedure described in the text. After N iterations
the components of ζj are set to zero and the β’s are extrapolated.

tions xj = Qj(ω − T j)−1ej
1 to x = (ω − A)−1v, obtained

by the BiCG algorithm converges, it will only add very small
components to xj . As a result the contributions of these repli-
cas are bound to be negligible and this is observed in practice.
Thus, the ghost eigenvectors have zero (or very small) oscilla-
tor strenghts. Their contribution to the wanted inner products
〈u|xj〉 which approximate g(ω) in Eq. (56), will be negligible
in general.

C. Extrapolating the Lanczos recursion chain

The fast decrease of the components of ζj implies that the
quality of the calculated spectrum depends only on the first
few hundreds of them. Specifically, if we set the components
of the ζj vector equal to zero in Eq. (73) after, say, 300-400 it-
erations, but we keep the dimension of the tridiagonal matrix,
T j , of the order of 2-3000, the resulting spectrum appears to
be still perfectly converged. Unfortunately, a relatively large
number of iterations seems to be necessary to calculate a tridi-
agonal matrix of adequate dimension. The regular behavior
of the β’s for large iteration counts suggests an inexpensive
strategy to extrapolate the Lanczos recursion. Let us fix the
dimension of the tridiagonal matrix in Eq. (73) to some very
large value (say,N? = 10000), and define an effective ζj vec-
tor, ζj

N , and T j matrix, TN?

N , by setting the k-th component
of ζN?

N equal to zero for k > N , and the k-th component of
β equal to the appropriate estimate of the asymptotic value
for odd or even iteration counts, obtained from iterations up
to N . In general, as previously noted, it very seldom occurs
that γj and βj have a different sign, and we found that that ex-
trapolating them to the same positive value does not invalidate
significantly the accuracy of the extrapolation.

In Fig. 4 we display the spectra, IN (ω), obtained from the
extrapolation procedure just outlined, which from now on will
be referred to as the bi-constant extrapolation of the Lanczos
coefficients. One sees that the extrapolated spectrum is at per-
fect convergence already for a very modest value of N in be-
tween N = 500 and N = 1000, a substantial improvement

with respect to the results shown in Fig. 1. Note that this ex-
trapolation procedure, although necessarily approximate, of-
fers an efficient solution to the problem of recovering a con-
tinuous spectrum from a limited number of recursion steps.
As the dimension of the tridiagonal matrix appearing in Eq.
(73) can be made arbitrarily large at a very small cost, the
distance between neighboring pseudo-discrete eigenvalues in
the continuous part of the spectrum can be made correspond-
ingly small, thus allowing to chose the imaginary time of the
frequency basically as small as wanted.

A qualitative insight into the asymptotic behavior of the
Lanczos recursion coefficients can be obtained from the anal-
ogy with the continued-fraction expansion of the local density
of states (LDOS) for tight-binding (TB) Hamiltonians, a prob-
lem that has been the breeding ground for the application of
Lanczos recursion methods to electronic-structure theory [31–
34]. Since the late seventies it has been known that the co-
efficients of the continued-fraction expansion of a connected
LDOS asymptotically tend to a constant—which equals one
fourth of the band width—whereas they oscillate between two
values in the presence of a gap: in the latter case the average
of the two limits equals one fourth of the total band width,
whereas their difference equals one half the energy gap [47].
These results can be easily verified in the case of a 1D TB
Hamiltonian with constant hopping parameter, β, which leads
to the continued fraction:

g(ω) =
1

ω − β2

ω − β2

ω− · · ·

=
ω ±

√
ω2 − 4β2

2β2
, (78)

where the sign has to be chosen so as to make the Green’s
function have the proper imaginary part. In this case, one sees
that the imaginary part of the Green’s function (which equals
the LDOS) is non-vanishing over a band that extends between
−2β and 2β. In the case were consecutive hopping parameters
of the recursion chain oscillate between two values, β1 and β2,
the resulting Green’s function reads:

g(ω) =
1

ω − β2
1

ω − β2
2

ω − · · ·

=
ω2 + β2

1 − β2
2 ±

√
(ω2 + β2

1 − β2
2)2 − 4ω2β2

1

2ωβ2
1

.

(79)

in this case we obtain two bands between |β1−β2| and β1+β2

and between −(β1 + β2) and −|β1 − β2|.
In our case, the relevant band width of the Liouvillian

super-operator extends from minus to plus the maximum ex-
citation energy. In a PP-PW pseudo-potential scheme, in turn,
the latter is of the order of the PW kinetic-energy cutoff, Ecut,
whereas the gap is of the order of twice the optical gap, ∆.
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Figure 5: (a) Behavior of β’s coefficients of benzene for different
values of the kinetic energy cut-off. (b) The asymptotic values β∞
plotted as a function of the kinetic energy cut-off; the figure shows
that they can be connected by a straight line with slope of about 0.5.

We conclude that the asymptotic values for the β and γ co-
efficient of the Liovillian Lanczos chain are: β1+β2

2 ≈ Ecut

2
and |β1 − β2| ≈ ∆. In Fig. 5a we report the behavior of
the values of the β coefficients of the Liouville Lanczos chain
calculated for benzene, vs. the iteration count, for different
plane-wave kinetic-energy cutoffs. In Fig. 5b the average
asymptotic value is plotted against the kinetic-energy cutoff,
demonstrating a linear dependence β∞ ≈ 1

2Ecut, in remark-
able agreement with the qualitative analysis described above.
Also the difference between the asymptotic values for odd and
even iteration counts (|βodd

∞ −βeven
∞ | ≈ 0.46Ry) is in remark-

able qualitative agreement with the optical gap (∆ = 0.38Ry).

V. APPLICATION TO LARGE MOLECULES:
FULLERENE AND CHLOROPHYLL A

In order to demonstrate the applicability of our methodol-
ogy to large molecular systems, we present now the results ob-
tained for the prototypical cases of fullerene C60 and chloro-
phyll a.

Let us begin with fullerene, a molecule whose spectrum has
already been the subject of extensive experimental [48, 49]
and theoretical [21, 40, 48, 50–52] studies. Our calculations
have been performed with the molecule lying in a cubic super-
cell with side length of 35 bohr, using the PBE XC functional.
Ultra-soft pseudo-potentials [42] have been used, with a PW
basis set with a kinetic energy cut-off of 30 Ry for the wave-
functions and 180 Ry for the charge density. This correspond
to almost 60,000 PW’s and a dimension of the full Liouvil-
lian exceeding 14 millions. The Lanczos recursion is explic-
itly computed up to different orders, N , as indicated in Sec.
III, and then extrapolated up to N? = 20000, as discussed in
Sec. IV (this value has been chosen rather arbitrarily because
both the numerical workload and the resulting accuracy de-
pends very little on it, as long as it is large enough). In order
to regularize the solution of the tridiagonal linear system, Eq.
(77), the spectrum has been calculated at complex frequen-

cies whose imaginary part is (also rather arbitrarily) taken as
ε = 0.02 Ry. In Fig. 6a we report the calculated absorption
spectrum between 0 and 40 eV. We see that, upon bi-constant
extrapolation, the calculated spectrum is already very good af-
ter as few as 500 iterations, and practically indistinguishable
from convergence after 1500 iterations. The resulting spec-
trum depends very little on the precise choice of ε as long as
its value is smaller than the average distance between neigh-
boring eigenvalues of the tridiagonal matrix of Eq. (77) (this
distance goes to zero in the continuous portion of the spectrum
as N? grows large), and larger than the desired resolution of
the calculated spectrum.

The overall shape of our calculated spectrum is in substan-
tial agreement with that calculated in Refs. [21, 40, 51] using
the real-time approach to TDDFT. In spite of the small atomic
basis set used in Ref. [51], the number of integration steps
that was found to be necessary to reach an acceptable accu-
racy (6000) is rather than ours. In Refs. [21, 40] where a real-
space grid representation of the KS equations was adopted, in-
stead, the number of time steps employed is one to two orders
of magnitude larger than ours (30-40,000). Considering that
several Hψ products are necessary at each time step of real-
time approaches, whereas only two are needed at each Lanc-
zos recursion, we see that our combined use of the Liouville-
Lanczos algorithm with bi-constant extrapolation and ultra-
soft pseudopotentials with plane waves allows for a substan-
tial reduction of the numerical workload, while keeping the
full accuracy allowed by the XC functionals currently avail-
able.

The absorption spectrum of C60 is characterized by a low-
lying and well structured portion (between, say, 3 and 7 eV)
dominated by π → π? transitions, followed by a broader fea-
ture between 14 eV and 27 eV determined by transitions from
both σ and π molecular orbitals. In Fig. 6(c) we compare
our converged spectrum with the experimental results of Ref.
[48]. Despite a slight redshift compatible with that found in
the calculations of Ref. [48], the overall shape of the TDDFT
spectrum is in good agreement with experiment. Note that the
theoretical results reported in Ref. [48], which were obtained
by calculating individual eigenpairs of the Casida’s equation,
could hardly be extended to such a broad energy range as cov-
ered in the present calculation, because too many lines would
have to be calculated.

An even more challenging test is chlorophyll, a molecule
which is of fundamental importance for life on Earth since it is
responsible for the photosynthetic process. There are several
different forms of this molecule, and we will focus on chloro-
phyll a. Historically the interpretation of the visible spectrum
of chlorophyll relies on the 4-orbital Gouterman model of por-
phyrins [54] in which only the two highest occupied molecu-
lar orbitals and the two lowest unoccupied molecular orbitals
are considered. In the last few years there have been several
calculations of its low energy spectrum relying on different ab
initio techniques [55–60]. Despite the fact that TDDFT seems
to produce spurious charge transfer states in the visible region
[58], according to our calculations the overall shape of the low
energy part of spectrum seems to be correctly predicted. Our
calculations have been performed using a super-cell of dimen-
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Figure 6: (a) Convergence of the absorption spectrum of fullerene
calculated between 0 and 40 eV. (b) Convergenze between 2 and 7 eV.
(c) The fully converged absorption spectrum of fullerene compared
with experimental results [48] in the energy range between 2 and
7 eV. For comparison purposes TDDFT results have been rescaled
in order to have the first transition peak at the same height as that
of experimetal results. Theoretical results have been scaled so as to
obtain the same integrated intensity as experimental data.

sions 35× 45× 55 a3
0 with the PW91 XC functional [61] and

USPPs [42]. Molecular orbitals where expanded in PW’s up to
a kinetic energy cut-off of 30 Ry, while 180 Ry were used for
the charge density. The PW basis sets consists of more than
120000 PW’s, while the dimension of the Liovillian superop-
erator exceed 42 millions. In this case the imaginary part of
the frequency was set to ε = 0.002 Ry to better compare the
results with experiments. In Fig. 7(a) we display the conver-
gence of the spectrum with respect to the number of Lanczos

Figure 7: (a) Convergence of the chlorophyll absorption spectrum
between 0 and 40 eV. (b) Chlorophyll absorption spectrum in the
visible region for wavelengths between 400 and 700 nm compared
with the experimental data in di-ethyl ether of Ref.[53]. Theoretical
results have been scaled so as to obtain the same integrated intensity
as experimental data.

steps, using the usual bi-constant extrapolation of the coeffi-
cients, as calculated over a wide range of energy between 0
and 40 eV. In Fig. 7(b) we compare the visible part of the
spectrum calculated in this work with the experimental results
obtained in diethyl solution in Ref. [53]. The agreement with
experiment is clearly good but the Soret (B) band located in
the indigo region of the spectrum at 430 nm is slightly red-
shifted in the calculation, while the red band (Q) has an op-
posite, blue-shifted behavior. How much of this discrepancy
has to be attributed to the limitations of the AXCA alone, or
to a combination of them with the neglect of solvation effects
remains to be ascertained.

VI. CONCLUSIONS

In this paper we have presented a new algorithmic ap-
proach to linearized TDDFT that combines the advantages
of the more conventional real-time and Casida’s eigenvalue
methods, while avoiding many of their drawbacks. This ap-
proach results from the combination of many elements which
are individually not new in different communities, ranging
from condensed matter, to quantum chemistry, to control the-
ory/engineering, and signal processing.
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In particular it is the natural extension to the dynamical
regime of density-functional perturbation theory, a method
made popular in the condensed-matter community by the cal-
culation of static properties (such as dielectric, piezoelectric,
elastic) and by the calculation of phonons and related prop-
erties in crystals. The main features of the new method are
that it is tailored to the calculation of specific responses to
specific perturbations and that the computational burden for
the calculation of the complete spectrum of a given response
function in a wide frequency range is comparable to that of
a single static ground-state or response-function calculation.

We believe that, from the algorithmic point of view, the new
method is close to optimal in its application range and that it
opens thus the way to the simulation of the dynamical proper-
ties of large and very large molecular and condensed-matter
systems. Assuredly, it cannot yield any better results than
granted by the quality of the XC functional used to implement
it. Devising new XC functionals capable of properly describ-
ing the electron-hole interaction responsible, e.g., of Rydberg
and excitonic effects in the low-lying portion of the spectrum
of molecular and extended systems, respectively, remains a
major problem to be addressed and solved.
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