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Abstract. It is known that a high order tensor does not necessarily have an optimal low rank
approximation, and that a tensor might not be orthogonally decomposable (i.e., admit a tensor
SVD). We provide several sufficient conditions which lead to the failure of the tensor SVD, and
characterize the existence of the tensor SVD with respect to the Higher Order SVD (HOSVD) of
a tensor. In face of these difficulties to generalize standard results known in the matrix case to
tensors, we consider low rank orthogonal approximations of tensors. The existence of an optimal
approximation is theoretically guaranteed under certain conditions, and this optimal approximation
yields a tensor decomposition where the diagonal of the core is maximized. We present an algorithm
to compute this approximation and analyze its convergence behavior.
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1. Introduction. There has been renewed interest in studying the properties
and decompositions of tensors (also known as N -way arrays or multidimensional ar-
rays) in numerical linear algebra in recent years [25, 24, 38, 31, 8, 17, 18, 26, 22].
The tensor approximation techniques have been fruitfully applied in various areas
which include among others, chemometrics [32, 4], signal processing [21, 7], vision
and graphics [35, 36], and network analysis [19, 1]. From the point of view of prac-
tical applications, the matrix SVD and optimal rank-r approximation of matrices
(a.k.a. Eckart–Young theorem [9]) are of particular interest, and it would be nice
if these properties could be directly generalized to higher order tensors. However,
for any order N ≥ 3, Silva and Lim [31] showed that the problem of optimal low
rank approximation of higher order tensors is ill-posed for many ranks r. Also, Kolda
presented numerous examples to illustrate the difficulties of orthogonal tensor decom-
positions [17, 18]. These studies reveal many aspects of the dissimilarity between
tensors and matrices, in spite of the fact that higher order tensors are multidimen-
sional generalizations of matrices.

Currently the most commonly used generalization of the matrix SVD to higher or-
der tensors is the so-called Higher Order Singular Value Decomposition (HOSVD) [24].
HOSVD decomposes an order-N tensor into a core tensor that is of the same shape
as the original tensor, together with N orthogonal1 side-matrices. Although this de-
composition preserves many nice aspects of the matrix SVD (e.g., the core has the
all-orthogonality and the ordering property), a big difference is that the core is in
general not diagonal. Hence, in contrast with the matrix SVD, HOSVD cannot be
written as a sum of a few orthogonal outer-product terms2.

∗This work was supported by NSF under grants DMS-0510131 and DMS-0528492 and by the
Minnesota Supercomputing Institute.

†Department of Computer Science and Engineering, University of Minnesota at Twin Cities, MN
55455. Email: {jchen, saad}@cs.umn.edu.

1Throughout this paper, we will say that a matrix A ∈ R
m×n, with m ≥ n, is orthogonal if

AT A = I, in preference to the more common term unitary.
2Given two sets of vectors {ui} and {vi}, the two outer products u1 ⊗ u2 ⊗ · · · ⊗ uN and

v1 ⊗ v2 ⊗ · · · ⊗ vN are said to be orthogonal if ui ⊥ vi for all i. This is also known as complete
orthogonality in [17]. More on this shortly.
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There are three well-known approximations to higher order tensors: (1) rank-1
approximation [25, 38]; (2) rank-(r1, r2, . . . , rN ) approximation with a full core and N

orthogonal side-matrices (in the Tucker/HOOI fashion) [34, 25]; and (3) approxima-
tions using r outer-product terms (in the CANDECOMP/PARAFAC fashion) [5, 10].
Among these, only the rank-1 approximation is theoretically guaranteed to have a
global optimum [31]. In practice, these approximations are computed using an alter-
nating least squares (ALS) method, where the convergence behavior is theoretically
unknown except under a few strong conditions [20]. It has long been observed that the
ALS method for the PARAFAC model may converge extremely slowly if at all [28, 15].
An illustration of this phenomenon is given in the Appendix.

In computing the rank-1 approximation, Zhang and Golub [38] presented a gener-
alized Rayleigh quotient iteration that is guaranteed to converge quadratically when
it is localized. Alternatively, the approximation using r outer-product terms can be
computed in a greedy but suboptimal fashion: An optimal rank-1 approximation is
computed and subtracted from the original tensor, yielding the so-called residual ten-
sor. Then a rank-1 approximation to the residual tensor is computed, and the residual
tensor is updated. This is iterated r times to form the approximation. This approx-
imation can be written in the form of a diagonal core tensor with N side-matrices.
However, there is no guarantee that these side-matrices have full column ranks even
when r is small. Moreover, the rank of the approximation might be less than r.

Kolda [17] investigated several orthogonal decompositions of tensors related to
different definitions of orthogonality, including orthogonal rank decomposition, com-
plete orthogonal rank decomposition and strong orthogonal rank decomposition. These
decompositions might not be unique, or even exist. Among these definitions, only the
complete orthogonality gives a situation which parallels that of the matrix SVD. This
approach demands that the side-matrices all be orthogonal. In this paper, we will
use the term tensor singular value decomposition (tensor SVD, c.f. Definition 5.1) for
complete orthogonal rank decomposition. Zhang and Golub [38] proved that for all
tensors of order N ≥ 3, the tensor SVD is unique (up to signs) if it exists, and that
the incremental rank-1 approximation procedure will compute this decomposition.

The contribution of this paper is three-fold. First, we give some sufficient condi-
tions indicating which tensors fail to have a tensor SVD. These conditions are related
to the rank, the order, and the dimensions of a tensor, hence can be viewed as gener-
alizations of results given in the literature with specific examples. Furthermore, the
existence of tensor SVD can be characterized by the diagonality of the core in the
HOSVD of the tensor. Second, we discuss a form of low rank approximations—one
that requires diagonal core and orthogonal side-matrices. Theoretically the global op-
timum of this approximation can be attained for any (appropriate) rank. We present
an iterative algorithm to compute this approximation. This algorithm can directly
be applied to symmetric tensors, whose approximation requires the side-matrices for
all modes be the same. Third, the proposed approximation at the maximally possible
rank can be equivalently transformed to a decomposition of the tensor, where the
diagonal of the core is maximized. This ‘maximal diagonality’ for symmetric order-3
tensors has been previously investigated in [6] and [23], but our discussion is in a more
general context.

2. Tensor Algebra. In this section, we briefly review some concepts and notions
that are used throughout the paper. A tensor is a multidimensional array of data
whose elements are referred by using multiple indices. The number of indices required
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is called the order of a tensor. We use

A = (ai1,i2,...,iN
) ∈ R

d1×d2×···×dN

to denote a tensor A of order N . For n = 1, 2, . . . , N , dn is the n-th dimension of
A. A vector is an order-1 tensor and a matrix is an order-2 tensor. The following
illustrates an order-3 tensor, whose first and second indices vary from top to bottom
and from left to right (same convention as for a matrix), and the third index varies
from front to back:

T =
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Unfolding and mode-n products. It is hard to visualize tensors of order N > 3.
They can be flexibly represented when ‘unfolded’ into matrices. The unfolding of a
tensor along mode n is a matrix of dimension dn×(dn+1 · · · dNd1 · · · dn−1). We denote
the mode-n unfolding of tensor A by A(n). Each column of A(n) is a column of A
along the n-th mode. For the above example tensor T , the three mode-n unfoldings
are

T(1) =

[

1 3 5 7
2 4 6 8

]

,

T(2) =

[

1 5 2 6
3 7 4 8

]

,

T(3) =

[

1 2 3 4
5 6 7 8

]

.

An important operation for a tensor is the tensor-matrix multiplication, also
known as mode-n product. Given a tensor A ∈ R

d1×d2×···×dN and a matrix M ∈
R

cn×dn , the mode-n product is a tensor

B = A⊗n M ∈ R
d1×···×dn−1×cn×dn+1···×dN

where

bi1,...,in−1,jn,in+1,...,iN
:=

dn
∑

in=1

ai1,...,in−1,in,in+1,...,iN
mjn,in

for jn = 1, 2, . . . , cn. In matrix representation, this is

B(n) = MA(n). (2.1)

Two notable properties of tensor-matrix multiplication are:
(i) For m 6= n, and matrices F and G of appropriate dimensions,

(A⊗n F )⊗m G = (A⊗m G)⊗n F.

(ii) For any n, and for matrices F and G of appropriate dimensions,

(A⊗n F )⊗n G = A⊗n (GF ).

Since for a general n, the mode-n product of two matrices is not defined, we can safely
omit the parentheses and write (A⊗n F )⊗m G as A⊗n F ⊗m G.



4 J. CHEN AND Y. SAAD

Inner products and tensor norm. The inner product of two tensors A and B of
the same shape is defined by

〈A,B〉F :=

dN
∑

iN=1

· · ·
d1
∑

i1=1

ai1,...,iN
bi1,...,iN

.

and the norm induced from this inner product is

‖A‖F :=
√

〈A,A〉F .

We say that A is a unit tensor if ‖A‖F = 1. When N = 2, A is a matrix, and ‖A‖F
is its Frobenius norm. The norm of a tensor is equal to the Frobenius norm of the
unfolding of the tensor along any mode:

‖A‖F =
∥

∥A(n)

∥

∥

F
, for n = 1, . . . , N.

From the matrix representation of mode-n products (c.f. equation (2.1)), one can
easily verify two properties of the tensor norm:
Orthogonal invariance: For any orthogonal matrix Q ∈ R

cn×dn (cn ≥ dn),

‖A‖F = ‖A ⊗n Q‖F .

Consistency: For any matrix M ∈ R
cn×dn ,

‖A ⊗n M‖F ≤ ‖A‖F ‖M‖F .

Outer product tensors. The outer product of N (column) vectors generalizes stan-
dard outer product of two vectors. The outer product of N (column) vectors xn ∈ R

dn ,
is a tensor of dimension d1 × d2 × · · · × dN which is expressed as

X = x1 ⊗ x2 ⊗ · · · ⊗ xN ,

and whose (i1, i2, . . . , iN )-entry is
∏N

n=1(xn)in
, where (v)j denotes the j-th entry of

vector v. It can be verified that the mode-n product of an outer product tensor X
with a matrix M can be computed as follows:

X ⊗n M = x1 ⊗ · · · ⊗ xn−1 ⊗ (Mxn)⊗ xn+1 · · · ⊗ xN ,

and that the inner product of X with a general tensor A is

〈A,X〉F = 〈A, x1 ⊗ x2 ⊗ · · · ⊗ xN 〉F
= A⊗1 xT

1 ⊗2 xT
2 ⊗ · · · ⊗N xT

N .

Let U = u1 ⊗ u2 ⊗ · · · ⊗ uN and V = v1 ⊗ v2 ⊗ · · · ⊗ vN where un, vn ∈ R
dn for

n = 1, 2, . . . , N . Then

〈U ,V〉F =

N
∏

n=1

〈un, vn〉 ,

where 〈·, ·〉 denotes the standard Euclidean inner product of two vectors. A conse-
quence of the above relation is that ‖U‖F is the product of the 2-norms of the vectors
un.
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Orthogonality of tensors. Two tensorsA and B of the same shape are F-orthogonal
(Frobenius orthogonal) if their inner product is zero, i.e.,

〈A,B〉F = 0.

For outer product tensors U = u1 ⊗ u2 ⊗ · · · ⊗ uN and V = v1 ⊗ v2 ⊗ · · · ⊗ vN , the
above definition implies that they are F-orthogonal if

N
∏

n=1

〈un, vn〉 = 0.

This leads to other options for defining orthogonality of two outer products. The
paper [17] discussed two cases:

1. Complete orthogonality: 〈un, vn〉 = 0 for all n = 1, . . . , N .
2. Strong orthogonality: For all n, either 〈un, vn〉 = 0 or un and vn are collinear,

but there is at least one l such that 〈ul, vl〉 = 0.
In this paper we will simply use the term orthogonal for two outer products that are
completely orthogonal.

Tensor decompositions. A decomposition of tensor A ∈ R
d1×d2×···×dN is of the

form

A = B ⊗1 S1 ⊗2 S2 ⊗ · · · ⊗N SN ,

where B ∈ R
c1×c2×···×cN is called the core tensor, and Sn ∈ R

dn×cn for n = 1, . . . , N

are called side-matrices. Let Sn =
[

s
(1)
n , s

(2)
n , . . . , s

(cn)
n

]

for all n, then the decomposi-

tion of A can equivalently be written as a sum of a series of outer product tensors:

A =

cN
∑

iN=1

· · ·
c1

∑

i1=1

bi1,i2,...,iN
s
(i1)
1 ⊗ s

(i2)
2 ⊗ · · · ⊗ s

(iN )
N . (2.2)

In particular, if B is diagonal, i.e., bi1,i2,...,iN
= 0 except when i1 = i2 = · · · = iN ,

then

A =
r

∑

i=1

bii...is
(i)
1 ⊗ s

(i)
2 ⊗ · · · ⊗ s

(i)
N (2.3)

where r = min{c1, . . . , cN}.
In the tensor analysis literature, the term ‘decomposition’ is often used when ‘ap-

proximation’ is meant instead. The Tucker3 decomposition (more commonly termed
Tucker3 model) is an approximation in the form of the right-hand side of (2.2), for
given dimensions c1, c2, . . . , cN . Usually, it is required that cn < rankn(A) for all n,
otherwise the problem is trivial. The HOOI approach computes this approximation
with an additional property that all the Sn’s are orthogonal matrices. The PARAFAC
decomposition (more commonly termed PARAFAC model) is an approximation in the
form of the right-hand side of (2.3), for a pre-specified r. Usually, r is smaller than
the smallest dimension of all modes of A, although requiring a larger r is also possible
in the ALS algorithm. As will be discussed in the next section, the smallest r that sat-
isfies equality (2.3) is the rank of the tensor A. Other types of approximations have
also been proposed. Non-negative tensor factorization (NTF), which requires that
all the elements on the right-hand side of (2.2) or (2.3) are non-negative, has been
studied in [37, 30, 16]. In general, gradient approaches are employed to compute the
approximations, similar to the techniques used for non-negative matrix factorization
(NMF).



6 J. CHEN AND Y. SAAD

3. Tensor Ranks. The rank of a tensor causes difficulties when attempting
to generalize matrix properties to higher order tensors. There are several possible
generalizations of the notion of rank. The n-rank of a tensor A, for n = 1, . . . , N ,
denoted by rankn(A), is the rank of the unfolding A(n):

rankn(A) := rank(A(n)).

The (outer-product) rank of A, denoted rank(A), is defined as

rank(A) := min

{

r

∣

∣

∣

∣

∣

∃ x
(i)
1 , . . . , x

(i)
N , i = 1, . . . , r, s.t. A =

r
∑

i=1

x
(i)
1 ⊗ x

(i)
2 ⊗ · · · ⊗ x

(i)
N

}

.

Hence, an outer product tensor has rank one, and the rank of a tensor A is the
minimum number of rank-1 tensors that can sum up to A.

There are a few notable differences between the notion of rank for matrices and
for higher order tensors:

1. For N = 2, i.e., when A is a matrix, rank1(A) is the row rank, rank2(A)
is the column rank, and rank(A) is the outer-product rank, and they are all equal.
However, for higher order tensors (N > 2), in general, the n-ranks are different for
different modes n, and they are different from rank(A). Furthermore, the rank of a
matrix A can not be larger than the smallest dimension of both modes of A, but for
tensors this is no longer true, i.e., the rank can be larger than the smallest dimension
of the tensor.

2. The matrix SVD yields one possible way of writing a matrix as a sum of
outer-product terms, and the number of nonzero singular values is equal to the rank
of the matrix. However, a tensor SVD does not always exist (c.f. Section 5), but if
it indeed does, it is unique up to signs [27, 38] and the number of singular values is
equal to the rank of the tensor.

3. It is well-known that the optimal rank-r approximation of a matrix is simply
its truncated SVD. However some tensors may fail to have an optimal rank-r approx-
imation. If such an approximation exists, it is unclear whether it can be written in
the form of a diagonal core tensor multiplied by orthogonal side-matrices.

Next are some rank lemmas, which were also given in [31]. These lemmas are
helpful in understanding various tensor rank related issues. The first lemma indicates
that the rank of a tensor can not be smaller than any of its n-ranks:

Lemma 3.1. Let A ∈ R
d1×d2×···×dN be an order-N tensor. Then

rankn(A) ≤ min{rank(A), dn}, for n = 1, 2, . . . , N.

The next lemma illustrates a way to construct higher order tensors while preserv-
ing the rank. For this we need to define tensor products of tensors. The tensor product
of an order-N tensor A ∈ R

d1×d2×···×dN and an order-N ′ tensor B ∈ R
c1×c2×···×cN′ is

an order-(N + N ′) tensor

C = A⊗ B ∈ R
d1×···×dN×c1×···×cN′ ,

where

ci1,...,iN ,j1,...,jN′
:= ai1,...,iN

bj1,...,jN′
.

The notation ⊗ used here is consistent with that for outer products.
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Lemma 3.2. Let A be a tensor and x be a non-zero vector. Then

rank(A) = rank(A⊗ x).

The following lemma indicates that given any dimension d1 × d2 × · · · × dN , we
can construct a tensor of arbitrary rank R ≤ min{d1, d2, . . . , dN}.

Lemma 3.3. For n = 1, . . . , N , let x
(1)
n , . . . , x

(R)
n ∈ R

dn be linearly independent.
Then the tensor

A =
R

∑

i=1

x
(i)
1 ⊗ x

(i)
2 ⊗ · · · ⊗ x

(i)
N

has rank R.
The direct sum of two tensors A ∈ R

d1×d2×···×dN and B ∈ R
c1×c2×···×cN of the

same order is defined as the tensor

C = A⊕ B ∈ R
(d1+c1)×(d2+c2)×···×(dN+cN ),

where

ci1,...,iN
:=











ai1,...,iN
if in ≤ dn for all n = 1, . . . , N ;

bi1−d1,...,iN−dN
if in > dn for all n = 1, . . . , N ;

0 otherwise.

JáJá and Takche [14] showed that if A and B are order-3 tensors and at least one of
them is a ‘stack’ of two matrices, then the rank of their direct sum is equal to the
sum of their ranks.

Theorem 3.4 (JáJá–Takche). Let A ∈ R
d1×d2×d3 and B ∈ R

c1×c2×c3 . If 2 ∈
{d1, d2, d3, c1, c2, c3}, then

rank(A⊕ B) = rank(A) + rank(B).

4. Ill-Posedness of the Optimal Low Rank Approximation Problem.
Silva and Lim [31] proved that for any order N ≥ 3 and dimensions d1, . . . , dN ≥ 2,
there exists a rank-(r + 1) tensor that has no optimal rank-r approximation, for any
r = 2, . . . ,min{d1, . . . , dN}. This result was further generalized to an arbitrary rank
gap, i.e., there exists a rank-(r + s) tensor that has no optimal rank-r approximation,
for some r’s and s’s.

Essentially, this ill-posedness of the optimal approximation problem is illustrated
by the fact that the tensor

E :=

1 0

0

�
�

�
�

1

�
�

�
�

0 0

1

�
�

�
�

0

�
�

�
�
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has rank 3 but can be approximated arbitrarily closely by rank-at-most-2 tensors.
Hence E does not have an optimal rank-2 approximation. Then according to the
result of JáJá and Takche and to Lemma 3.2, the ill-posedness of the problem can be
generalized to arbitrary rank and order, by constructing higher rank and higher order
tensors using direct sums and tensor products. We restate one of the results of [31]
in the following theorem. For details of the proof, see the original paper.

Theorem 4.1. For N ≥ 3 and d1, d2, . . . , dN ≥ 2, there exists a tensor A ∈
R

d1×d2×···×dN of rank r + s that has no optimal rank-r approximation, for any r and
s ≥ 1 satisfying 2s ≤ r ≤ min{d1, d2, . . . , dN}.

5. Tensor SVD and its (Non)Existence. The definition used for the singular
value decomposition of a tensor generalizes the matrix SVD from the angle of an
expansion of outer product matrices, which becomes an expansion into a sum of high
order outer product tensors.

Definition 5.1. If a tensor A ∈ R
d1×d2×···×dN can be written in the form

A =

R
∑

i=1

σiu
(i)
1 ⊗ u

(i)
2 ⊗ · · · ⊗ u

(i)
N , (5.1)

where σ1 ≥ σ2 ≥ · · · ≥ σR > 0 and
〈

u
(j)
n , u

(k)
n

〉

= δjk for n = 1, 2, . . . , N , then (5.1)

is said to be the tensor singular value decomposition (tensor SVD) of A. The σi’s are

singular values and the u
(i)
n ’s for i = 1, . . . , R are the mode-n singular vectors.

We also call (5.1) the SVD of tensor A for short where there is no ambiguity
about tensors and matrices. Expression (5.1) can equivalently be written in the form

A = D ⊗1 U1 ⊗2 U2 ⊗ · · · ⊗N UN , (5.2)

where D ∈ R
R×R×···×R is the diagonal core tensor with Dii...i = σi, and

Un =
[

u(1)
n , u(2)

n , . . . , u(R)
n

]

∈ R
dn×R (5.3)

are orthogonal matrices for n = 1, 2, . . . , N .
Trivially, if a tensor is constructed as in (5.1), its SVD exists. However, in general,

a tensor of order N ≥ 3 may fail to have such a decomposition. In this section, we
identify some of these situations.

To begin with, note that the orthogonality requirement of the side-matrices
Un’s and Lemma 3.3 imply that the tensor on the right-hand side of (5.1) has
rank R. Also, the orthogonality of each Ui implies that R ≤ dn for each n, i.e.,
R ≤ min{d1, d2, . . . , dN}. This leads to the following simple result.

Proposition 5.2. A tensor A ∈ R
d1×d2×···×dN with rank(A) > min{d1, d2, . . . , dN}

does not admit a tensor SVD.
Proof. The existence of a tensor SVD such as in (5.1) would trivially lead to a

contradiction since the tensor in (5.1) has rank R with R ≤ min{d1, d2 · · · , dN}.
Note that Theorem 4.1 guarantees that the condition of Proposition 5.2 is not

vacuously satisfied, for any order N ≥ 3 and dimensions d1, d2, . . . , dN ≥ 2.
Corollary 5.3. Given a tensor A satisfying the condition in Proposition 5.2,

any tensor of the form

A⊗ xN+1 ⊗ · · · ⊗ xN+l,

where l ≥ 1 and xN+1, . . . , xN+l are nonzero vectors, does not admit a tensor SVD.
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Proof. This follows from Proposition 5.2 and Lemma 3.2.
Corollary 5.4. A tensor A ∈ R

d1×d2×···×dN does not admit a tensor SVD if
there exists at least one mode n such that rankn(A) > min{d1, d2, . . . , dN}.

Proof. This follows from Proposition 5.2 and Lemma 3.1.
Proposition 5.5. There exists a tensor A ∈ R

d1×d2×···×dN which does not admit
a tensor SVD whenever

d := max
n
{dn} > min

n
{dn} and d2 ≤

N
∏

n=1

dn.

Proof. Without loss of generality, assume that d = d1 ≥ d2 ≥ · · · ≥ dN and let
d′ = d2×· · ·×dN . Since d ≤ d′, for an arbitrary set of orthonormal vectors {ai ∈ R

d′ |
i = 1, . . . , d}, we can construct a tensor A whose unfolding A(1) = [a1, a2, . . . , ad]

T .
Then rank1(A) = d. By Corollary 5.4, A does not admit an SVD.

Note that when N = 2, i.e., for the matrix case, it is impossible for d1 and d2 to
satisfy the condition in the proposition.

In closing this section, we provide a necessary and sufficient condition to charac-
terize the existence of the tensor SVD. This is related to the HOSVD proposed by [24].
The essential relation underlying the theorem is that the mode-n singular vectors of
A, whose SVD exists, are also the left singular vectors of the unfolding A(n).

Theorem 5.6. A tensor A admits an SVD if and only if there exists an HOSVD
of A such that the core is diagonal.

Proof. The sufficient condition is obvious. Consider the necessary condition. If
A can be written in the form (5.1), define the tensor

W(i)
n := u

(i)
n+1 ⊗ · · · ⊗ u

(i)
N ⊗ u

(i)
1 ⊗ · · · ⊗ u

(i)
n−1,

and let w
(i)
n be the vectorization of W(i)

n . Then the unfolding of A along mode n is

A(n) =
R

∑

i=1

σiu
(i)
n ⊗ w(i)

n .

Since
〈

u
(j)
n , u

(k)
n

〉

= δjk for all n, we have
〈

w
(j)
n , w

(k)
n

〉

= δjk. Hence the above form

is the SVD of matrix A(n). In other words, the vectors u
(1)
n , . . . , u

(R)
n are the left

singular vectors of A(n). From the construction of the HOSVD, expression (5.2) is a
valid HOSVD for A.

Due to the non-uniqueness of the matrix SVD, the HOSVD of a tensor may not
be unique. Hence even if a tensor is constructed as in (5.1), its HOSVD will not
necessarily recover this form.

6. Optimal Low Rank Orthogonal Approximation. The problem addressed
by tensor analysis is to approximate some tensor A by a sum of simpler tensors
T1, T2, . . . , Tr. For this it is desirable to minimize

∥

∥

∥

∥

∥

A−
r

∑

i=1

σiTi

∥

∥

∥

∥

∥

F

for a given r. Without loss of generality, we assume that ‖Ti‖F = 1 for all i. As
discussed in Section 4, if the Ti’s are outer product tensors, the infimum of the above
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expression might not necessarily be attained. The following proposition reveals some
properties when the infimum is indeed achieved.

Proposition 6.1. Given a tensor A and an integer r, consider a set of linear
combinations of tensors of the form

T =

r
∑

i=1

σiTi (6.1)

where the Ti’s are arbitrary unit tensors. If inf ‖A − T ‖F is reached on this set, then
for the optimal T and Ti’s,

〈A − T , Ti〉F = 0 for i = 1, 2, . . . , r.

Furthermore, if the Ti’s are required to be mutually F-orthogonal, then the optimal
σi’s are related to the optimal Ti’s by

σi = 〈A, Ti〉F for i = 1, 2, . . . , r. (6.2)

In this situation,

‖T ‖F =
√

∑r
i=1σ

2
i . and ‖A − T ‖2F = ‖A‖2F − ‖T ‖

2
F . (6.3)

Proof. If the infimum is attained by a certain set of σi’s and Ti’s, and there is a
j such that 〈A − T , Tj〉F = ǫ 6= 0, then

‖A −∑r
i=1σiTi − ǫTj‖2F

= ‖A −∑r
i=1σiTi‖2F − 2ǫ 〈A −∑r

i=1σiTi, Tj〉F + ǫ2 ‖Tj‖2F
= ‖A −∑r

i=1σiTi‖2F − ǫ2 < ‖A −∑r
i=1σiTi‖2F ,

which contradicts the assumption.
If the unit tensors Ti’s are mutually F-orthogonal, then

0 = 〈A −
∑r

i=1σiTi, Tj〉F = 〈A, Tj〉F − σj 〈Tj , Tj〉F = 〈A, Tj〉F − σj .

and
∥

∥

∥

∥

∥

A−
r

∑

i=1

σiTi

∥

∥

∥

∥

∥

2

F

= ‖A‖2F−
r

∑

i=1

2σi 〈A, Ti〉F +

r
∑

i=1

σ2
i = ‖A‖2F−

r
∑

i=1

σ2
i = ‖A‖2F−‖T ‖

2
F .

The last part of the proof indicates that the equalities in (6.3) follow from the
orthogonality of the Ti’s and the relations (6.2). They do not require optimality.

In this section, we will see that if the Ti’s are orthogonal outer product tensors,
then the infimum in the proposition can be attained. Note that in this situation, the
approximation T has rank r. Formally, we will prove that the problem

min E =

∥

∥

∥

∥

∥

A−
r

∑

i=1

σiu
(i)
1 ⊗ u

(i)
2 ⊗ · · · ⊗ u

(i)
N

∥

∥

∥

∥

∥

F

s.t.
〈

u(j)
n , u(k)

n

〉

= δjk, for n = 1, 2, . . . , N,

(6.4)

always has a solution for any A ∈ R
d1×d2×···×dN and any r ≤ min{d1, d2, . . . , dN}.

The solution for the case r = min{d1, d2, . . . , dN} leads to a decomposition of A where
the diagonal of the core is maximized.
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6.1. Existence of the Global Optimum. Let

Ti := u
(i)
1 ⊗ u

(i)
2 ⊗ · · · ⊗ u

(i)
N , for i = 1, . . . , r, (6.5)

and σi’s defined as in (6.2), then according to Proposition 6.1 (see comment following
the proof),

E2 =

∥

∥

∥

∥

∥

A−
r

∑

i=1

σiTi

∥

∥

∥

∥

∥

2

F

= ‖A‖2F −
r

∑

i=1

σ2
i .

Hence minimizing E is equivalent to maximizing
∑r

i=1 σ2
i , i.e., the optimization prob-

lem (6.4) is equivalent to the following:

max E′ =

r
∑

i=1

(

A⊗1 u
(i)
1

T
⊗2 u

(i)
2

T
⊗ · · · ⊗N u

(i)
N

T
)2

s.t.
〈

u(j)
n , u(k)

n

〉

= δjk, for n = 1, 2, . . . , N.

(6.6)

Let

Un =
[

u(1)
n , u(2)

n , . . . , u(r)
n

]

∈ Ωn (6.7)

where

Ωn := {Wn ∈ R
dn×r |WT

n Wn = I} (6.8)

for n = 1, 2, . . . , N . The problem (6.6) can be interpreted as that of maximizing E′

within the feasible region

Ω := Ω1 × Ω2 × · · · × ΩN . (6.9)

Since for each n the set Ωn is compact (see, e.g., [13, p. 69]), by Tychonoff Theorem,
the feasible region Ω is compact. Under the continuous mapping E′, the image E′(Ω)
is also compact. Hence it has a maximum. This proves the following theorem:

Theorem 6.2. There exists a solution to the problem (6.6) (or equivalently (6.4)
with σi defined in (6.2)) for any r ≤ min{d1, d2, . . . , dN}.

6.2. Relation to Tensor Decomposition. Let Un, n = 1, . . . , N be the so-
lution to the problem (6.4) with r = min{d1, d2, . . . , dN} and σi be defined in (6.2).
Also for n = 1, . . . , N , let U⊥

n be a dn × (dn − r) matrix such that the square matrix

Ũn := [Un, U⊥
n ] ∈ R

dn×dn (6.10)

is orthogonal. Further, let the tensor

S := A⊗1 ŨT
1 ⊗2 ŨT

2 ⊗ · · · ⊗N ŨT
N ∈ R

d1×d2×···×dN . (6.11)

Then the equality

A = S ⊗1 Ũ1 ⊗2 Ũ2 ⊗ · · · ⊗N ŨN (6.12)

holds. This decomposition of A has the following two properties:
(i) The side-matrices Ũn are orthogonal for all n.
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(ii) The (squared) norm of the diagonal of the core S:

min{d1,...,dN}
∑

i=1

S2
ii...i =

r
∑

i=1

(

A⊗1 u
(i)
1

T
⊗2 u

(i)
2

T
⊗ · · · ⊗N u

(i)
N

T
)2

=
r

∑

i=1

σ2
i

is maximized among all the choices of the orthogonal side-matrices. This is known as
maximal diagonality in [24].

6.3. First Order Condition. The Lagrangian of (6.6) is

L =

r
∑

i=1

σ2
i −

r
∑

j,k=1

N
∑

n=1

µj,k
n

(〈

u(j)
n , u(k)

n

〉

− δjk

)

, (6.13)

where

σi = A⊗1 u
(i)
1

T
⊗2 u

(i)
2

T
⊗ · · · ⊗N u

(i)
N

T
(6.14)

and the µj,k
n ’s are Lagrange multipliers. Define the vector

v(i)
n := A⊗1 u

(i)
1

T
⊗ · · · ⊗n−1 u

(i)
n−1

T
⊗n+1 u

(i)
n+1

T
⊗ · · · ⊗N u

(i)
N

T

∈ R
1×···×1×dn×1···×1.

(6.15)

(Here we abuse the use of notation ‘=’. More precisely, v
(i)
n should be the mode-n

unfolding of the tensor on the right-hand side of (6.15).) It is not hard to see that
〈

u
(i)
n , v

(i)
n

〉

= σi for all n and i, and v
(i)
n is the partial derivative of σi with respect to

u
(i)
n .

The partial derivative of the Lagrangian with respect to u
(i)
n is

∂L

∂u
(i)
n

= 2σiv
(i)
n −

r
∑

j=1

µj,i
n u(j)

n −
r

∑

k=1

µi,k
n u(k)

n ,

for any n and i. By setting the partial derivatives to 0 and putting all equations
related to the same n in matrix form, we obtain the following equations:

[

v
(1)
n · · · v

(r)
n

]







σ1

. . .

σr






=

[

u
(1)
n · · · u

(r)
n

]









µ1,1
n +µ1,1

n

2 · · · µ1,r
n +µr,1

n

2
...

. . .
...

µr,1
n +µ1,r

n

2 · · · µr,r
n +µr,r

n

2









,

(6.16)
for all n = 1, 2, . . . , N . Let

Vn :=
[

v(1)
n , v(2)

n , . . . , v(r)
n

]

, (6.17)

Σ := diag(σ1, . . . , σr), (6.18)

and let Mn be the second term on the right-hand side of (6.16). Then (6.16) is
compactly represented as

VnΣ = UnMn, n = 1, 2, . . . , N. (6.19)
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In summary, the necessary condition of an extremum of the Lagrangian is the equa-
tion (6.19), where Vn is defined in (6.17), Σ is defined in (6.18), Un is defined in (6.7),
and Mn is symmetric, for all n = 1, 2, . . . , N .

We do not consider the Hessian (second order condition), since the feasible region
Ω is a subset of the bounded sphere S(d1+···+dN )×r−1 with radius

√
Nr, where there

does not exist any feasible search direction for any point.

6.4. Algorithm. We seek orthogonal matrices Un’s and symmetric matrices
Mn’s which satisfy the system (6.19). (The Σ and Vn matrices are computed from the
Un’s.) Note that the pair Un,Mn happens to be the polar decomposition of the matrix
VnΣ. Hence the system can be solved in an iterative fashion: We begin with an initial
guess of the set of orthogonal matrices {U1, U2, . . . , UN}, which can be obtained, say,
by HOSVD. For each n, we compute Vn and Σ, and update Un as an orthogonal polar
factor of VnΣ. This procedure is iterated until convergence is observed. Algorithm 1
(LROAT) summarizes this idea.

Algorithm 1 Low Rank Orthogonal Approximation of Tensors (LROAT)

Input: Tensor A, rank r, orthogonal matrices U1, . . . , UN as initial guess
Output: σ1, . . . , σr, U1, . . . , UN

1: repeat
2: for n← 1, . . . , N do

3: Compute Vn =
[

v
(1)
n , . . . , v

(r)
n

]

according to (6.15)

4: Compute Σ = diag(σ1, . . . , σr) according to (6.14)
5: [Qn,Hn]← polar-decomp(VnΣ)
6: Update Un ← Qn

7: end for
8: until convergence

6.5. Convergence. Algorithm 1 employs an alternating procedure (iterating
through U1, U2, . . . , UN ), where in each step all but one (Un) parameters are fixed.
In general, algorithms of this type, including alternating least squares, are not guar-
anteed to converge. Specifically, the objective function may converge but not the
parameters. (See, for example, [20] for some discussion.) For Algorithm 1, we are
also unable yet to prove global convergence, though empirically it appears to hold.
However, in the sequel, we will prove that: (1) The iterations monotonically increase
the objective value E′ (Theorem 6.4); (2) Under a mild condition, of the generated
parameter sequence, every converging subsequence converges to a stationary point of
the objective function (Theorem 6.7); and (3) In a neighborhood of a local maximum,
the parameter sequence converges to this stationary point (Theorem 6.9).

Before analyzing the convergence behavior of Algorithm 1, we index all the iter-
ates. The outer-loop is indexed by p and the overall iterations are indexed by idx,
which is equal to n + (p − 1)N . In other words, the above algorithm is rewritten as
follows.

for p← 1, 2, . . . do
for n← 1, . . . , N do

idx = n + (p− 1)N

For all i, compute σ
(idx)
i according to U

(p+1)
1 , . . . , U

(p+1)
n−1 , U

(p)
n , U

(p)
n+1, . . . , U

(p)
N
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Objective E′(idx) =
∑r

i=1

(

σ
(idx)
i

)2

Compute V
(p)
n from U

(p+1)
1 , . . . , U

(p+1)
n−1 , U

(p)
n+1, . . . , U

(p)
N

Σ(idx) = diag
(

σ
(idx)
1 , . . . , σ

(idx)
r

)

Polar decomposition V
(p)
n Σ(idx) = Q

(p)
n H

(p)
n

Update U
(p+1)
n = Q

(p)
n

end for
end for

The following lemma, which is well-known when the matrix A is square, reveals
the trace maximizing property that is important for the convergence analysis of Al-
gorithm 1.

Lemma 6.3. Let matrix A ∈ R
m×n, m ≥ n, have polar decomposition A = QH

where Q ∈ R
m×n is the orthogonal polar factor and H ∈ R

n×n is the symmetric
positive semi-definite factor, then

max
P∈Rm×n, P T P=I

tr(PT A)

is attained when P = Q.
Proof. Any P can be written as ZQ, where Z ∈ R

m×m is orthogonal. Then

tr(PT A) = tr(QT ZT QH) = tr(ZT QHQT ).

Since QHQT is symmetric positive semi-definite, max tr(ZT QHQT ) is attained when
Z = I.

Since U
(p+1)
n is the orthogonal polar factor of V

(p)
n Σ(idx), by Lemma 6.3,

r
∑

i=1

(

σ
(idx)
i

)2

= tr
(

U (p)
n

T
V (p)

n Σ(idx)
)

≤ tr
(

U (p+1)
n

T
V (p)

n Σ(idx)
)

=

r
∑

i=1

σ
(idx+1)
i σ

(idx)
i .

Then by the Cauchy-Schwarz inequality,

r
∑

i=1

(

σ
(idx)
i

)2

≤
r

∑

i=1

σ
(idx+1)
i σ

(idx)
i ≤

r
∑

i=1

(

σ
(idx+1)
i

)2

, (6.20)

and

r
∑

i=1

(

σ
(idx)
i

)2

=

r
∑

i=1

(

σ
(idx+1)
i

)2

iff σ
(idx)
i = σ

(idx+1)
i for all i. (6.21)

Inequality (6.20) means that each update of Un increases the value of the objective
function E′, i.e.,

E′(idx) ≤ E′(idx+1).

Since E′ is bounded from above (existence of the maximum, c.f. Theorem 6.2), the
sequence {E′(idx)}∞idx=1 converges. Note that the convergence does not depend on
the initial guess input to the algorithm. Formally, we have established the following
theorem:

Theorem 6.4. Given any initial guess, the iterations of Algorithm 1 monotoni-
cally increase the objective function E′ defined in (6.6) to a limit.
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The convergence of the objective function does not necessarily imply that the
function parameters will converge. However, in our case since the parameters Un’s
are bounded, they admit converging subsequences. Next we will show that every such
subsequence converges to a stationary point of E′. For this, the following lemma uses
a helper function f .

Lemma 6.5. Let T : Θ → Θ be a continuous mapping and a sequence {θn ∈
Θ}∞n=1 be generated from the fixed point iteration θn+1 = T (θn). If there exists a
continuous function f : Θ→ R satisfying the following two conditions:

(i) The sequence {f(θn)}∞n=1 converges;
(ii) For θ ∈ Θ, if f(T (θ)) = f(θ) then T (θ) = θ;

then every converging subsequence of {θn}∞n=1 converges to a fixed point of T .
Proof. Let {θsn

}∞n=1 be a converging subsequence of {θn}∞n=1, where θsn
→ θ∗.

Also let f∗ be the limit of f(θn). Then f(θsn
) → f(θ∗), therefore f(θ∗) = f∗.

Meanwhile from the continuity of T and f , we have T (θsn
)→ T (θ∗) and f(θsn+1) =

f(T (θsn
))→ f(T (θ∗)), which implies that f(T (θ∗)) = f∗. Condition (ii) of the lemma

now implies that θ∗ = T (θ∗).
Our objective function E′ is just one such helper function f , and the orthogonal

polar factor function plays the role of the mapping T in the above lemma. The follow-
ing lemma establishes the fact that the orthogonal polar factor function is continuous.

Lemma 6.6. The orthogonal polar factor function g : A → Q defined on the set
of matrices with full column rank is continuous. Here Q is the orthogonal polar factor
of A ∈ R

m×n, m ≥ n.
Proof. First, function g is well defined, since the orthogonal polar factor of a full

rank matrix exists and is unique [12]. If Q and Q′ are the orthogonal polar factors of
A and A′, respectively, Sun and Chen [33] have shown that

‖Q−Q′‖F ≤
2

‖A+‖2
‖A−A′‖F ,

where + means pseudo inverse. Hence if A1, A2, . . . converges to A∗, then g(A1), g(A2), . . .
converges to g(A∗).

Now we are ready to prove the following result.

Theorem 6.7. Every converging subsequence of {U (p)
1 , . . . , U

(p)
N }∞p=1 generated

by Algorithm 1 converges to a stationary point of the objective function E′ defined
in (6.6), provided the matrices Vn in line 3 of the algorithm do not become rank-
deficient throughout the iterations.

Proof. For convenience, let U denote the side-by-side concatenation of the Un

matrices, i.e., at iteration number p we write U (p) =
[

U
(p)
1 , . . . , U

(p)
N

]

. For each

iteration, V
(p)
n Σ(idx) is computed from U (p) and polar factorized, and U

(p)
n is updated.

Let T be the composite of all these iterations running n from 1 to N . That is,
U (p+1) = T (U (p)). It is not hard to see that T is continuous by Lemma 6.6. The
objective function E′ taking parameter U (p) has been previously shown such that the
sequence {E′(U (p))}∞p=1 is monotonically converging.

Hence by Lemma 6.5, in order to prove this theorem, it will suffice to show
that E′(T (U)) = E′(U) implies T (U) = U . Then every converging subsequence
of {E′(U (p))}∞p=1 converges to a fixed point, which satisfies the first order condi-
tion (6.19), i.e., it is also a stationary point of E′.

If E′(T (U)) = E′(U), formula (6.21) indicates that the σi values have not changed
after the iteration. In particular, for any n, the update of Un has not changed
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tr
(

UT
n VnΣ

)

. Since orthogonal polar factor of VnΣ is unique when Vn is not rank-
deficient, this means that Un has not changed. This in turn means that U is a fixed
point of the mapping T .

The condition in the theorem is not a strong requirement in general. Of course,

the columns v
(i)
n of the matrix Vn, as computed from (6.15), will be linearly dependent

if the n-rank of A is less than r. For practical applications, the tensor usually has full
n-ranks for all n, so this does hamper the applicability of the theorem.

Though the global convergence of the Un matrices is not determined, when local-
ized, it is possible that this parameter sequence converges. The following lemma and
theorem consider this situation.

Lemma 6.8. If a sequence {θn}∞n=1 is bounded, and all of its converging subse-
quences converge to θ∗, then θn → θ∗.

Proof. (By contradiction.) If {θn}∞n=1 does not converge to θ∗, then there is an
ǫ > 0 such that there exists a subsequence S = {θsn

}∞n=1, where ‖θsn
− θ∗‖ ≥ ǫ for all

n. Since S is bounded, it has a converging subsequence S′. Then S′ as a subsequence
of {θn}∞n=1 converges to a limit other than θ∗.

Theorem 6.9. Let U∗ = [U∗
1 , . . . , U∗

N ] be a local maximum of the objective

function E′ defined in (6.6). If the sequence {U (p) = [U
(p)
1 , . . . , U

(p)
N ]}∞p=1 generated

by Algorithm 1 lies in a neighborhood of U∗, where U∗ is the only stationary point in
that neighborhood, and if the full rank requirement in Theorem 6.7 is satisfied, then
the sequence {U (p)}∞p=1 converges to U∗.

Proof. This immediately follows from Theorem 6.7 and Lemma 6.8.
Note that since the starting elements of a sequence have no effect on its conver-

gence behavior, the above theorem holds whenever the tailing subsequence, starting
from a sufficiently large p, lies within the neighborhood.

A weaker, but simpler, result is the following corollary.
Corollary 6.10. Let U∗ = [U∗

1 , . . . , U∗
N ] be a local maximum of the objective

function E′ defined in (6.6). If this local maximum is unique and if the full rank
requirement in Theorem 6.7 is satisfied, then the sequence {U (p)}∞p=1 converges to
U∗.

6.6. Symmetric Tensors. An order-N tensor A ∈ R
d×d×···×d, whose dimen-

sions of all modes are the same, is symmetric if for all permutations π,

ai1,i2,...,iN
= aiπ(1),iπ(2),...,iπ(N)

.

For symmetric tensors, usually the approximation problem (6.4) has an additional
constraint that the side-matrices Un’s are the same for all n, i.e.,

min E =

∥

∥

∥

∥

∥

A−
r

∑

i=1

σiu
(i) ⊗ u(i) ⊗ · · · ⊗ u(i)

∥

∥

∥

∥

∥

F

s.t.
〈

u(j), u(k)
〉

= δjk.

(6.22)

Applying similar arguments to those in Section 6.1, it is easily seen that (6.22) is
equivalent to the following problem:

max E′ =
r

∑

i=1

(

A⊗1 u(i)T ⊗2 u(i)T ⊗ · · · ⊗N u(i)T
)2

s.t.
〈

u(j), u(k)
〉

= δjk.

(6.23)
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The supremum of E′ can be attained. Further, the ‘maximal-diagonality’ decom-
position of A (c.f. equation (6.12)) has an additional property that the core S is
symmetric. Also, the first order condition (6.19) is simplified to

V Σ = UM.

Algorithm 1 can be directly applied to compute the approximation, except that only
a single initial guess U is needed and the for-loop on n (line 2) is omitted. The
convergence analysis (Theorems 6.4, 6.7 and 6.9) in the previous subsection also holds.

7. Numerical Experiments. This section will show a few experiments to il-
lustrate the convergence behavior of LROAT (Algorithm 1). The performance of
LROAT is compared with that of Tucker and of PARAFAC. For the latter two ap-
proximation models we use codes (with modifications) obtained from the MATLAB
Tensor Toolbox developed by Bader and Kolda [2]. We use the major left singular
vectors of unfoldings of the tensor as the initial guess input for all the algorithms
compared. When it comes to the quality of the final approximation, experience shows
that compared with random orthonormal vectors, singular vectors as initial guesses
do not offer any advantage. It has been argued that running the algorithms several
times using different sets of random initial guess enhances the probability of hitting
the global optimum. We use singular vectors here only for repeatability.

In the first experiment, we randomly generate a tensor A of dimension 20× 16×
10 × 32, and use r = 5. Figure 7.1(a) shows the norm of the approximated tensor
for each iteration. It can be seen that the norm of the approximation increases.
Indeed, the norm of initial guess of the tensor is already close to that of the final
result. Figure 7.1(b) shows the convergence behavior of the Un matrices. Since the

optima are unknown, for each n, we plot the differences of
∥

∥

∥
U

(p)
n − U

(p−1)
n

∥

∥

∥

F
for each

iteration p. The general shape of the curves seem to indicate a linear convergence for
the sequence of matrices Un.
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Fig. 7.1. Experiment 1: Convergence of LROAT for a randomly generated order-4 tensor
A ∈ R

20×16×10×32.

In the second experiment, we compute the low rank orthogonal approximation of
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a symmetric tensor A which is defined by

aijk =
1

i2 + j2 + k2
.

Remember that for symmetric tensors, there is an additional requirement that all
the side-matrices are the same. See Figure 7.2. This figure looks very similar to the
one in the previous experiment, and the order of convergence of the U matrix also
seems linear. However, by examining the slope of the curve in (b), one sees that
the convergence for symmetric tensor approximation is much faster than that of the
previous random tensor.
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(a) Norms of the approximated tensors.

0 2 4 6 8 10 12 14 16 18 20
10

−2

10
−1

10
0

10
1

Convergence of U matrix

iteration

(b) Differences of the U matrix between consec-
utive iterations.

Fig. 7.2. Experiment 2: Convergence of LROAT for a symmetric order-3 tensor A where
aijk = 1/(i2 + j2 + k2).

In the third experiment, we compare the convergence and approximation quality
of three different models: LROAT, Tucker and PARAFAC. See Figure 7.3. Subfig-
ure 7.3(a) shows the typical behavior of a random tensor while 7.3(b) is for a real-life
tensor. The latter one is obtained from a problem in acoustics [11], and the data can
be downloaded from [3]. The residual norms (fits)

fit(p) =

∥

∥A− T (p)
∥

∥

F

‖A‖F

over all the iterations p are plotted. From the figure, we see that the residual-norm
curves all monotonically decrease, and the steepest descent appears at the beginning
few iterations. Theoretically, the optimal residual norm for LROAT should be larger
than those of Tucker and PARAFAC. LROAT can be considered a special case of
Tucker where the core is full. LROAT is also a special case of PARAFAC where the
side-matrices are not restricted to be orthogonal. Hence it is not surprising to see
that the curve of LROAT is above those of Tucker and PARAFAC. Two more facts to
note are that none of these three models may yield good representation of the original
data (in (a), more than 49% of the information is lost), and PARAFAC is usually
slow to converge.
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(a) Random tensor. A ∈ R
10×30×20×15. r = 5.
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(b) Real-life tensor. A ∈ R
5×10×13. r = 3.

Fig. 7.3. Experiment 3: Comparison of LROAT, Tucker and PARAFAC.

8. Concluding Remarks. In the present paper we studied the tensor SVD, and
characterized its existence in relation to HOSVD. Similar to the concept of rank, the
SVD of high order tensors, exhibits a quite different behavior and characteristics from
those of matrices. Thus, the SVD of a matrix is guaranteed to exist, though it may
have different representations due to orthogonal transformation of singular vectors
corresponding to the same singular value. On the other hand, there are many ways
in which a tensor can fail to have an SVD (see the results in Section 5), but when it
exists, this decomposition is unique up to signs.

We have also discussed a new form of optimal low rank approximation of tensors,
where orthogonality is required. This approximation is inspired by the constraints
of Tucker and PARAFAC, and by the ill-posedness of the problem of a general low
rank approximation. In some applications, the proposed approximation model may
be favored, since it results in N sets of orthonormal vectors or, equivalently, r F-
orthogonal unit outer product tensors with different weights. Among the advantages
of this approximation over the Tucker model is the fact that it requires far fewer
entries to represent the core, and that it is easier to interpret. Also, compared with
the PARAFAC model, the orthogonality of vectors may be useful in some cases.
Further, LROAT does not seem to exhibit the well-known slow convergence from
which PARAFAC suffers.

A major restriction of the proposed model is that the number of terms r can
not exceed the smallest dimension of all modes of the tensor. A consequence is that
the approximation may still be very different from the original tensor even when
the maximum r is employed. However we note that when performing data analysis,
the interpretation of the vectors and the core tensor is more important than merely
focusing on how much is lost when the data is approximated.

A nice aspect of the proposed approximation is that theoretically the optimum
of the objective function can be achieved, in contrast to the PARAFAC model which
is ill-posed in a strict mathematical sense. We presented an algorithm to compute
this approximation, but similar to the algorithms for Tucker and PARAFAC, the
computed result is only optimal in a local neighborhood. It will be interesting to
study for what initial guesses LROAT converges to the global optimum, or to devise
a new algorithm to solve the optimization problem. It is an open problem how fast
LROAT converges, although empirically convergence is observed to be linear.
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Appendix. Does PARAFAC Converge?. It has been pointed out that
the ALS algorithm for computing the PARAFAC model may converge very slowly
due to degenerate solutions or multicollinearities, and many alternatives have been
proposed to address this problem [28, 29, 15]. During iterations, the objective value
monotonically decreases by the nature of the alternating least squares procedure, and
since the sequence is bounded, it converges. However, there lacks a rigorous proof
about the convergence of the parallel factors. In general it is assumed that these
factors converge, but may take a very large number of iterations. In this section, we
discuss an experiment showing that the general concept of convergence is unclear in
this context. Though only one example is given, we note that the exhibited behavior
is not rare for randomly generated tensors. On the other hand it may be argued that
tensors in real applications are far from being filled with random numbers.

We generate an order-3 tensor A ∈ R
3×3×3 and run the ALS algorithm on r = 2,

using e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e2 as initial guess. The Matlab code which generates
the tensor A is as follows:

A(:,:,1) = [1 2 3; 4 5 6; 7 8 9];

A(:,:,2) = [10 11 12; 13 14 15; 16 17 18];

A(:,:,3) = [19 20 21; 22 23 24; 25 26 27];
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Fig. A.1. Slow convergence or non-convergence of PARAFAC.

Two figures are plotted after running 1, 000, 000 iterations. These are shown in
Figure A.1. For each of the side-matrices U1, U2 and U3, subfigure A.1(a) shows the
norm of the differences between the matrices of two consecutive iterations. It can be
seen that the three curves decrease. A necessary condition for PARAFAC to converge
is that all these curves decrease to zero. If a curve tends to some nonzero value, this
implies that PARAFAC does not converge. We use the following expression

log10 y =
a

(10−5x)1/α
+ b

to fit the tail curve for U1 starting at the 2 × 105th iteration. Table A.1 gives some
results. When the number of iterations tends to infinity, the value 10b will show the
limit of the difference between two consecutive U1 matrices.

It is difficult to conclude from this experiment that PARAFAC does not converge
for this example since rounding has not been taken into account. However, it makes
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Table A.1
Curve fitting for different α values.

α 1 2 3 4 5
a 2.3492 2.3098 2.7013 3.1731 3.6732
b −8.3301 −8.8669 −9.4044 −9.9420 −10.4795

fit error (×10−4) 0.5550 0.2826 0.1902 0.1439 0.1162

no practical difference for this case whether the sequence actually converges or if it is
exceedingly slow to converge. The result will be an inordinate number of iterations
to reach a desirable level of convergence, and the cost will not be too high in practice.
This can be made evident by examining subfigure A.1(b), which plots the parallel

factor u
(2)
1 over all the iterations. It takes 500, 000 steps for the first entry of u

(2)
1 to

decrease from 0.5939 to 0.5912.
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