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Abstract

A method is presented to partition a given set of data entries embedded in Euclidean
space by recursively bisecting clusters into smaller ones. The initial set is subdivided
into two subsets whose centroids are farthest from each other, and the process is re-
peated recursively on each subset. The bisection task can be formulated as an integer
programming problem, which is NP-hard. Instead, an approximate algorithm based on
a spectral approach is given. Experimental evidence shows that the clustering method
often outperforms a standard spectral clustering method, but at a higher computa-
tional cost. The paper also discusses how to improve the standard K-means algorithm,
a successful clustering method that is sensitive to initialization. It is shown that the
quality of clustering resulting from the K-means technique can be enhanced by using
the proposed algorithm for its initialization.

Keywords: graph partitioning, K-means algorithm, Lanczos method, spectral bisection,
unsupervised clustering

1 Introduction

Research on effective methods to deal with ever larger data sets has been gaining impor-
tance in recent years. The goal of clustering is to organize a data collection into clusters,
such that items within each cluster are more similar to each other than to items in other
clusters. While supervised clustering assumes that some information is available concerning
the membership of data items to predefined classes, unsupervised clustering does not require
a priori knowledge of data contents.

There are many applications of unsupervised clustering in computer vision, pattern recog-
nition, information retrieval, data mining, etc. Examples include document clustering [2],
clustering of protein sequences [10], content-based image retrieval [14], image segmentation
[12], and DNA microarray analysis [17]. In many cases the data is converted into numerical
form, as a set of points in the Euclidean space. The task is to partition the data into subsets
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according to a criterion of closeness. One way to address this problem is to partition the
set into subsets whose centroids are as far apart as possible from each other. To simplify
the procedure, we follow the recursive bisection approach, which has been used in clustering
(e.g., [2, 6, 15, 17]), and is common in graph partitioning (e.g., [7, 11]).

Data clustering algorithms can be categorized into hierarchical or partitional algorithms.
There are two types of hierarchical clustering methods; one is agglomerative (bottom-up)
and the other is divisive (top-down). The method introduced in this paper is hierarchical
and belongs to the latter class, since in order to perform the clustering, we repeatedly bisect
a subset into two smaller ones, until some stopping criterion is satisfied or the number of
required subsets is reached. A divisive clustering algorithm like this consists of two key
components: a way to select a subset to split, and a method to split it into smaller subsets
[15]. This article focuses on the second part. We call our method Farthest Centroids Divisive
Clustering (FCDC), since the bisection scheme aims at obtaining two sets with farthest
centroids.

The bisection scheme for farthest centroids is based on a spectral method, followed by a
tuning phase to increase the distance between the centroids. Spectral bisection for clustering
is not a new idea, see, e.g., [2, 6, 17]. In addition, tuning strategies have been utilized for
graph partitioning [8] and for the traveling salesman problem [9]. Experiments show that
FCDC usually outperforms spectral clustering methods, albeit at an extra computational
cost.

When an appropriate stopping scheme is incorporated, a hierarchical clustering algorithm
processes the data into clusters without knowledge of how many clusters there should be. In
contrast, partitional algorithms need to be given an idea of how the data should eventually be
partitioned. K-Means clustering is such an algorithm. However, while K-means is considered
one of the best clustering methods, its results are strongly dependent on the initial choice of
cluster representatives. Our experiments showed that the performance of K-Means is usually
improved when it is initialized by FCDC, which has the potential to provide more coherent
clusters.

Table 1 lists some notation used in this paper. The rest of this paper is organized as
follows. Section 2 reviews the spectral bisection method and gives our approximation scheme
for dividing a given set into two subsets with farthest centroids. Section 3 presents some
clustering algorithms, including FCDC and K-means. Section 4 reports on experimental
results. A conclusion is given in Section 5.

Table 1: Notation.

Symbol Description
X (raw) data matrix formed by Z1,...,2, € R™
X data matrix X — %X eel by shifting the centroid of X to the origin
n total number of data points
m dimension of data points
p,p1,p2 number of marginal points in the bisection procedure
K number of clusters
e column vector of ones of appropriate dimension




2 Bisection methods

Given a set of points represented in matrix form by X = (21, ZTo, -+, T, ) € R™™ the class
of problems we address in this section is to partition X into two subsets Y and 7 of X such
that the centroids of Y and Z are as far as possible from each other. The bisection methods
discussed in this section all preprocess the data to shift its centroid to the origin, so we
consider the zero-mean data set X := X — 1X ee’. Hereafter, the data matrix considered is
the preprocessed X, unless otherwise noted

2.1 Spectral bisection

Let u; and v; be the lead left and right singular vectors of X = (1,29, -+, 2, ) € R™*"
that correspond to the largest singular value o;. Spectral bisection separates the translated
points by the hyperplane u?x = 0. It splits the set into the two subsets, one with all z;
having u?z; < 0 and the other containing the rest.

The bisection algorithm just described is equivalent to partitioning the set X according
to the signs of the entries of vy, since ug T'X = oyv,. From this viewpoint, v; is just the scaled
result of mapping the raw data X into one-dimensional space by Principal Component Anal-
ysis (PCA), and then partitioning this set into the sets of positive and negative components.
Another interesting property is that this scheme maximizes the sum of squared distances
from the data points to a bisecting hyperplane. Given a hyperplane v’z = 0 with «"u = 1,
the sum of squared distances from z1,..., 2, to u’z =0 is

n
S (W) = "X} < o2
i=1
The maximum is achieved if we choose u := uy, the largest left singular vector of X.

Recall that Xe = 0, since the centroid is at the origin. The smallest right singular vector
of X is e, which is orthogonal to the largest right singular vector v;. Therefore vie = 0.
This explains why in practice we often obtain approximately an even number of positive and
negative entries in vy.

Spectral bisection has two drawbacks. First, the bisection is made with respect to a
linear hyperplane, but often some nonlinear separation is likely to perform better. Second,
the resulting two sets are approximately even, whereas a given set may consist of two coherent
uneven subsets. Both drawbacks are inherited in the resulting spectral clustering methods.

Alternatively, if we partition the set by seeking two subsets with farthest centroids, the
two drawbacks can sometimes be avoided. Figure 1 gives an example, where blue circles and
red crosses indicate the two subsets after bisection, respectively. The centroids are marked
by solid triangles. The set contains 1,000 points uniformly sampled from S; U S;, where
Si={(z,y): (e + 12+ < and Sp = {(z,9) 12 > 0,27 + > > 4,2 + 2 < 1}. The
result of bisection with farthest centroids has significantly better quality than that obtained
from the spectral method.

2.2 Two even sets with farthest centroids

In order to separate X = (1,29, -+, 2z, ) € R™™ into two subsets in some optimal way,
we can try to find these two subsets in such a way that their centroids have the maximum
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Figure 1: Results of (a) spectral bisection; (b) bisection for farthest centroids.

distance. We denote by Y, Z the two subsets. To simplify the discussion, we let Y, Z be
even and will consider uneven bisection in Section 2.3. The optimization problem we need
to solve is as follows:

Maximize | X cl|2 (1)

subject to ¢ = %1, (2)

2im1 ¢ =0, (3)

where ¢ = (¢1,¢9,-++,¢,) with n even. Equation (2) defines the two sets from the signs
of the components ¢;. All those x;’s for which ¢; = +1 constitute Y and the others, with
¢; = —1, constitute Z. The number of data points n is even. Define ¢(t) = %(c + e), the

vector obtained from ¢ by replacing its negative entries by zero, where e is the vector of
ones. Similarly, let (=) = %(—c—l— e) be the vector obtained from —c by replacing its negative
entries by zero. Then ¢ = ¢*) — ¢(2) and ¢ and ¢(7) each have only zeros or ones and
condition (3) forces them to have the same number of ones.

Since Xc¢ = Xc™*) — X (), maximizing || X¢c|2 is equivalent to finding ¢ so that the cen-
troids of the corresponding sets Y, Z are farthest apart from each other. Indeed Xc*)/(n/2)
and Xc(7)/(n/2) are the centroids of the two sets Y, Z.

Solving (1) constrained by (2) and (3) can be formulated as a problem of integer pro-
gramming [16]. However, integer programming is NP-hard and not practical when the data
set is large. We look instead for an algorithm to solve approximately this problem. It is pos-
sible to employ a Newton-like method, such as a penalty method, or to solve the nonlinear
Lagrangian system. However, these methods are easily trapped in local optimas, and are
not reliable.

Alternatively, we can relaz the condition (2) to be ¢’c = n and then obtain

Maximize || Xc||3 (4)
subject to c¢f'c = n, (5)
e =0. (6)



The solution to the above problem is well-known. Indeed, the problem is equivalent to
maximizing the Rayleigh quotient (X7 Xe¢, c)/{(c, c) subject to the constraint e’c = 0. Since
e is an eigenvector of X7 X associated with the (smallest) eigenvalue zero, the maximum of
the Rayleigh quotient is reached when ¢ equals the eigenvector associated with the largest
eigenvalue. Equivalently, we can say that the maximizer of (4) subject to (5) and (6) is the
largest right singular vector of X scaled to satisfy (5). We denote it by ¢ = (&, ---,é, )" .
Here, condition (6) is implicitly satisfied, since ¢ is orthogonal to the least singular vector e of
X. Similar properties can be found in graph partitioning by the recursive spectral bisection
(RSB) algorithm (e.g., [11]). This discussion leads to the bisection scheme. We first find the
median ¢, of ¢1,...,¢, and then divide X evenly into Y, Z, such that z; € Y if ¢; < ¢y, else
x; € Z. This initial partitioning with given ¢ takes O(n) time, using an effective algorithm
to find the median of a set of numbers [4, chapter 9.

To improve the two sets in the sense of maximizing the distance between the centroids,
we tune the sets Y and Z as follows. By abuse of notation, we use the symbols Y and Z to
also denote the two matrices Y = (41, Y2, +,Yns2 ) and Z = (21, 22, - -, 2n/2 ). The squared
distance between the centroids are

9 n/2 n/2 2 4
= ; — ; = —(Ye—Ze)T(Ye — Ze), 7
a | Zvm ]| = e - 29T0ve - 26) (7)

where e is the column vector of ones of dimension n/2. Assume that we swap two elements
y* €Y and z* € Z, and set 0 := y* — z*. Then the squared distance between the centroids
becomes

4
= [(Ye—10)—(Ze+6)"(Ye—6)— (Ze+))]
4
= < [(Ye—Ze)"(Ye—Ze)—4(Ye — Ze)" 6 4 4676] . (8)
n
Comparing (7) and (8), it is seen that the swap will result in an increased distance between
the centroids when

—4(Ye— Ze)'s + 4676 > 0. (9)

Since we can update Ye and Ze as Ye :=Ye — ¢ and Ze := Ze + J after the swap, we need
to compute Ye and Ze only once, which makes the use of criterion (9) inexpensive.

Following the terminology in [9], we say that a bisection Y, Z is 1-opt if no swapping of
two points y* € Y and z* € Z can increase the distance between the centroids of Y and Z.
Moreover, a bisection Y, Z is called k-opt (k>1), if it is (k—1)-opt and no swapping of two
sets of points {y},...y;} C Y and {z],...z;} € Z can increase the distance between the
centroids of Y and Z. A global maximizer of the program (1) is 1-opt but not vice versa.
However, a 1-opt separation usually provides a good approximation and can be considered
as a local minimizer of (1).

Given a separation Y, Z of X, we may repeatedly swap entries y* € Y and 2* € Z to
obtain a longer distance between the centroids of Y and Z (i.e., satisfying (9)). When there
is no pair of points y*, z* which satisfy (9), we obtain a 1-opt separation. We call this process
a tuning phase. In the literature, similar strategies have been applied to graph partitioning
[8] and the traveling salesman problem [9)].



When n is large, Y e—Ze is normally much larger than § in magnitude, and the dominating
term in (9) is —4(Ye — Ze)Td, which is positive if (Ye — Ze) and § form an angle larger
than 7/2. Therefore, when the estimation of the two sets with farthest centroids is good, a
(y*, z*) pair that satisfies (9) typically occurs in the marginal region (i.e., the region where
entries of the singular vector are smaller in magnitude). With this observation, we consider
in the tuning phase only the pairs of points (y*, z*) located in the marginal region, rather
than all y* € Y and 2* € Z. This strategy will reduce computational cost considerably.

Let u; and ¢ = (¢y,Co,- -+, Cp )T be the left and right singular vectors of X = (&1, 29, -+, x,)
corresponding to the largest singular value o1. Then ufz; = 01¢;. Therefore, the magnitude
of ¢; is proportional to the distance from z; to the hyperplane ufxz = 0. Using this fact,
we define the marginal region as the set of points x; with ¢; close to ¢;;. The scale of the
marginal region is controlled by how close ¢; must be to ¢); to be in the marginal region.
The larger the marginal region, the better chance the resulting partition has of being 1-opt.

After initialization with marginal points determined, we repeat swapping the marginal
points of X and Y that increase the distance between the centroids, until no pair is left whose
exchange would result in an increased distance between the centroids. The pseudo-code of
the proposed scheme is given in Algorithm 1, where we assume ¢y,...,¢, are distinct for
simplicity.

Algorithm 1 Bisection for farthest centroids of two even sets.
{Given X = (zy,---,x,) € R™*" partition it into two even sets Y and Z.}
{Here Xe =0 and n even.}
Compute the largest right singular vector of X as ¢ = (¢,---,¢, )T.
Find the median of ¢,...,¢, as ¢y.

Partition the columns of X into Y, Z by {

€Y if ¢ < ¢y
r, € Z if ¢ > ey.
Determine s such that indices of all |¢; — ¢js| < s represent the marginal region of size p.
Set Y*:={x; €Y :|¢;—cy| <s}and Z* :={z; € Z:|¢; — cy| < s}
repeat
for all y* € Y* and z* € Z* do
if swapping y* and z* increases the distance between the centroids then
Swap y* and z* sonow y* € Z* C Z and z* € Y* CY.
end if
end for
until no swapping will increase the distance between the centroids

2.3 Two possibly uneven sets with farthest centroids

In some applications, it may be desirable to partition a given set of points into two possibly
uneven sets with farthest centroids. Motivated by the scheme in Section 2.2, we still com-
pute the largest right singular vector ¢ of X = (xy,29,--+,x, ), and partition it into Y, Z,
according to the signs of the elements in ¢ = (¢, ¢, -+, ¢, )T. In other words, x; is a column
vector of Y if ¢; < 0; otherwise, x; belongs to Z. Note that this initialization scheme, though
motivated differently, is identical with that of the spectral method discussed in Section 2.1.



After the initialization, we now need to tune the resulting sets Y, Z to increase the distance
between the centroids. Since the two sets can be uneven, we consider not only swapping two
elements y* € Y and z* € Z, but we also allow to move a single entry y* € Y to Z or 2* € Z
to Y. The distance between the centroids of the two sets Y and Z is || nilYe - n—12Ze||2, where
ny and ny are the numbers of entries in Y and Z, respectively. When two entries y* € Y
and z* € Z are swapped, the distance becomes Hnil(Ye —y 42— niQ(Ze +y* — 2%)[|2. On
the other hand, moving a single entry y* € Y to Z results in the distance Hﬁ(Y@ —y*) —
n21+1 (Ze + y*)||2. Since updating Y'e and Ze for a single swap or move only takes four and
two vector additions/subtractions, respectively, we do not have to recompute Ye and Ze,
and the cost to evaluate the new distance is low.

In the tuning phase, we consider only the marginal points as in Section 2.2, and repeatedly
try swapping pairs and moving singles entries from the marginal set, until no swap or single
move can increase the distance between the centroids. The marginal points consist of the
points z; with ¢; close to zero. Let p be the number of marginal points. The overall cost
of single moves is normally O(pm), whereas for swaps it takes O(p?m). This observation
suggests that it is worthwhile to use two different marginal regions, a primary one of size p;
for single moves, and a secondary one of size p, < p; for swaps. In practice, bisections of
reasonably good quality can be obtained with single moves — but not as good, on average,
as when swaps are also performed. To reduce the computational cost, p, is set much smaller
than p;. Exchanges of pairs only provide small adjustments for minor improvements. The
pseudo-code is given in Algorithm 2.

Algorithm 2 Bisection for farthest centroids of two possibly uneven sets.

{Given X = (zy,---,x, ) € R™*" partition it into two possibly uneven sets Y and Z.}
Compute the largest right singular vector of X as ¢ = (¢,--+,¢, )T. Note that Xe = 0.
r,eY if ¢ <0;
r; € Z if ¢ > 0.
Find s such that indices of all |¢;| < s represents the primary marginal region of size p.
Find ¢ such that indices of all |¢;| < ¢ represents the secondary marginal region of size ps.
repeat
for all w* € {z;: |¢;| < s} do
if w* € Y and moving w* to Z repels the centroids from each other then
Move w* € Y to Z.
else if w* € Z and moving w* to Y repels the centroids from each other then
Move w* € Z to Y.
end if
end for
for all y* € {x;:x; €Y,|¢| <t} and z* € {x;: x; € Z,|¢;| <t} do
if swapping y* and z* repels the centroids from each other then
Swap y* and z* so now y* € Z and z* € Y.
end if
end for
until no swap or single move can increase the distance between the centroids.

Partition the columns of X into Y, Z by

Sometimes the full flexibility of unevenness may result in an undesired partitioning.



For example, suppose the data points are sampled uniformly from the unit disk in two-
dimensional space. When the number of data points n is large, the distance between the
farthest centroids is approximately 1 and it corresponds to taking one set to consist of one
edge point and the other set to consist of the remaining n—1 points. In practice, we can
balance the evenness of the two subsets and the distance of their centroids by controlling the
magnitude of the marginal points.

One practical issue not addressed in Algorithms 1 and 2 is the order in which z* € Z*
and y* € Y™ are to be tried for swaps or single moves. Different orders may result in different
bisections and thus different clusterings. In our experiments, we found that the order had no
significant impact on the quality of clustering. In particular, one can try to select the pair
which will cause the largest move of the centroids at each step. A few tests along these lines
yielded considerable increase of computational cost but little improvements of the clusters.

2.4 Approximation by the Lanczos method

The largest right singular vector of X € R™*" is the largest eigenvector of X7 X, and
it can be computed by the Lanczos method. The number of Lanczos steps is at most
rank(X7X) < min{m,n—1}. Assuming that the the matrix-vector multiplication (X7 X)q
required at each Lanczos iteration are computed as X7 (X¢q), the cost to compute the largest
singular vector of X is at most O(m?n). For data in a high dimensional space (i.e., m is
comparable to or larger than n), this worst-case cost could be O(n?). When the data set is
sparse (as in text data for example), each matrix-vector product will cost only O(an), where
« is the average number of nonzero entries per column of X. This would lead to a maximum
cost of O(amn) whether or not m < n. Note however that these costs are pessimistic since
the number of steps required by the Lanczos algorithm will typically be much smaller than
m. This important consideration is discussed next.

The spectral bisection requires only the signs of the entries of the largest right singular
vector ¢ of X. In addition, the tuning phase requires the information of the order of entries
in ¢ to determine the marginal points. However, an accurate singular vector is not required.
For data from high dimensional space, we may use the Lanczos algorithm with few Lanczos
steps to find an approximate singular value and vector. If the number of Lanczos steps is a
small constant, then the cost is of order O(mn).

Recall that X = X — we®’, where X is the raw data matrix and w = %Xe the centroid.

When the raw data X is sparse, it is most economical to compute the matrix-vector products
Xqas Xq—w(el'q) and XTr as XTr — e(w?r). These properties have been observed in [2].

Table 2: Data sets used for Lanczos test.

Data set Image Imgge # subjects  # z'mages data matrix
type s1ze per subject s12€
ORL face database  grayscale 112 x 92 40 10 10, 304 x 400
UMIST face database grayscale 112 x 92 15 19-48 10,304 x 575
digit images binary 20 x 16 10 39 320 x 390
alphabet images binary 20 x 16 26 39 320 x 1,014




We conducted four tests with data in high dimensional space, from ORL face database
[13], UMIST face database [5], and binary images of digits and alphabet letters, respectively.
These data sets were also used in the experiments in Section 4. The first test set was the
ORL (Olivetti Research Laboratory) database [13], which contains 400 face images of 40
subjects, 10 images per subject. For the second test we used the UMIST face database [5]
which contains 575 pre-cropped images of 20 subjects. In both face databases each image
has 112 x 92 grayscale pixels. In the third test we used a set of 10 x 39 = 390 images of
digits, and in the fourth we had 26 x 39 = 1,014 images of alphabet letters, all handwritten
and of size 20-by-16 with all entries 0 or 1. The data matrices were obtained by ‘vectorizing’
the images. Additional information is shown in Table 2.

We assessed the approximate largest singular vector at each Lanczos iteration by the
mean sign error and the relative mean order error. The mean sign error is the number
of all sign errors divided by the number of data entries n. The relative order error of an
entry in a vector is the difference in magnitude between its order in the vector and that in
the approximate vector, divided by n. Figure 2 shows the result. In all cases we obtained
the correct signs of the entries of the largest right singular vector of X within 10 Lanczos
iterations. For 15 Lanczos iterations we also obtained good estimate of the order of entries.
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Figure 2: Results of the Lanczos method for approximating the largest right singular vector.

We now discuss the overall computational cost for a farthest centroids bisection. After
getting the largest right singular vector of X or its approximation, it takes O(n) time to
determine the marginal region, using an algorithm for the selection problem in [4, chapter
9.3]. Then, the tuning normally takes O(p;m) time for single moves of points and O(p3m)
for swaps, where p; and ps are the numbers of points in the primary and secondary marginal
regions, and m is the dimension of data points. Here p; is at most the total number of points
n. If po = O(y/n), then the tuning cost is O(nm), the same order of Lanczos approximation
for the largest singular vector of X. Therefore the extra cost in the tuning phase over the
spectral bisection is a constant factor. In our experiments, we set po = y/n (rounded to the
nearest integer) for computational efficiency. To achieve significant improvement over the



spectral methods, we usually need the number of marginal points p; = 0.1n or higher. To
control the cost, we normally set p; = 0.4n or lower.

3 Unsupervised clustering

Given a set of points z1,...,x, in Euclidean space, we want to partition it into a certain
number of subsets, called clusters, which are as ‘distinct’ as possible. Sections 3.1 and 3.2
describe two different types of clustering methods. The criteria of the performance evaluation
are given in Section 3.3.

3.1 Clustering by recursive bisections

One can cluster by means of recursive bisections. A clustering algorithm of this type com-
prises two ingredients. The first consists of ways in which to select the subset to split and
the second consists of methods for splitting the selected subset [15].

For the second part, a spectral method [2, 6, 17|, performs a bisection by using the prin-
cipal direction as described in Section 2.1. On the other hand, we can employ the bisecting
K-means algorithm [15] (i.e., by setting K := 2 in the K-means algorithm). The resulting
clustering method will be referred to as the bisecting K-means divisive partitioning (BKDP)
in this paper. Alternatively, the bisection may exploit farthest centroids as discussed in Sec-
tions 2.2 and 2.3. We call the resulting method the Farthest Centroids Divisive Clustering
(FCDCQC).

For the first part, various methods have been proposed in the literature to choose the
next cluster to bisect, including:

1. Select the set according to the largest singular values of the current clusters [6, 17].

2. Select the cluster with the largest total scatter value [2]. The total scatter value of a
cluster Y with data points ¥, ...,y is defined by

k Lk
> v — a3, _:%Zyi-
i=1 i=1

3. If we know in advance that the clusters are of approximately equal size, we may choose
the largest cluster [15].

Principal Direction Divisive Partitioning (PDDP) [2], a spectral clustering method, se-
lects the cluster with the largest total scatter value to bisect. In our experiments, we also
choose the cluster with the largest total scatter value for FCDC and BKDP.

3.2 K-means clustering algorithm

The K-means algorithm is one of the best-known clustering methods available. The algorithm
can be succinctly described by defining the quantization error, the sum of squared distances

10



from the entries to the their cluster prototypes:

E(s,w) = Z lzi = w(s ()2, (10)

where s(7) is the index of the cluster to which x; belongs, and w(j) is the prototype, e.g.,
the centroid, of cluster j. When the clustering s is fixed, the minimizer of (10) in terms of
w is when w(j) is the centroid of the data entries in cluster j. On the other hand, if w is
fixed, the minimizer of (10) in terms of s is reached when s(7) is the cluster index of the
closest prototype to z;. K-means iteratively minimizes E(s,w) in terms of s and w, until
the value of E(s,w) cannot be further reduced. K-means is an Expectation-Minimization
(EM) algorithm whose goal is to (locally) minimize (10) [3]. The pseudo-code is given in
Algorithm 3.

Algorithm 3 K-means clustering algorithm.
{Given X = (z1,---,x,) € R™ " partition it into K clusters Si,...,Sk.}
Initialize K prototypes p1,...,pk, randomly or by another clustering algorithm.
repeat
Set S;:=0forj=1,... K.
fori=1,2...,ndo
Find k such that ||z; — pg|| < ||z —pj|| for j=1,..., K.
Set Sk = Sk U {.TZ}
end for
for j=1,2,..., K do
Set p; = the mean of points in S;.
end for
until it converges (i.e., pi, ..., px unchanged).

It is not yet specified how the prototypes are initialized. In fact the K-means algorithm
is sensitive to the initialization. In our experiments we used four different initializations:

random, by PDDP, by BKDP, and by FCDC.

3.3 Clustering evaluation

Several criteria exist to measure the performance of clustering. One of them is the quan-
tization error (10). For comparisons between different clustering tasks, we use the relative
quantization error:

B(s) = B(s)/IIX[3. E(s) = min E(s,w). (11)

If each data entry is assigned a label (i.e., the ‘right’ clustering is known in advance),
then we can evaluate the clustering performance by total entropy [2]. The entropy of cluster

7 is defined by .j) i)
s(z, g s(z, 7 .
ej:_z n; 10g2 . ) nj:ZS<Z7j)7

J

i
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where s(, ) is the number of occurrences of label ¢ in cluster j, and n; is the number of
data entries in cluster j. The total entropy is the weighted average of e;,

1
vl = = 165, 12
€total n : n;e; (12)

The smaller the total entropy, the better the performance. If the clusters exactly match the
labels, then the total entropy is zero.
We can also define the clustering error rate and count as

1
Crate = ﬁecounta €count = Z - maXS { ])) (13)

respectively. If the clusters match the labels, then the clustering error is zero.

4 Clustering experiments

We conducted five experiments on clustering: clustering of ORL face images [13], clustering
of UMIST face images [5], clustering of digit and alphabet images, document clustering, and
color clustering. A total of seven different methods were used: PDDP, BKDP, FCDC, and
K-means initialized randomly, by PDDP, by BKDP, and by FCDC. The results are reported
in Sections 4.1, 4.2, 4.3, 4.4, and 4.5, respectively. For BKDP, the spectral bisection method
is used for K-means (K = 2) initialization. PDDP and FCDC also utilize spectral bisections.
In all cases we used a MATLAB routine svd1triple from [2] that approximates the lead
singular value and vectors by the Lanczos method. It also takes advantage of the sparsity of
the data, if any, to reduce the computation time. For FCDC, we set the marginal region to be
of size y/n (rounded to the nearest integer) for swaps, where n is the number of data points.
The size of the marginal region for single moves varies from 0.1n to 0.4n, to balance the
computational cost and quality of clusters. The experiments were performed in sequential
mode on a PC equipped with two Intel(R) Xeon(TM) 3.00GHz processors.

4.1 ORL face images

In the first experiment we used ORL (Olivetti Research Laboratory) database of faces [13].
It contains 40 subjects each having 10 grayscale images of size 112-by-92 with various facial
expressions, giving a total of 400 images. Figure 3 displays the images of the first two
subjects.

We used the first k£ images of each subject for k = 2,...,10. After vectorizing the images,
we obtained a matrix X of size 10304-by-40k. Then we clustered it into 40 subsets. For
FCDC we set the size of the marginal region for single moves of points be 0.25n, with n the
number of images in each bisection. The result is shown in Figure 4, where we report the total
entropy (12) and (used) CPU time. The performance comparison is summarized as follows.
FCDC was usually better than BKDP with comparable used CPU time. Both outperformed
PDDP, which is the most economic. FCDC initialization also usually performed better than
PDDP or BKDP initializations for enhancing the K-means algorithm.
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Figure 3: Sample images from the ORL face database.
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Figure 4: Total entropies and CPU time for ORL face image clustering.
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For the number of images per subject & = 10 (i.e., using all images), the quantization
error (10) (11), total entropy (12), the clustering error (13), and used CPU time for each
method are displayed in Table 3.

Table 3: Performance of various clustering methods on ORL face images.

PDDP + BKDP + FCDC +
K-means K-means K-means

Quantization | 44516.56 42541.48 42375.99 42988.88 40758.23 40579.25 39813.95

Method PDDP BKDP FCDC  K-means

error (4.63%)  (4.42%)  (4.40%) (4.47%) (4.24%)  (4.22%)  (4.14%)
Total entropy 1.337 1.070 1.055 1.115 0.980 0.866 0.816
Clustering 166 135 133 143 132 112 109
error (41.50%) (33.75%) (33.25%) (35.75%) (33.00%) (28.00%) (27.25%)
Time (secs) 3.36 5.48 5.12 10.33 9.28 9.52 11.00

4.2 UMIST face images

In the second experiment we employed UMIST face database [5] which contains 575 pre-
cropped images of 20 subjects. For FCDC we set the size of the marginal region for single
moves of points to be 0.4n, with n being the number of images in each bisection. The images
are of size 112-by-92 in 256 shades of grey. The number of images per subject varies from
19 to 48, covering a range of poses from profile to frontal views. This set gives a more
challenging task for clustering than the ORL face database. Figure 5 displays the 38 images
of the first subject.

Figure 5: Images of the first subject in UMIST database.

In each test we used a certain fraction of images of each subject, for 10%,20%,. . .,100%.
Then they were clustered into 20 subsets. Figure 6 shows the total entropy (12) using var-
ious clustering methods. We summarize the result as follows. On average , FCDC slightly
outperformed BKDP using a comparable CPU time. PDDP was least expensive but usu-
ally resulted in higher entropy. K-means algorithm also worked well. There was no clear
improvement by FCDC, BKDP, or PDDP initialization.
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Figure 6: Total entropies and CPU time for UMIST face image clustering.

Using the whole 575 face images, the quantization errors (10) (11), total entropies (12),
the clustering errors (13), and CPU time used are reported in Table 4.

4.3 Alphabet and digit images

The third experiment set consists of binary images of written digits and alphabet letters, 39
images per digit and letter, in a total of (10 + 26) x 39 = 1,404 images. Each image is of
size 20-by-16. The means (centroids) of the digits and letters are shown in Figure 7. The
look of these generally suggests that the digits are well-written (The images would be very
fuzzy if many badly written digits/letters were present.)

We divided the set into two subsets of digits and alphabet letters, respectively. For the
subset of digits, we used the first k images of each digit for k = 2,...,39. After vectorizing the
images, we obtained a data matrix of size 320-by-10k, and then partitioned it into 10 clusters
using various methods. For FCDC we set the number of points (marginal size) for single
moves of points be 0.4n, where n is the number of data points in each bisection. Figure 8
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Table 4: Performance of various clustering methods on UMIST face images.

PDDP + BKDP+ FCDC +
K-means K-means K-means

Quantization | 77012.34 71898.65 71324.06 72283.33 68441.44 69661.93 67987.88

Method PDDP BKDP FCDC  K-means

error (8.00%)  (7.55%) (7.49%) (7.60%) (7.19%) (7.32%)  (7.14%)
Total entropy 1.873 1.728 1.617 1.539 1.550 1.540 1.487
Clustering 315 322 296 281 293 307 288
error (54.78%) (56.00%) (51.48%) (48.87%) (50.96%) (53.39%) (50.09%)
Time (secs) 4.32 6.67 6.76 7.16 15.02 12.87 14.39

.

Le

Figure 7: The means (centroids) of all digits and alphabet letters.

shows the result, with the performance measured by total entropy (12). Figure 9 exhibits the
result of clustering the subset of alphabet letters into 26 clusters. In this experiment FCDC
was usually slightly faster than BKDP without losing the quality of the clusters. Both FCDC
and BKDP, with a higher cost, outperformed PDDP. Using the K-means algorithm, FCDC
initialization also slightly improved the K-means algorithm. The details are not reported.

For the number of images per subject k£ = 39 (i.e., using all images), the results of various
performance evaluation criteria are shown in Tables 5 and 6.

Table 5: Performance of various clustering methods on digit images.

PDDP + BKDP + FCDC +
K-means K-means K-means

Quantization | 21641.29 21079.03 21167.05 20337.76 20310.38 20340.89  20090.92

Method PDDP BKDP FCDC  K-means

error (40.30%) (39.25%) (39.42%) (37.87%) (37.82%) (37.88%) (37.41%)
Total entropy | 1.887 1.586 1.498 1.312 1.423 1.308 1.082
Clustering 209 182 151 141 182 144 118
error (53.50%) (46.67%) (38.72%) (36.15%) (46.67%) (36.92%) (30.26%)
Time (secs) 0.13 0.32 0.23 0.57 0.49 0.76 0.85

4.4 Document clustering

The clustering methods we have presented can also be used in document clustering. A
document vector d = [di,ds,...,d,]" is a column vector whose ith entry is the relative
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Table 6: Performance of various clustering methods on alphabet images.
Method | PDDP  BKDP ~ FCDC  K-means LPPT+ BEDP+ FCDCH
K-means K-means K-means
Quantization | 54055.61 53073.60 53013.76 51441.60 51286.01 51023.83 51196.15
error (41.06%) (40.31%) (40.27%) (39.08%) (38.96%) (38.76%) (38.89%)
Total entropy 2.451 2.310 2.230 2.054 2.130 2.031 1.988
Clustering 585 574 560 520 544 528 521
error (57.69%) (56.61%) (55.23%) (51.28%) (53.65%) (52.07%) (51.38%)
Time (secs) 0.46 1.03 0.89 5.82 3.13 3.49 3.33
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frequency of the ith word. We scale the document vectors to have Euclidean norm equal to
1, so that each entry has numerical value equal to d; = %, where T'F; is the number
j J

of occurrences of word 7 in the particular document set. This scaling is referred to as norm
scaling.

For our experiments we used the data sets J1-J11 from Boley [2]. All these 11 sets consist
of the same 185 documents but differ in the number of key words from 183 to 10,536, where
J1 contains all words and forms a matrix of size 10,536-by-185. Each document has been
assigned by hand a label according to its topic. There are 10 different labels (topics) in
total. These labels are required for the computation of the total entropy (12), to evaluate
the quality of the clusters. In all tests this is the only experiment with sparse matrices, which
are favored by the spectral methods such as PDDP. See [2, section 5] for more information

of these data sets.
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Figure 10: Total entropies and CPU time for document clustering.

The results of clustering the data into K = 10 clusters are presented in Figure 10. For
FCDC we set the marginal region to be of size 0.1n, where n is the number of documents
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in each bisection. We can observe that FCDC and BKDP produced lower entropy values
than PDDP for almost all the data sets, and that FCDC, BKDP and PDDP initializations
improved the K-means algorithm. Experiments were also conducted with other numbers of
clusters K = 8,16,32. The relative performances were comparable. For example, Table 7
lists the results on J1 data set which contains the complete 10,536 key words. In this case
FCDC outperformed BKDP and PDDP in terms of the quality of clusters, but with a higher
computational cost. FCDC also achieved the best enhancement of the K-means algorithm.

Table 7: Performance of various clustering methods on J1 data set.

# o | Methods | PDDP  BKDP  FCDC K-means ©0PL + BRDP + FODC +

clusters K-means K-means K-means
3 Total entropy | 1.236 1.132 0.953 1.405 1.005 1.015 0.795
Time (secs) 1.10 1.32 2.65 2.48 1.89 1.79 3.35
10 Total entropy | 0.993 0.883 0.716 1.205 0.638 0.685 0.574
Time (secs) 1.08 1.34 2.67 1.91 2.58 2.40 3.52
16 Total entropy | 0.690 0.655 0.492 1.251 0.655 0.660 0.436
Time (secs) 1.23 1.53 2.83 2.11 2.25 2.22 3.50
29 Total entropy | 0.513 0.512 0.392 0.656 0.513 0.512 0.392

Time (secs) 1.39 1.81 3.08 2.83 2.07 2.51 3.81

In additional to norm scaling, Boley also used TFIDF scaling in his experiments [2]. In
our tests on J1-J11 sets with data matrices TFIDF scaled, we found that both FCDC and
BKDP did not really improve PDDP. Nevertheless, TFIDF scaling is less appropriate than
norm scaling for clustering tasks on these sets [2].

4.5 Color clustering

The clustering methods described in this paper can also be employed to partition the colors
in an image, with applications in image retrieval [18]. The task is to use a small number
of colors to represent a given color image with thousands of colors or more. Each pixel is
regarded as a data point in three-dimensional space representing the RGB color components,
and therefore the clustering algorithms can be applied. Each image can be regarded as an
n, X n.x 3 tensor. Replacing each pixel by the mean (centroid) of its cluster, we obtained
the image with reduced colors. We measured the performance by root mean squared errors

(RMSE):

RMSE = \/3 ! |M — M|,
where M and M are the original image and the image with reduced colors, respectively.
We report the result of an experiment on two photos, shadows and pumpkins, both
of size 256-by-256. A few other photos were also tested and the conclusion is consistent.
Relatively, the photo shadows has high color saturation, and the photo pumpkins has rich
colors. For each photo, we partitioned the pixels into 4, 16 and 64 color clusters by seven
methods: PDDP, BKDP, FCDC, and K-means initialized randomly, by PDDP, by BKDP,

19



and by FCDC. For FCDC we set the marginal region to be of size 10% of the total pixels for
single moves of pixels. The root mean squared errors (RMSE) and time used are reported
in Table 8.

Table 8: Root mean squared errors (RMSE) and CPU time (seconds) of color clustering.

Photo | 700 Mea | bbb BRDP  FODC Komeans LPPTT BEDPH FODCH
colors sure K-means K-means K-means
4 RMSE | 0.093 0.091 0.091 0.085 0.085 0.085 0.085
Time 0.13 39.50 0.45 43.27 38.32 83.07 45.05
RMSE | 0.047 0.045 0.046 0.042 0.042 0.042 0.042
shadows 16

Time 0.30 65.53 0.96  1565.79 435.79 669.27 633.17
RMSE | 0.027  0.026 0.027  0.025 0.024  0.024  0.024
Time 0.61 86.86 1.81  9219.22 2186.07 2627.89 3472.56
RMSE | 0.095 0.095 0.095 0.095 0.095 0.095 0.095
Time 0.14 23.79 0.67 110.17  81.95 84.60 51.56
RMSE | 0.053 0.053 0.053 0.050 0.050  0.050  0.050
Time 0.30 51.01 1.25 639.23  441.79 1108.10 1059.82
RMSE | 0.030 0.030 0.030 0.028 0.028  0.028  0.028
Time 0.63 68.59 2.09  4876.71 5789.18 8194.68 6005.59

64

4

pumpkins 16

64

In terms of the resulting quality of clusters, there was no significant difference between
PDDP, BKDP, and FCDC, whereas K-means worked better in terms of RMSE. This may be
because the squared RMSE is proportional to the quantization error defined in (10), which
the K-means algorithm aims to minimize.

Computationally, PDDP was the most economical, FCDC needed some more time, and
BKDP took much more time. K-means was most expensive in this experiment. The cost
of K-means increases sharply as the number of colors increases. The images with reduced
colors by FCDC are shown in Figure 11.

5 Conclusion

This paper described an unsupervised clustering method named FCDC which is based on a
recursive bisection approach. The performance of the algorithm was illustrated on various
applications and the tests reveal that good improvements over spectral techniques can be
obtained, albeit at a higher cost. An appealing use of FCDC is for initializing the K-
means algorithm. Tests showed a marked improvement of the K-means algorithm when it
is initialized with FCDC. There are several possible improvements to the algorithm which
were not explored in this paper. One of these is to automate the choice of the optimal
sizes of the marginal regions from which entries are moved in order to improve the distance
between centroids. Another interesting extension is to use kernels to redefine distances and
yield nonlinear versions of the algorithm. (See [1] for an example of kernel-based clustering
methods.) This is possible because the tuning phase of FCDC relies on distances and inner
products which can be modified by resorting to kernels.
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K=64, RMSE=0.0274

Raw image K=64, RMSE=0.03033 K=16, RMSE=0.05277 K=4, RMSE=0.09495

Figure 11: Results of color clustering by FCDC. First column: raw image; second column:
64 colors; third column: 16 colors; last column: 4 colors.
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