ON THE CONVERGENCE OF THE ARNOLDI PROCESS FOR
EIGENVALUE PROBLEMS

M. BELLALLJ*, Y. SAAD', AND H. SADOK?

Abstract. This paper takes another look at the convergence of the Arnoldi procedure for
solving nonsymmetric eigenvalue problems. Three different viewpoints are considered. The first uses
a bound on the distance from the eigenvector to the Krylov subspace from the smallest singular
value of matrix consisting of the Krylov basis. A second approach relies on the Schur factorization.
Finally, a third viewpoint, uses expansions in the eigenvector basis for the diagonalizable case.

1. Introduction. Projection techniques on Krylov subspaces are currently am-
ong the most important tools used to compute eigenvalues and eigenvectors of large
sparse non-Hermitian matrices. The convergence of these methods has been analyzed
in detail in the Hermitian case, but the analysis becomes much more difficult in
the non-Hermitian or non-normal case and so there are few results available in the
literature. This is in contrast with the convergence analysis of Krylov methods for
solving linear systems which received far more attention. In this paper we will examine
several approaches to the problem.

Each of these approaches utilizes a different ‘parameter’, or set of parameters,
which is (are) singled out as the main value (s) on which the analysis depends. Often
this parameter is difficult to estimate. This approach is similar to standard analyses
where there is a core expression used as a measure against which an error bound is
developed. For example, for linear systems, there has been analyses which exploit the
polynomial representation of a vector in the Krylov subspace. Thus, when solving
a linear system Ax = b, in the case when A is diagonalizable, with a matrix X of
eigenvectors, the standard bound for GMRES [13]

b— Az lla < Ko(X) mi N b— A ,
| T2 < Ko )prglgm | ax lp(M)] ] Zo |2

uses the min-max quantity on the right as a parameter which is then estimated in
certain ways. Here and throughout the paper ||v||2 denotes the 2-norm of a vector v
and for a matrix A, ||Al|2 denotes its 2-norm and k2(A) denotes its 2-norm condition
number of A. We will also denote by I the identity matrix and by ey its kth column
and assume exact arithmetic. In general, the above residual bound for GMRES is not
satisfactory because it involves the condition number of X, the matrix that diagonal-
izes A, which is not known and which can be very large. An alternative, exploited in
[14] (see also Ipsen [7]), uses as a primary indicator the (1,1) entry of the inverse of
K},;Km where K, is the matrix whose columns are the vectors of the canonical basis
of Krylov subspace.

Other ways to analyze convergence of Krylov methods have been explored. For
GMRES, one such type of analysis assumes that the field of values does not contain
the origin. With this, quite a few bounds can be found; we refer for example to
[5, 3, 4, 12]. Underlying the difficulty is the fact that the norm ||p(A)||2 is not always
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easy to estimate in the non-normal case. Yet, most bounds will rely in an implicit
way, in an estimate of the minimum of ||[p(A)v||2 over some normalized polynomials.

In the sequel we will consider three distinct approaches for analyzing the con-
vergence of the Arnoldi process. It is important to recall at the outset that, unlike
the situation for Hermitian matrices, there are no easy optimality results to be ex-
ploited. Most of our analysis will be based on estimating the distance from an exact
eigenvector from the Krylov subspace.

2. Background. Consider the eigenvalue problem: find u belonging to CV and
A belonging to C such that

Au = du, (2.1)

where the matrix A is of order N. For a given vector v € CV, the Krylov subspace
K, (A,v) is defined by

K, (A, v) = span{v, Av,..., A" 1o}, (2.2)

2.1. The Arnoldi process. The Arnoldi method computes approximate eigen-
pairs A\(™) (™) by enforcing the standard Petrov-Galerkin condition

™ € K, (A,v), (2.3)
and
(AT — XM gm) Alyy =0 for i=0,...,m—1. (2.4)

The standard way of extracting the approximate eigenpairs from the above conditions
is to resort to the Arnoldi algorithm which generates an orthonormal basis vy, ..., v,
of K,;, in which the conditions (2.4) are expressed.

ALGORITHM 2.1. Arnoldi

Input: Initial vector v, and m.

Set v = L
[0]]2
Forj=1,...mdo
Compute w := Awv;
Fori=1,...,j, do hij = (w,v;)
w = w — hi ;s
hjt1,; = llwll2; Vi1 =w/hji1
End

The outputs of the algorithm are an othonormal basis V,,, = [v1,va, ..., U] and a
Hessenberg matrix H,, whose entries are the scalars h;; generated by the procedure.
In addition, the following relations are satisfied:

1. AVm = V;nHm + hm+1,mvm+1emT
2. VIAV,, = H,,
The approximate eigenvalue problem can now be written as

VI AV, y(m) = X0m) gy (m) (2.5)
where (™) = R,, 2™ Which is equivalent to

VEA - X™DV,y™ =0,
Approximate eigenvalues are eigenvalues of H,, and are obtained by solving the

preceding eigenvalue problem, the associated approximate eigenvectors are (™) =
Vuy™ . Typically, a few of the outermost eigenvalues will converge first.
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2.2. Convergence. The convergence of projection methods for eigenvalue prob-
lems, such as the Arnoldi algorithm, is difficult to analyze in the non-normal case.
The simplest analysis, though somewhat incomplete, uses the distance of a given
eigenvector from the Krylov subspace, see [11]. Let P,, be the orthogonal projector
onto K,,. Then, the approximate problem amounts to solving

Pm(Az —Az) =0, z € K,
or in operator form
P APpx = Ax.

Define, A,,, = P APy,. Then the following theorem is easy to prove (see [11]).
THEOREM 2.1. Let vy = ||PmA(I —Pm)l|l2. Then the residual norms of the pairs
A, Pru and X\, u for the linear operator A,, satisfy, respectively

[(Am = A Prullz < yml[(I = Pm)ull2,

[(Am = ADullz < VAP 477 (1= Pm)ull2 -

Note that the second bound of the theorem gives an unusual result in that it states
how accurate the ezxact eigenpair is with respect to the approzximate problem. This is
stated in terms of the distance of the exact eigenvector u from the Krylov subspace.
The remaining issue is how to estimate ||(I — Py, )ul|2-

3. Projection-based analysis. In the following we analyze the distance

dw,X) = min lw — z||2

in general terms where X is an arbitrary subspace of some dimension m. We begin
by showing a number of simple results. First observe that given any basis V' of the
subspace X, x can be written as Vy, where y € C™, so that

Jw —z||3 = |w—Vy|3 = w’w—20"Vy +yTVIVy.

The above expression is in fact of the form

1\ (wlw wHV 1
—_ 2:
fw-atg= (") (Ve pr) () - (31)
—_——

=C

Note that minimizing ||w — z||2 over X is equivalent to minimizing ||w + z||2 over the
same subspace, so the signs of the y’s in the above expression can be changed when
seeking the minimum distance. In the end,

H
1 1
min |jw—z|3 = min |jw—Vy|3= min ( > C ( ) (3.2)
z € X y e Cm yeCm \y Y

where C was defined in (3.1). It is interesting to note the above minimization can be
converted into a trivial generalized eigenvalue problem:

H H
min (1> C <1> = min HCz= mi 2702 (3.3)

n
yecm \y y 2 € Cmtl, efz=1 z e cmtl zHejell 2
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Therefore, the smallest squared distance achieved between the vector w and vectors
of the subspace X, is the smallest eigenvalue of the generalized eigenvalue problem
Cz = p(eref)z. This problem has only one finite eigenvalue as can be seen from
converting it with the help of the Cholesky factorization C = LL:

1
LL7 2 = pleret) e — LH 2 = (L7 e e LM LH 2 — —u = (L7 terel L™ ),
where we have set uw = Lz. The only nonzero eigenvalue of the rank-one matrix
L teiel L7 H is el L=H [~ le;. So

1 1

Hmin = = .
eML-HL"1le; elC1e

Therefore, we have proved the following result:

LEMMA 3.1. Let X be an arbitrary subspace with a basis V = [v1,-+- ,vy] and
let w¢ X. Let P be the orthogonal projector onto X. Then, we have
I =Pyl = g
2 eflC—1ey
where
H H
_ H o whw w?V
¢ =V VI=( Vuth Yy, )

Proof. The result was proved above. An alternative proof which will help establish
some relations is as follows. Given an arbitrary vector w € CV, observe that

(I = P)w|3 =w? (I -P)I - P)w=w"I—-Plw=uww—-wPuw.
with P =V (VHV)='VH From this it follows that
(I = P)wl|3 = ww — w?Pw = whw — w?V(VEV)T IV Hy . (3.4)

The right-hand side of (3.4) is simply the Schur complement of the (1,1) entry of C,
which as is well-known is the inverse of the (1,1) entry of C~1. O

Let omin|w, V] and opa.[w, V] be the smallest and largest singular values of
[w, V]. Then a consequence of (3.2) and (3.3) is that

Tmin[w, V] < |(I = P)w|2 < omaz|w, V] . (3.5)

This is because el C~le; is a Rayleigh quotient of C~!, and so

_
)\maa: (C)

and the result follows by inverting the above inequalities.

Clearly, the right part of the bound (3.5) is too pessimistic. We expect ||(I—P)w||2
to be closer to the smallest singular value. A sharper result can be obtained by
exploiting an appropriate singular vector in (3.3).

LEMMA 3.2. Let omin|w, V] be the smallest singular value of [w, V] and wpn the
associated Tight singular vector and assume that eXw,,;, # 0. Then,

1

= )\mln(cil) S 6{{07161 S Am,ar(CV71) m 9

im0 V] < (I = Phuofls < Zminl®:V] (3.6)

‘e{{wmin| .
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Proof. To prove the right inequality, we use (3.2) and (3.3), and select as particular
vector z the right singular vector w,;,. This results in,

: 2 err_{inC’wmin _ err{m [w, V][w, V]mein _ Ugnin[w’v]
min_[lw —z[3 < H H = Iz H — H 2
zeX Winin€1€1 Wmin Wynin€1€1 Wmin |61 wm®”|

The left inequality was established above. It also follows from (3.3) and the observa-
tion that |ef2z| < |z|2. O

Consider now using this result for the situation of interest, i.e., when X is a Krylov
subspace K,,, and w is an eigenvector u; of A. The left side of (3.6) indicates that we
cannot have a good approximation if [u;, V] is well conditioned. Linear dependence
of the set [u;, V] can take place in two ways. As expected, the first is when u; is close
to the subspace K,,. The second is when the basis V is ill-conditioned. However, in
this situation we would also need ef{ Wyin tO be not too small.

Note that the above bound has one additional degree of freedom, which is the
selection of the basis.

4. Analysis in terms of Schur vectors. In this section we will exploit a Schur
decomposition of A of the form

A= QRQ",

where @ is unitary, R is upper triangular with its (1,1) entry being the eigenvalue to
which convergence is being analyzed. We thus write R in the form

R= (Aol i) . (4.1)

It will be assumed that A is a simple eigenvalue, so the eigenvalues Ao, - , Ay of Ry
are all distinct from A;. Since the powers of A are at the basis of Krylov methods, we
examine the sequence of the powers of the matrix R.
LEMMA 4.1. For any k > 0 we have
AeoosH
RN = (01 éﬁ,f) with s = sT(\T — Ry)“Y (AT — RY) . (4.2)
Proof. The proof is by induction and is straightforward. O

If we apply this result to arbitrary polynomials the following corollary will be obtained.
COROLLARY 4.2. For any polynomial p, we have:

p(R)=<p(31> 5;131%1)) with q(/\):]w. (4.3)

It is interesting to note in passing that the above result can be applied recursively
with the matrix R replaced by Rj.

Now consider the problem of estimating the distance of the first eigenvector,
which is g1, the first column of @, from the Krylov subspace. We need to mini-
mize ||g1 — Kpy|l2 over all vectors y € C™, where K, is the Krylov basis K,,, =
[v, Av, .-+ A™ 1] of K,,. However, since each basis vector is of the form Afv =
QRIQMv, we can work in the Schur basis and minimize instead

lex = [z, Rz, -+, R™ "z]yll2 = [ler — pm—1(R)z]|2 -
5



where z = Qv over polynomials p,,_1 of degree < m — 1.
LEMMA 4.3. Let R be given by (4.1), and z = Qv where v is of norm unity and
let

Define

em = min p(R1)Z]2.
p € Py

p(A1)=1

Then, assuming (t,z) = t7z # 0 we have

€m
| o cEm 4.4
per]%}nn_l ler — p(R)zl2 < | cos O(t, 2)] Y

Proof. We define £ to be the vector with bottom n — 1 components of ¢, i.e.,
=" (M= Ry)™",
and seek first an approximation to ne; by writing

ner — p(R)z = ((1 —p(A))n :i?gg;l)l - p(Rl)],z) |

where the previous corollary was exploited. We now select the polynomial p,,_; such

that p,,—1(A1) = 1 and [|py,—1(R1)Z||2 is minimum. Then for this polynomial,

ner — pm—1(R)z = <_EH'§ + EHpm—1(R1)§)

—Pm—1(R1)Z

From this we get

- (T (B3
(77+tHZ)61 —mel(R)Z - (—]];nl(Rl)i) '

Using the notation defined above for €,,, dividing both sides by n + ¢z, under
the assumption that n + t# % # 0, results in

Pm—1(R) _ 1 EHPm—1(R1)

€1 — z =
_pmfl(Rl)

Calling p the polynomial p,, 1(\)/[n + t7 2] and taking 2-norms of both sides, gives

the following upper bound, with the help of the Cauchy-Schwarz inequality,

IS 3]

IS 3

(n+tH2) (n+tH%)

1+ I3

e1 —p(R)z|ls < —+— X
Jev = p(R):ll < Vi

€m - (4.5)

The numerator of the fraction in the right-hand side of (4.5) is the norm of the vector

t, and the denominator is the absolute value of the inner product (¢,z). Since we

assumed that ||z]|2 = 1 then the factor in front of the term e, in (4.5) is the inverse
6



of the cosine of the angle between ¢ and z. The minimum on the left-hand side of
(4.4) does not exceed the right-hand side of (4.5), so the result is proved. O

The lemma can be translated in terms of known quantities related to the original
basis.

THEOREM 4.4. Let wy be the left eigenvector of A associated with A1 and assume
that cos@(wy,v) # 0. Let Py be the orthogonal projector onto the right eigenspace
associated with \1, i.e., : Py = qiqf’, and let By be the linear operator By = (I —
P)A(I — Py). Define

en =, min_[p(B1)(I ~ P)oll>. )
p(M;n:i1
Then, we have
€m
. - Kol < m 4.7
I = Pr)arlls = xnin llas = Kyl < g o

Proof. As was stated above, the theorem is nothing but a translation of the lemma
into the ) basis. First, we have already seen that

(7 = Pw)aall2 = min g — Knyla = min |lg —p(A)v]z = min [ler — p(R)22
Y pe P evP

m—1 m—1

which only re-expresses the quantity ||¢g1 —p(A)v||2 in the basis @, so ||¢1 —p(A)v]]2 =
er — p(R)zl2.

Second, it can be seen that the vector wy; = Qt, where t is defined in the lemma
is a left eigenvector associated with A;. Indeed we have

_oH
wH(MI-A) =t1QHQMI-R)QY =[1 sT(MI-R))™! (g AIIS_&) QT =o.

So, (w1,v) = (Qt,Qz) = (t, z). Finally, the scalar €,, in this theorem is identical with
the one in the lemma. It is just expressed with a different basis. Indeed, in the @
basis the vector (I — Py)v is Z. In the same basis, the operator (I — Py)A(I — Py) is
represented by the matrix R;. O

The above inequality gives an analysis in terms of the variable €,,. It differs from
other bounds by not using eigenbases or spectral expansions [11, 15]. Whether or not
eigenvectors are used, there are unknown quantities. On the one hand the eigenbasis
expansion can lead to large coefficients (Ill-conditioned bases for example). The Schur
factorization on the other hand does not have such difficulties as it should retain the
non-normality effects in the quantity €,,.

A number of papers give a detailed analysis of the minimum of |[p(A)v|2 or
lp(A)]]2 under a normalization assumption of the form p(0) = 1, see for example
the papers [1, 2]. In [2] for example, it is shown that there is a universal constant
¢ < 33.75 such that if W(A) is the field of values of A then for any polynomial

Ip(A)]l2 <e | max Ip(2)| -

These bounds can easily be adapted to our situation to have an idea of the scalar €.
Consider, for example, the situation where A; is the dominant eigenvalue and
the other eigenvalues are located in a disk of center ¢ and radius r not containing

7



A1. For illustration we will take instead of the optimal polynomial, a simple power
polynomial, namely

o)k
)= o
Then,
k
pe(A) =1 pr(Ry) = (ff\ll__ccl> :

Notice that the spectral radius of % is

Ry —cl\ r <1
P )\1 —C N |/\1 - C| ’
so (Ry —c)* /(A1 — ¢)¥ tends to zero. We can write

_ (R —eD)™ 2,

m—1
~ ~ r
Em = ||pm—1(R1)Z||2 — |Al — c|m_1 - 6m <|)\1 — C|) )

where 4, is a sequence which converges to a certain constant § < ||Z||s. One of
the difficulties of all methods based on an analysis of this sort, is the well-known
fact that the sequence d,, can become very large before settling to its limit. This is
characteristic of highly non-normal matrices.

5. Analysis in terms of eigenvectors. A common technique for estimating
(I — Pm)u;|l2 assumes that A is diagonalizable and expands v, the first vector of
the Krylov sequence, in the eigen-basis. If A is diagonizable then for some matrix
of eigenvectors U, we have A = UAU™!, where A = diag(\1, ..., \ny). We examine
the convergence of a given eigenvalue which is indexed by 1, i.e., we consider uq,
the 1-st column column of U. The initial vector v is expanded in the eigen-basis
as v = Zjvzl aju;. It is assumed throughout that a; # 0 and ||u;|l2 = 1 for all
j. In [11], it was shown that, under the above assumptions, we have in the general
non-Hermitian case,

(I = P )uall2 < &™) (5.1)
where
Q; (m) .
& Z o | doa {pg}ggfl max [p(};)| (5:2)
Jj#1 p(Ap)=1

This result, which requires a few easy manipulations to prove, does not exploit the
orthogonality of the eigenbasis in the normal case. In this particular case, the same
result holds but &; can be sharpened to

- 1

gl,normal =
|avs |

which represents the tangent of the angle between u; and v. Note that the distance
[[(I = Pp)ui||2 is nothing but the sine of the angle Z(u1,K,,).

Once an estimate for egm) is available, Theorem 2.1 can be invoked to give an
idea on the residual of the exact eigenpair with respect to the approximate (projected)
problem. See also [15, th. 3.10] for an alternative approach which exploits the spectral

decomposition.



5.1. The approximation theory viewpoint. What is left to do is to estimate

egm). For the sake of notational convenience, we will consider estimating egmﬂ) instead

of egm). The underlying problem is one of approximation theory. For any continuous

function f defined on a compact set €2, denote the uniform norm:
e . 53
£l = max [£(:)] (53)
The set Q will later be taken to be the spectrum of A excluding A\;. Estimating e&mﬂ)
amounts to finding an upper bound for the distance, in the sense of the inf-norm just
defined, between the function f(z) = 1 and polynomials of degree < m of the form
p(z) = (2 — A1)q(z), or, equivalently:
1 .
q" = min 1 (2= A)a(@)] -
q € Pm—1
We recall that a subspace S of continuous functions on {2, generated by k functions
@1, - , Py satisfies the Haar condition if each function in S has at most k£ — 1 distinct
roots. This means that any linear combination of the ¢;’s vanishes iff it has k distinct
roots in . Let f be a continuous function and let p* be the best uniform approxima-
tion of f over 2. The difference f — p* reaches its maximum modulus at a number
of extremal points. The characteristic property [10] of the best approximation states
the following.
THEOREM 5.1. Let f be a continuous function and S a k-dimensional subspace
of the space of continuous functions on (), which satisfies the Haar condition. Then

p* € S is the best uniform approximation of f over ), iff there exist r extremal
points z;, i =1,--- .1 in Q, and positive numbers g, , ., with k+1 <r <2k +1
such that

> wilf(z) —p()]e(z) =0 V¢ € S. (5.4)
=1

One important point here is that the number of extremal points is only known to
be between k 4+ 1 and 2k + 1 in the general complex case. That » must be > k + 1
is a consequence of the Haar condition and can be readily verified. When 2 is real,
then r = k 4+ 1. The fact that r is only known to be < 2k + 1 in the complex case,
comes from Caratheodory’s characterization of convex hulls which expresses a point
in co(Q?), the convex hull of ), as a convex combination of k + 1 points of  in real
spaces and 2k + 1 points of  in complex spaces.

We will now translate the above result for our situation. Let Q = A(A)\{\;} and
S = span{¢;(z)}j=1,..,m where ¢;(z) = (z — A1)z?~'. Then, the dimension of S is
m and therefore the theorem states that there are r eigenvalues from the set 2, with
m+1<r <2m+ 1 such that

> = (ke = M) Qg )ds(Akg1) =0 G=1,...,m.
k=1

Although we do not know how many extremal points there are we can still express
the best polynomial by selecting any set of m extremal points. Assume without loss
of generality that these points are labeled from 2 to m+1. Let p*(2) = (z — A1)¢*(2).
We can write 1 — p*(\x) at each of the extremal points A as

L—p*(Ap) = pe'
9



where 6, is a real number and p is real and positive. Then it is easily seen that

m+2
> ei(2)
1—p(e)= 2 (5.5)
5 ety (n)
k=2

where each [ (z) is the Lagrange polynomial:

m+2 Y
w(z) =] x _/\J_ : (5.6)
j=2 J

J#k

Indeed, 1 — p*(z), which is of degree m, takes the values pe* at the m + 1 points
A2, ..y Am+2. Therefore it is uniquely determined by the Lagrange formula

m+2

1-p*(z) = Z pe 1. (2) .
k=2

m+2

In addition 1 — p*(A;) = 1 and this determines p as the inverse of i e %1, (M),
k=2

yielding the relation (5.5). This establishes the following theorem.

THEOREM 5.2. There are r eigenvalues in Q@ = A(A)\{A\1}, where m +1 <r <
2m + 1, at which the optimal polynomial 1 — p*(z) = 1 — (z — A\1)q*(2) reaches its
mazximum value. In addition, given any subset of m + 1 among these r eigenvalues,
which can be labeled Ao, A3, ..., Amaa, the polynomial can be represented by (5.5). In
particular,

(m+1) _ 1
€ =05 — ) (5.7)

kX—:Q e 7132 A’i_’\;

Ji#k

Proof. The result was proved above. Note that egmﬂ) is equal to p which is the

inverse of the denominator in (5.5). O

In [11] it was shown that when 7 = m + 1, then the sign ¢ in the denominator
of (5.7) becomes equal to the conjugate of the sign of I (A1), which is the product
term in the denominator of (5.7). In this case, (5.7) simplifies to

(m+1) 1
€ = (5.8)
m—+2 m+2 AL
Ko gen AR
sk

The result in [11] was stated incorrectly for the general complex case, because the
lemma on which it was based is only valid for real functions. Therefore, the result
holds true only for the situation when the spectrum is real or when it is known that
r=m+1 (e.g.,, when N =m+ 1). A proof of this result is given in Appendix 1.

5.2. Optimization viewpoint. An explicit formula for ||(I — Pp,)uq||2 is ob-
tained immediately from Lemma 3.1.

10



COROLLARY 5.3. Let Ly, 41 be the rectangular matriz of CN>*(m+D “with column-
vectors og u, v, Av, ..., A" v, then

1

71 .
et (LI L) e

(T = Prm) 0z wa||* = (5.9)

Proof. The result follows by applying Lemma 3.1 with w = ajuy, and V =
[v, Av, - A™ 1], O

We now consider a factorization of the matrix L,,y1. If we set « to be the vector
of C™ such that v = U «, then we obtain A7 v = U AJa for j = 0,...,m — 1. Then,
we have

L1 = [aqug, v, Av, ..., A" 1]
=Uloer,a,Aa,...,A" 1 q]
:UDan-‘rla
with
11 N APt
a0 0 0 1 X At
D, = and Wy,41 = — . (5.10)
ST + 01 N Al
0 0 ay N
0 1 v At
As a result,
Lﬁ-&-l[’m-&-l: 7f+1Df(UHU)Dan+1. (5.11)

With theses formulas, it is now possible to express the residual norms of the Arnoldi
process in terms of eigenvalues, eigenvectors, and the expression of v in the eigenbasis.
THEOREM 5.4.

(I = Pum) a1 ua||* =

1
e (WH, | DHUHU)D Wpi1) 1

In the case of normal matrices (A# A = A Af), we have UXU = I, so the
preceding formula simplifies to
1

(I = Pr) oy us||” = — .
ef! WH,  DED,W,11) Yey

(5.12)

It is interesting to consider first the particular situation when m = 1. If m = 1, and
A is normal, a little direct calculation yields,

N
o [? Z2|Oéz'|2
2 _ i=
(I =P1) crwn||” = —F——
> |l
=1

11



Now, let 3 the vector whose components are defined by

We then obtain, as a consequence of the above equality,

Zﬂl* lfﬂl

Note that 3; = cos? f(uy,v), where 6(uy,v) is the angle between v and u1, and so the
above relation can be expressed as |[(I — P1) ui|| = |sin@(uy,v)|, which is another
expression for the well-known relation ||(I — P,)u1] = siné(uq1, Ky, ), for the case
m = 1. Observe that the bound given in (5.1) does not exploit the orthogonality of
the eigenvectors (for the normal case). Indeed, for the situation when m = 1, it yields

I =P1) wl =

N
22|04i|
[(I =P1) wa]l < =

v |

(5.13)

If we exploit this orthogonality in the proof of the result, we would obtain a slightly
sharper bound in which the numerator in (5.13) is replaced by \/vazz ;]2

For the general case (m > 1), we will derive the optimal bound for

[ = Pm) cr wa||* _

[[e]?  fm(B)
by solving the following optimization problem
B120,00000,5n >0 fm(B),
N
Bi=1

where

—1
Ifm(B) = efl (WnI;IH DgWpi1)  e1.

We now state the main result which gives an upper bound for the general situation.
THEOREM 5.5. If m < N and ||(I —Py) u1|| #0 for k € {1,...,m}, then
1. If the matriz A is normal then

1= Pu >1n<"|¢m> (5.14)

2. If the matriz A is non normal but diagonalizable then

N
> oyl
— .
I =P ] < 5™, (5.15)
where ngm) is defined as follows

12



o If all eigenvalues are real or if m = N — 1, there exists m eigenvalues, labeled
A2, ..oy Amt1 Such that

(m) _ 1
T m+1 m+1

1+ IILX—AM
J#k

o If at least one eigenvalue is non real and if m < N — 1, there exist m eigen-

values, labeled Ao, ..., A1, and m real numbers, 0s, ..., 0,11 such that
(m) _ 1
771 m—+1 m+1 )\ . )\
1- 1)
E: II W
J#k

The proof is given in Appendix 2. We now make a few remarks. In order to
compare the bound given in (5.1) and the bound given in Theorem 5.5, we need to
unravel a relationship between egm) and n%m). From the expression of egm) we deduce

that

m il
77§ )= 1(m)'
1+¢

Hence if the matrix is normal, the inequality (5.14) becomes

ol ™

(L =Pm) w < —=——
|ovy | 1—|—elm)

(5.16)

A second remark is that if m = N —1land \y = (k—1)/(N -1),k=1,...,N
(Uniform distribution) then (5.16) reduces to

il 1
I—"Pn_ < -
I =Py < L=
while (5.1) becomes
Sitalail 1

I —Pn_ <
0= Pra) ] < =2 o

If the components of v in the eigen-decomposition are of equal size, i.e., a; = w,Vi €
{1,..., N} then we obtain for normal matrices

VN

I = Pr—1) wmill < 55—

while (5.1) becomes

N -1
I =Pr-1) mill < 5x—7-

In general, for normal matrices the bound (5.16) is a slight refinement of (5.1). This
comes from the fact that the bound (5.1) restricts the polynomials with the constraint
p(A1) = 1 to obtain a simple result. There is no such restriction with the above result.

13



Example 1. We now examine an example to illustrate Theorem 5.5 in the

10 0 0

complex case. We consider the following diagonal matrix, A = 0 2 0 0
’ 0 0 242 0O}

0 0 0 3
and let v = (a1, a2, a3, a4)”. We have uj =e; for j = 1,...,4. Let us set \; = 1 and

consider the step m = 2. Using (5.12), we have

1

_ 2= ey
(I —P2)ayer]® = ||| fo(Br, B2, B3, Ba)’

where

_ P1B2+ 26183 + B2 B3 + 48184 + B2 Ba + 203 Ba
F2{Brs s s ) = 5182 Bs + s Bs + 205 ) '

Solving the optimization problem

f2(B),

min
$120,822>0,85>0,842>0
B1+P2+B3+B1=1

we obtain:

1. fo(p*) =6+2v5=(1++/5)% and

V-1 ﬁ*_s—ﬁ ﬂ*_s}—\/s . 5—5
4 7 27 10 7 T 10 '

fi =
2. The optimal bounds are

(1 =P1) az ed]] <1 [( = P2) ared <1
[l 2 [ 1++5

3. The real numbers 65, 03,0, are such that

6192__24—1 103:—14—22

1—-21
, € —— = and %1 =—1-.
V5 V5 V5
It is important to remark that the vector §* solution of the minimization problem is
unique and all its components are non zero.
If all the eigenvalues are real and m = 2, we can show that there exists a solution

vector with only three non zero components, as we will see in the proof of Theorem
5.5.

6. Conclusion. The analysis of convergence of the Arnoldi process for comput-
ing eigenvalues and eigenvectors is difficult and results in the non-normal case are
bound to be limited in scope. This is essentially because the behavior of polynomials
of A or simply of the succesive powers A*, can by itself be difficult to predict. All
three forms of analysis covered in this paper (based on projectors, or the Schur form
of A, or the diagonalization of A), confront this limitation. What is important is that
some insight can be gained from each of these forms of analysis. The Schur form
tells us that we can reduce the problem to that of estimating min p(B;)0 where By
is a reduced Schur form of A, and v is the orthogonal projection of the initial vec-
tor v onto the orthogonal of the eigenvector u;. The analysis based on eigenvectors
works essentially in the eigenbasis (assuming there is one) and converts the problem

14



of estimating the error into a min-max problem. Here, there are three limitations.
The first comes from the nature of Theorem 2.1 which expresses the residual for the
projected problem of the exact eigenpair, not the other way around as desired. The
second one comes from the fact that the bounds utilize the eigen-coefficients «; of the
initial vector in the eigenbasis. These coefficients can be very large in case the basis

is ill conditioned. The last problem comes from the fact that the min-max quantities

required by the bounds (egm), ngm)) can themselves very difficult to estimate.
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Appendix 1. We denote by P}, the set of polynomials p of degree < m such
that p(A1) = 0. We seek the best uniform approximation of the function f(z) =1 by
polynomials of degree < m in P} . Note that P}, is of dimension m. Let the set of r
extremal points be Ag, ..., A,11 (See theorem 5.1). According to Theorem 5.2, given
any subset of m + 1 among these r extremal points, which we label Ao, As, ..., A2,
the best polynomial can be represented by (5.5) in which e = sign(1 — p*(\z)).

Not much can be said from this result in the general situation. However, when
r = m + 1, then we can determine max |1 — p*(z)|. In this situation the necessary
and sufficient conditions of Theorem 5.1 express the extremal points as follows. Let
us set & = p;[f(z;) —p*(z;)] for j =1,---m+ 1, and select any basis ¢1,- -+, ¢, of
the polynomial subspace P . Then, the condition (5.4) translates to

m—+1

> &oi(M) =0 for j=1,...,m. (6.1)

k=1

The above equations constitute an underdetermined system of linear equations with
the unknowns &;. In fact, since the &’s are all nonzero, we can fix any one component,
and the rest will then be determined uniquely. This is best done in a more convenient
basis of polynomials given by:

wi(2) = (z=\)l(2), 7=2,....,m+1, (6.2)

where l} is the Lagrange polynomial of degree m — 1,

) )\
lj(z)—H;_A’“, =92,...,m+1 (6.3)
k=2 Tk
=

With this we can prove the following lemma.
LEMMA 6.1. The underdetermined linear system of m equations and m + 1 un-
knowns &g,k =2,....m+2

m—42

> wi)& =0, j=2,3,...,m+1 (6.4)
k=2

admits the nontrivial solution

m+2 )\ _)\.

& = SN k=2, .. m+2. (6.5)
5=
Gtk

Proof. The proof requires a straightforward algebraic verification; see [11] for
details. O
We can now prove the main result of this appendix.

THEOREM 6.2. Let p* be the (unique) polynomial of degree m satisfying the
constraint p(A1) = 0, and which is the best uniform approximation to the function
f(z) =1 on a compact set Q0 consisting of at least m + 1 points. Assume that there
are m + 1 extremal points labeled Aa, ..., Apy2 and let &g,k = 2,...,m + 2 be any
solution of the linear system (6.4). Write each & in the form &, = Spe™ " where &,
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is real and positive and 0y, is real. Then, p* can be expressed as

m+2
Z e (2)

1—p*(z) = F (6.6)
Z 1k (A1)]

where 1 is the Lagrange polynomial of degree m

m+2

10+
J#k

As a consequence,

-1
m+1 m—+1

(m+1 |Ae — A
ez A 6.7
-\ AL R o7

=2 k=2,k#j
Proof. Equation (5.4) states that
m—+2

) 1
1—p*(z)=p el (z) with p= —g— . (6.8)
2_: >y el (M)

We now apply Theorem 5.1 which states that at the extremal points (now known to
be unique) there are m + 1 positive coefficients p1; such that

& = [l — p* ()] = ppre™ " (6.9)

satisfy the system (6.1). As was already mentioned, the solution to (6.1) is uniquely
determined if we set any one of its components. Set 12 = l;mt2(A1). Then, accord-
ing to Lemma 6.1, we must have & = l(\1), for k = 2,...,m + 2. Since p and py
are positive, (6.9) shows that

W 1
1k (A1) S ()]

e = sign(lu(h)) - 6% =

The result (6.7) is an expanded version of the above expression for p. O
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Appendix 2: Proof of Theorem 5.5. We will consider the 2 cases, A nor-
mal and A non-normal, separately. In this appendix, the notation for the 2-norm is
changed to ||.].

Case 1: A is normal. To prove the first part of this Theorem, we need two
lemmas.

LEMMA 6.3. Let wy,ws,...,w, bem distinct complex numbers and V' the m x m
Vandermonde matriz whose entries V; ; are given by :
v (i) =wit, =1, m

and let y = (1,p,p%, ..., p" YT, Then, the dual Vandermonde system VI z =y

admits the unique solution x = (x1,T2,...,2m)", where
Y
g Wi — Wy
1<j<m
J7#i
The proof is obvious.
2
"
Recall that § is the vector whose components are 3; = ZN|l|||2 and define
j=1 1%

the matrix
Zerl(ﬁ) _ Wg+1DﬁWm+1 c (Cm-i-l,m-l-l’

where Dg and W,,41 have been defined in (5.10). If the matrix function Z,,11(8) is
nonsingular, we define the functions f,, by

fm(B) =el' Z.\1(B) e,

with

N
ﬂGS{ﬁ(ﬂl, ~~~~~~ ,Bn) € [0, 1]N/Zﬂil}-

Then we have the following result.
LEMMA 6.4. If the matriz function Z,,11(8) is nonsingular, then the following
properties hold :
1. fm is homogeneous of degree —1, i.e., f(r@3) =r=1 f(B) forr > 0.
2. fm is a conver function defined on the closed conver set S.
3. fm is differentiable at 3 € S and we have

0 fm

aﬁ (ﬁ) = ‘efl Wm+1 t‘27
where t = (t1, to,...... , tma1)T is such that Z,1(B) t = e1.
Ofm(B)

Moreover, we have Zil Bs 95, = —fm(B)-

Proof. The proof will proceed in 3 steps.
1. Let r be some positive real. Since D, g = r Dg, then

Fn(rB) = el (r (W DsWini1)) o1 =171 ()
18



2. Tt is easy to verify that the set S is convex. By taking x = ey, Gy = Z41(r0)
and G2 = Z,,+1((1 —r)3’) where 3,5" € S and 0 < r < 1 in the inequality

dP (rG+ (1 —1)Go) e <afr(G) ' +2" (1—7)(Gy) 'z
where G; and G5 are positive definite hermitian matrices [16, p. 174], we obtain
fm(rB+ (1 =7)8) <7 fm(B) + 1 —7) fin(B).

Hence f,, is convex.
3. Clearly, f,, is differentiable at 5 € S. By using the derivative of the inverse of the
matrix function, we have

P g1 0 70 )
It follows that
32731;1(6) = _Z;ziu(ﬁ) Wn{_{+1 Ei Wit Zr;}i-l(ﬁ)
where E; = e;e] € RMV. Therefore,
S 6) = el Wi P

The last equality follows from a simple algebraic manipulation, noting that

S ()
> 6 (;nﬂ- == tH"WH  (Bieie Wit = —t" W DgW it = —£(B).
i=1 v

i=1

O
Proof of Theorem 5.5.. From (5.12) we deduce that

1

(I = Pm) arwa|)* = |laf? -
ef! WH, DgWpp1) e

Since 3; > 0 and Zfil Bi = 1, in order to get an optimal bound of

| = P)or ]2 _ 1
o2 T (B’

we must solve the following optimization problem

min fm(B). (6.10)

We introduce the Lagrangian function for this problem :

N N
00 = 1) -8 (12 3) - 3
i=1 i=1
where § € R 5 pu = (pg,------ ,un) € RY. According to the Karush-Kuhn-Tucker
(KKT) conditions, if f has a local minimizer 8* in S, then there exist Lagrangian
multipliers 6%, p* = (uf, - N ), such that (8%, §*, p*), satisfy the following

conditions:
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o L,
() 57
9B
N
(i) (1—=>8)=0and g >0, fori=1,...,N.
i=1
(i) piBf=0fori=1,...,N,
(iv) pf>0fori=1,...,N.
We note that in this case the KKT conditions are also sufficient since the problem is
convex. Condition (i) and Lemma 6.4 give

(p*, 6% u*)=0,fori=1,...,N,

aﬁm

o, (B8 =~ e Wiy £ + 6% — it =0, (6.11)

where
tr = Zn_zlﬂ(ﬂ*) €1.

From (iii), it follows that for ¢ = 1,..., N, either uf = 0 or 87 = 0. It can be
shown that 87 # 0. Indeed, notice that the best approximation to w; from K, is
Prus = K(KTK)(KTuy) and its first component 3; = u!f K(KTK) (K Tuy) is
clearly zero iff KTu; = 0. So if a1 # 0 then ; # 0.

We also notice that the vector 8* = (65,..., %) has exactly m + s non zeros
components which will be labeled 57,..., 85, with s > 1. It follows that 3* =
(BYs - Bmts0,...,0) and pf = 0 for i = 1,...,m + s. Substituting in (6.11) it
follows that

leH W t*]? = 6%, fori=1,...,m+s, (6.12)
where t* = (t3,...,t5,)" = (W}, | Dg- Wm_H)f1 e1. Hence, we have
eH Wit = e%iVer, for i=1,....m+s, (6.13)

where 2 = /—1 and 6; € R. We then obtain the following linear system

Bt At AP L = e Vo
th Ao th+ ... AT L = e
(6.14)
54 Amgs B4 AR = etfmre /6%
From Lemma 6.4 , we can easily show that ¢t} = 0*
e 1T N At
ez 1 Ny gt
. — e Ny Amd
fm(ﬁ ) =Vt = 1 Ao /\m—l (6'15)
......... 4
D VR gt
| V. Amd



Now, since WH ma1 D= W1t = e1, we deduce that

1 =
ef1 gr = 75 and Z MN7hetigr =0, for j=1,...,m. (6.16)
. . - . . 1 0
Since (7 is a positive real number, we obviously have: §; = — and e'"* = 1. Hence,

Vo

expanding the numerator of (6.15) with respect to its first column, gives

m+1 m+1 m+1
Vo =1- =1- Ok 14 (A 6.17
2 HA_M > M) (617
J#k
m+1 ()\ . w)
where 1 (w) = H 22~ 1t is obvious that 6s,...,60,,,1 are such that 1 —
i (A= Ae)
J#k
ZZH; e 1;,(\) is real. The vector ("2 B3, ..., e"Wm+s B T satisfies (6.16), which
is equivalent to the following linear system
1
—10y Q% —10mas _
e R +e e B = ———,
ﬁQ + \A/(Si*
Xoe Wz 4 + Apps € W0ms gx = ——1,
2 b2 e mbs T e (6.18)
1 .............................. e ;\.?.L_l
Amhe=Wa g 4 AR e Wmes g = L
2 2 + mt Vor
To obtain B; and e for I = 2,...,m + s, we have to solve (6.18). Let us derive

the Lagrange multipliers p;. We have p; = 0, for [ = 1,...,m + s and the other
components are deduced from (6.11):

[T A [ Vi + N P for I=m+s+1,...,N.

In view of (6.14), and using Lemma 6.3, we obtain

2
m+1 m+1
e O A=A | s _
=0 |1 Ze jI;[Q()\j_Ak) >0 for l=m+s+1,...,N.
j#k

Hence the eigenvalues As, ..., A\;,11 and the scalars 6o, . .., 0,11 must be chosen such

that
m—+1
Z e (N <1, for I=m+s+1,...,N.
k=2

We have v6* = p,,, (A1), where p,, is the complex valued polynomial of degree m — 1
satisfying the following conditions :

pun(w) =1 ’:“ e 1 (w),
P (M1

C
pm()\j)zl—elef for j=2,...,m+s, (C)
1 —pm(X;)| <1 for j=m+s+1,...,N.
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To obtain the vector solution of the optimization problem we need to solve the linear
system (6.18). This can readily be solved by Cramer’s rule if for example s = 1.
If s > 1 and all the eigenvalues are real the system (6.18) will have infinitely many
solutions. But if one of the eigenvalues A; is complex, this system will have a unique
solution.

We will now investigate the possible values that s can take. There are 3 distinct
possibilities.

1) Case s = 1. This means that the system (6.18) has a solution with exactly
m + 1 non zeros elements. Using Lemma 6.3 for solving (6.18), we obtain

I(A1)
Vo*

We can deduce 5] and e by noticing that B; >0. Soweget forl =2,...,m+1

—0
e~ gl =—

for 1=2....m+1.

(A1) P (A1)
= d ¥ = _ )
N L ()]

g = (6.19)

N

1
and B =0, for l=m+2,...,N. Now, sinceZﬁl*:L then
vor =

Moreover g7 =

m+1 m+1 |>\ N )\
Vet =1+ 1 6.20
2 1L 5= (6.20)
j
il
Since 0* is the minimum of the function f,,(3), we deduce that As, ..., A\;,11 are such
that
m—+1 m+1 m—+1 m+1
> 1 =, omin > ]
1=2 j=2 |>‘ N )‘l ’\il Aimir 155 ils |)‘Z.7' )‘H
J#l J#l
Since s = 1, the minimum is attained only for the set {Aa,..., A1} which will be

called the extremal set.
2) Case when s > 1 and all the eigenvalues are real. In this case e'?* = £1. Let
us set o; = (j #7, where (j = £1. the system (6.18) can be written as

1
o2+ ...+ 0mt1 = )\\/?_Um+2---_gm+sv
A ++>\m m = 71_>\m m ~-~_)\msms>
202 +10m+1 Jor +20m+2 +s0m+ (6.21)
mfl )‘inil m—1 m—1
)‘2 -+ )\m+10m+1 W - )‘m+20m+2 >‘m+50m+5'
Using lemma 6.3, we obtain for [ =2,...,m+1
" 1
Cl ﬂl =0 = —\/? 11()\1) — Om+2 ll()\m+2) e — Om+s ll()\m+s)~
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On the other hand, the conditions (C) can be written in this case

(@) = 1= 527 Gele(w),

pm()\1)227

pm(Aj) =2 for jeO_={je{2,...,m+s}, {;j=—1} (C1)
Pm(Aj) =0 for jeOL={je{2,...,m+s}, (=1}

pm(A;) €10,2) for j=m+s+1,...,N.

First, we dispose of the case m = 2. If m = 2, conditions (C1) imply that s = 1
or p,, = 2. We assume now that m > 3. In this case the polynomial p,, is not
constant and we have p,,(0) > 2. The sets ©_ and O_ contain at least one element.
Otherwise p,, = 0 or p,, = 2, which is impossible since p,,,(A1) > 2. Moreover, since
{2,...,m+ s} =06,J06_, the polynomials p,, and 2 — p,, are of degree m — 1 and
will have at most m — 1 zero. Therefore, the number of elements of ©, and ©_ is less
or equal than m — 1. Hence s < m — 1. The polynomial p/, is of degree m — 2 and will
have m — 2 zeros. If we assume that Ay < A3 < ... < Apy1, there exists an extremal
set of eigenvalues {)s,..., A\p41} with alternating sign, i.e., (; = (—1)71 (3. So in
the real case (all the eigenvalues are real), there exists a solution §* of the system
(6.21), with only m + 1 non zeros components:

LA
v+

G = for 1=2,....m+1.

Invoking the fact that Zgﬁ G5 =1 we obtain

m—+1

VEr =14 L)
=2

And the extremal {Ag, ..., Apy1} is such that

m—+1 m+1 m—+1 m+1 |>\ )\1|

> H |>\ 7A1| i Wien v > 11 W

=2 j=2 fmtlg—g  j=2
J#l J#l

This extremal set is not the unique set verifying the preceding property.

3) Case when s > 1 and one of the eigenvalues is complex. Here the situation is
more complicated. If we consider the case m = 2. The conditions (C) now give

pa() = 1— P 1y(w) — e 1(w),
pa(\1) = V6" > 2,

pg()\j):lfe“gf for j=2,...,2+s,
1 —pa(X;)] <1 for j=s+3,...,N.

(C2)

We can have s = 2 (see the example). And it is not easy to explicit in general the
real numbers 60, ..., 60,,+s. We can only conclude that if there exists a solution of the
optimization problem (6.10) with only m + 1 non zeros components then the optimal
solution is given by (6.20). Otherwise the optimal solution satisfies (6.17).
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Case 2: A is non normal but diagonalizable. Let A be the diagonal matrix
defined by

\/|OZ1| 0 0
0 V]as| :
. . 0

0 0 \/‘Oé]v|

By Theorem 5.4, we may write
1
eH (WH | AA=IDHUHU DyA~ AW, 41) ' er

I = P) a1 wa|* =

Using the Courant-Ficher theorem, we obtain
|U DaA~1|?
1 .
@{{ (Wgﬂ A2Wini) e

(I = Pr) azug||* <

Moreover, for all vector x = (x1,...,2x5)T, we have

N
U DoA™l = | (| D layl | 11D —=wjul.

VACTINETE

N
Z laj| |, since
Jj=1
N
IUDeA 2l < | Y oyl | .
j=1
We thus have
2
(Z;—V:l |aj|) a;
I = P) oy wn||* £ 2————"—, where p;= Ali”
fm(plv"'7pN) Zk:l |Olk‘

Since p; > 0 and Z,ivzl pr = 1, we conclude that

(S fol)” (T lel)’

minplzow-yPNZO fm(pla---apN) o*
p1t...+pn=1

This completes the proof by denoting ngk) =

I(1 = Pp) ez | <

——. Let us consider the followin
Vo &

examples for illustrating the conditions (C1) given in the preceding proof
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Example 2. Tt Ay =k, k=1,...,N.
1. If Niseven ( N =2n > 4).

e If m = 2, then s = 1 and the extremal set is unique and is {2, N}, the
w—2

polynomial verifying the conditions (C1) is pa(w) = 2 — 2N 5 and we
2n—-1 . n—-1 _ 1 _, 1
have pa(1) = o1 B1 = m,ﬂz = 5,/5’3 = m, therefore

(I —P2) g uq] < n—1
[lex]| ~ on—-1

e If m = 3, then s = 1 and the extremal set is {2,n + 1, N}, and we have
(w—2)(w—N)
=2-2
ps(w) (n—1)(n+1—N)
[ =Py)enw| _ (n—-1)
[l T 2(n+1)

, and

2. If N is odd (N = 2n + 1).

e If m = 2, then s = 1 and the extremal set is unique and is {2, N}, the
-2
polynomial verifying the conditions (C1) is pa(w) = 2 — 2; 5 and we

have

e If m =3, then s = 2. The sets {2,n +1,2n + 1} and {2,n + 2,2n + 1}
are the two extremal sets with alternating sign. The polynomial p3 is
(w—2)(w—N)

(n—=1)(n+1—N)

| = Py)arw _ 2n+2

given by p3(w) =2 —2 , and we have

vl T 2n-1)
Notice that ps(n + 1) = p3(n +2) = 0. And the solution of the system
6.18, is
. 2n + 2
b = 2(n — 1)
35 = n? 3 n+1
2T m24n—1 Mtom24n-—1
B =
5T n+1 14 L1
n— n
* v - 24 — vt~
& 2@M+n7n+ mQ@M+n7D
B € |0 L
4 "n+1

We remark that neither 55 nor 52 can be zero.
Ezample 3. Here we reconsider Example 1 ( N =4, Ay = 1, 2 = 2,A3 = 2 +
7, )\4 = 3)
e For m = 2, we have s = 2 and the polynomial py verifying conditions (C2) is

8—1 3—1
w) =1+ — w, and we have 1) =1+ 5.
p2( ) \/g \/g p2()
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