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Abstract. This paper takes another look at the convergence of the Arnoldi procedure for
solving nonsymmetric eigenvalue problems. Three different viewpoints are considered. The first uses
a bound on the distance from the eigenvector to the Krylov subspace from the smallest singular
value of matrix consisting of the Krylov basis. A second approach relies on the Schur factorization.
Finally, a third viewpoint, uses expansions in the eigenvector basis for the diagonalizable case.

1. Introduction. Projection techniques on Krylov subspaces are currently am-
ong the most important tools used to compute eigenvalues and eigenvectors of large
sparse non-Hermitian matrices. The convergence of these methods has been analyzed
in detail in the Hermitian case, but the analysis becomes much more difficult in
the non-Hermitian or non-normal case and so there are few results available in the
literature. This is in contrast with the convergence analysis of Krylov methods for
solving linear systems which received far more attention. In this paper we will examine
several approaches to the problem.

Each of these approaches utilizes a different ‘parameter’, or set of parameters,
which is (are) singled out as the main value (s) on which the analysis depends. Often
this parameter is difficult to estimate. This approach is similar to standard analyses
where there is a core expression used as a measure against which an error bound is
developed. For example, for linear systems, there has been analyses which exploit the
polynomial representation of a vector in the Krylov subspace. Thus, when solving
a linear system Ax = b, in the case when A is diagonalizable, with a matrix X of
eigenvectors, the standard bound for GMRES [13]

‖b − Axm‖2 ≤ κ2(X) min
p ∈ Pm

max
λ ∈ Λ(A)

|p(λ)| ‖b − Ax0‖2 ,

uses the min-max quantity on the right as a parameter which is then estimated in
certain ways. Here and throughout the paper ‖v‖2 denotes the 2-norm of a vector v
and for a matrix A, ‖A‖2 denotes its 2-norm and κ2(A) denotes its 2-norm condition
number of A. We will also denote by I the identity matrix and by ek its kth column
and assume exact arithmetic. In general, the above residual bound for GMRES is not
satisfactory because it involves the condition number of X, the matrix that diagonal-
izes A, which is not known and which can be very large. An alternative, exploited in
[14] (see also Ipsen [7]), uses as a primary indicator the (1,1) entry of the inverse of
KT

mKm where Km is the matrix whose columns are the vectors of the canonical basis
of Krylov subspace.

Other ways to analyze convergence of Krylov methods have been explored. For
GMRES, one such type of analysis assumes that the field of values does not contain
the origin. With this, quite a few bounds can be found; we refer for example to
[5, 3, 4, 12]. Underlying the difficulty is the fact that the norm ‖p(A)‖2 is not always
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easy to estimate in the non-normal case. Yet, most bounds will rely in an implicit
way, in an estimate of the minimum of ‖p(A)v‖2 over some normalized polynomials.

In the sequel we will consider three distinct approaches for analyzing the con-
vergence of the Arnoldi process. It is important to recall at the outset that, unlike
the situation for Hermitian matrices, there are no easy optimality results to be ex-
ploited. Most of our analysis will be based on estimating the distance from an exact
eigenvector from the Krylov subspace.

2. Background. Consider the eigenvalue problem: find u belonging to C
N and

λ belonging to C such that

Au = λu, (2.1)

where the matrix A is of order N . For a given vector v ∈ C
N , the Krylov subspace

Km(A, v) is defined by

Km(A, v) = span{v,A v, . . . , Am−1v}. (2.2)

2.1. The Arnoldi process. The Arnoldi method computes approximate eigen-
pairs λ̃(m), ũ(m) by enforcing the standard Petrov-Galerkin condition

ũ(m) ∈ Km(A, v), (2.3)

and

(A ũ(m) − λ̃(m) ũ(m) , Aiv) = 0 for i = 0, . . . ,m − 1 . (2.4)

The standard way of extracting the approximate eigenpairs from the above conditions
is to resort to the Arnoldi algorithm which generates an orthonormal basis v1, . . . , vm

of Km in which the conditions (2.4) are expressed.
Algorithm 2.1. Arnoldi

Input: Initial vector v, and m.

Set v1 =
v

‖v‖2

For j = 1, ...,m do

Compute w := Avj

For i = 1, . . . , j, do

{
hi,j := (w, vi)
w := w − hi,jvi

hj+1,j = ‖w‖2; vj+1 = w/hj+1,j

End

The outputs of the algorithm are an othonormal basis Vm = [v1, v2, ..., vm] and a
Hessenberg matrix Hm whose entries are the scalars hij generated by the procedure.
In addition, the following relations are satisfied:

1. AVm = VmHm + hm+1,mvm+1em
T

2. V T
m AVm = Hm

The approximate eigenvalue problem can now be written as

V H
m AVm y(m) = λ̃(m) y(m), (2.5)

where y(m) = Rm z(m). Which is equivalent to

V H
m (A − λ̃(m)I)Vmy(m) = 0.

Approximate eigenvalues are eigenvalues of Hm and are obtained by solving the
preceding eigenvalue problem, the associated approximate eigenvectors are ũ(m) =
Vmy(m). Typically, a few of the outermost eigenvalues will converge first.
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2.2. Convergence. The convergence of projection methods for eigenvalue prob-
lems, such as the Arnoldi algorithm, is difficult to analyze in the non-normal case.
The simplest analysis, though somewhat incomplete, uses the distance of a given
eigenvector from the Krylov subspace, see [11]. Let Pm be the orthogonal projector
onto Km. Then, the approximate problem amounts to solving

Pm(Ax − λx) = 0, x ∈ Km,

or in operator form

PmAPmx = λx.

Define, Am ≡ PmAPm. Then the following theorem is easy to prove (see [11]).
Theorem 2.1. Let γm = ‖PmA(I−Pm)‖2. Then the residual norms of the pairs

λ,Pmu and λ, u for the linear operator Am satisfy, respectively

‖(Am − λI)Pmu‖2 ≤ γm‖(I − Pm)u‖2,

‖(Am − λI)u‖2 ≤
√
|λ|2 + γ2

m ‖(I − Pm)u‖2 .

Note that the second bound of the theorem gives an unusual result in that it states
how accurate the exact eigenpair is with respect to the approximate problem. This is
stated in terms of the distance of the exact eigenvector u from the Krylov subspace.
The remaining issue is how to estimate ‖(I − Pm)u‖2.

3. Projection-based analysis. In the following we analyze the distance

d(w,X) ≡ min
x ∈ X

‖w − x‖2

in general terms where X is an arbitrary subspace of some dimension m. We begin
by showing a number of simple results. First observe that given any basis V of the
subspace X, x can be written as V y, where y ∈ C

m, so that

‖w − x‖2
2 = ‖w − V y‖2

2 = wHw − 2wHV y + yHV HV y.

The above expression is in fact of the form

‖w − x‖2
2 =

(
1

−y

)H (
wHw wHV
V Hw V HV

)

︸ ︷︷ ︸
≡C

(
1

−y

)
. (3.1)

Note that minimizing ‖w− x‖2 over X is equivalent to minimizing ‖w + x‖2 over the
same subspace, so the signs of the y’s in the above expression can be changed when
seeking the minimum distance. In the end,

min
x ∈ X

‖w − x‖2
2 = min

y ∈ Cm
‖w − V y‖2

2 = min
y ∈ Cm

(
1

y

)H

C

(
1

y

)
(3.2)

where C was defined in (3.1). It is interesting to note the above minimization can be
converted into a trivial generalized eigenvalue problem:

min
y ∈ Cm

(
1

y

)H

C

(
1

y

)
= min

z ∈ Cm+1, eH
1 z=1

zHCz = min
z ∈ Cm+1

zHCz

zHe1eH
1 z

. (3.3)
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Therefore, the smallest squared distance achieved between the vector w and vectors
of the subspace X, is the smallest eigenvalue of the generalized eigenvalue problem
Cz = µ(e1e

H
1 )z. This problem has only one finite eigenvalue as can be seen from

converting it with the help of the Cholesky factorization C = LLH :

LLHz = µ(e1e
H
1 )z → LHz = µ(L−1e1e

H
1 L−H)LHz → 1

µ
u = (L−1e1e

H
1 L−H)u,

where we have set u = LHz. The only nonzero eigenvalue of the rank-one matrix
L−1e1e

H
1 L−H is eH

1 L−HL−1e1. So

µmin =
1

eH
1 L−HL−1e1

=
1

eH
1 C−1e1

.

Therefore, we have proved the following result:
Lemma 3.1. Let X be an arbitrary subspace with a basis V = [v1, · · · , vm] and

let w /∈ X. Let P be the orthogonal projector onto X. Then, we have

‖(I − P)w‖2
2 =

1

eH
1 C−1e1

where

C = [w, V ]H [w, V ] =

(
wHw wHV
V Hw V HV

)
.

Proof. The result was proved above. An alternative proof which will help establish
some relations is as follows. Given an arbitrary vector w ∈ C

N , observe that

‖(I − P)w‖2
2 = wH(I − P)(I − P)w = wH(I − P)w = wHw − wHPw .

with P = V (V HV )−1V H . From this it follows that

‖(I − P)w‖2
2 = wHw − wHPw = wHw − wHV (V HV )−1V Hw . (3.4)

The right-hand side of (3.4) is simply the Schur complement of the (1,1) entry of C,
which as is well-known is the inverse of the (1,1) entry of C−1.

Let σmin[w, V ] and σmax[w, V ] be the smallest and largest singular values of
[w, V ]. Then a consequence of (3.2) and (3.3) is that

σmin[w, V ] ≤ ‖(I − P)w‖2 ≤ σmax[w, V ] . (3.5)

This is because eH
1 C−1e1 is a Rayleigh quotient of C−1, and so

1

λmax(C)
≡ λmin(C−1) ≤ eH

1 C−1e1 ≤ λmax(C−1) ≡ 1

λmin(C)
,

and the result follows by inverting the above inequalities.
Clearly, the right part of the bound (3.5) is too pessimistic. We expect ‖(I−P)w‖2

to be closer to the smallest singular value. A sharper result can be obtained by
exploiting an appropriate singular vector in (3.3).

Lemma 3.2. Let σmin[w, V ] be the smallest singular value of [w, V ] and wmin the
associated right singular vector and assume that eH

1 wmin 6= 0. Then,

σmin[w, V ] ≤ ‖(I − P)w‖2 ≤ σmin[w, V ]

|eH
1 wmin|

. (3.6)
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Proof. To prove the right inequality, we use (3.2) and (3.3), and select as particular
vector z the right singular vector wmin. This results in,

min
x ∈ X

‖w − x‖2
2 ≤ wH

minCwmin

wH
mine1eH

1 wmin

=
wH

min[w, V ][w, V ]Hwmin

wH
mine1eH

1 wmin

=
σ2

min[w, V ]

|eH
1 wmin|2

.

The left inequality was established above. It also follows from (3.3) and the observa-
tion that |eH

1 z| < ‖z‖2.
Consider now using this result for the situation of interest, i.e., when X is a Krylov

subspace Km and w is an eigenvector ui of A. The left side of (3.6) indicates that we
cannot have a good approximation if [ui, V ] is well conditioned. Linear dependence
of the set [ui, V ] can take place in two ways. As expected, the first is when ui is close
to the subspace Km. The second is when the basis V is ill-conditioned. However, in
this situation we would also need eH

1 wmin to be not too small.
Note that the above bound has one additional degree of freedom, which is the

selection of the basis.

4. Analysis in terms of Schur vectors. In this section we will exploit a Schur
decomposition of A of the form

A = QRQH ,

where Q is unitary, R is upper triangular with its (1,1) entry being the eigenvalue to
which convergence is being analyzed. We thus write R in the form

R =

(
λ1 sH

0 R1

)
. (4.1)

It will be assumed that λ1 is a simple eigenvalue, so the eigenvalues λ2, · · · , λN of R1

are all distinct from λ1. Since the powers of A are at the basis of Krylov methods, we
examine the sequence of the powers of the matrix R.

Lemma 4.1. For any k > 0 we have

Rk =

(
λk

1 sH
k

0 Rk
1

)
with sH

k = sH(λ1I − R1)
−1(λk

1I − Rk
1) . (4.2)

Proof. The proof is by induction and is straightforward.
If we apply this result to arbitrary polynomials the following corollary will be obtained.

Corollary 4.2. For any polynomial p, we have:

p(R) =

(
p(λ1) sHq(R1)

0 p(R1)

)
with q(λ) =

p(λ1) − p(λ)

λ1 − λ
. (4.3)

It is interesting to note in passing that the above result can be applied recursively
with the matrix R replaced by R1.

Now consider the problem of estimating the distance of the first eigenvector,
which is q1, the first column of Q, from the Krylov subspace. We need to mini-
mize ‖q1 − Kmy‖2 over all vectors y ∈ C

m, where Km is the Krylov basis Km =
[v,Av, · · · , Am−1v] of Km. However, since each basis vector is of the form Ajv =
QRjQHv, we can work in the Schur basis and minimize instead

‖e1 − [z,Rz, · · · , Rm−1z]y‖2 ≡ ‖e1 − pm−1(R)z‖2 .
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where z = QHv over polynomials pm−1 of degree ≤ m − 1.
Lemma 4.3. Let R be given by (4.1), and z = QHv where v is of norm unity and

let

z =
(η

z̃

)
; t =

(
1

(λ1I − R1)
−Hs

)
.

Define

ǫm = min
p ∈ Pm−1

p(λ1)=1

‖p(R1)z̃‖2.

Then, assuming (t, z) = tHz 6= 0 we have

min
p∈Pm−1

‖e1 − p(R)z‖2 ≤ ǫm

| cos θ(t, z)| . (4.4)

Proof. We define t̃ to be the vector with bottom n − 1 components of t, i.e.,

t̃H = sH(λ1I − R1)
−1 ,

and seek first an approximation to ηe1 by writing

ηe1 − p(R)z =

(
(1 − p(λ1))η − t̃H [p(λ1)I − p(R1)]z̃

−p(R1)z̃

)
,

where the previous corollary was exploited. We now select the polynomial pm−1 such
that pm−1(λ1) = 1 and ‖pm−1(R1)z̃‖2 is minimum. Then for this polynomial,

ηe1 − pm−1(R)z =

(
−t̃H z̃ + t̃Hpm−1(R1)z̃

−pm−1(R1)z̃

)
.

From this we get

(η + t̃H z̃)e1 − pm−1(R)z =

(
t̃Hpm−1(R1)z̃
−pm−1(R1)z̃

)
.

Using the notation defined above for ǫm, dividing both sides by η + t̃H z̃, under
the assumption that η + t̃H z̃ 6= 0, results in

e1 −
pm−1(R)

(η + t̃H z̃)
z =

1

(η + t̃H z̃)

(
t̃Hpm−1(R1)z̃
−pm−1(R1)z̃

)
.

Calling p the polynomial pm−1(λ)/[η + t̃H z̃] and taking 2-norms of both sides, gives
the following upper bound, with the help of the Cauchy-Schwarz inequality,

‖e1 − p(R)z‖2 ≤

√
1 + ‖t̃‖2

2

|η + t̃H z̃| × ǫm . (4.5)

The numerator of the fraction in the right-hand side of (4.5) is the norm of the vector
t, and the denominator is the absolute value of the inner product (t, z). Since we
assumed that ‖z‖2 = 1 then the factor in front of the term ǫm in (4.5) is the inverse
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of the cosine of the angle between t and z. The minimum on the left-hand side of
(4.4) does not exceed the right-hand side of (4.5), so the result is proved.

The lemma can be translated in terms of known quantities related to the original
basis.

Theorem 4.4. Let w1 be the left eigenvector of A associated with λ1 and assume
that cos θ(w1, v) 6= 0. Let P1 be the orthogonal projector onto the right eigenspace
associated with λ1, i.e., : P1 = q1q

H
1 , and let B1 be the linear operator B1 = (I −

P1)A(I − P1). Define

ǫm = min
p ∈ Pm−1

p(λ1)=1

‖p(B1)(I − P1)v‖2. (4.6)

Then, we have

‖(I − Pm)q1‖2 = min
y ∈ Cm

‖q1 − Kmy‖2 ≤ ǫm

| cos θ(w1, v)| . (4.7)

Proof. As was stated above, the theorem is nothing but a translation of the lemma
into the Q basis. First, we have already seen that

‖(I − Pm)q1‖2 = min
y

‖q1 − Kmy‖2 = min
p∈ Pm−1

‖q1 − p(A)v‖2 = min
p∈ Pm−1

‖e1 − p(R)z‖2

which only re-expresses the quantity ‖q1−p(A)v‖2 in the basis Q, so ‖q1−p(A)v‖2 =
‖e1 − p(R)z‖2.

Second, it can be seen that the vector w1 = Qt, where t is defined in the lemma
is a left eigenvector associated with λ1. Indeed we have

wH
1 (λ1I−A) = tHQHQ(λ1I−R)QH = [1 sH(λ1I−R1)

−1]

(
0 −sH

0 λ1I − R1

)
QH = 0.

So, (w1, v) = (Qt,Qz) = (t, z). Finally, the scalar ǫm in this theorem is identical with
the one in the lemma. It is just expressed with a different basis. Indeed, in the Q
basis the vector (I − P1)v is z̃. In the same basis, the operator (I − P1)A(I − P1) is
represented by the matrix R1.

The above inequality gives an analysis in terms of the variable ǫm. It differs from
other bounds by not using eigenbases or spectral expansions [11, 15]. Whether or not
eigenvectors are used, there are unknown quantities. On the one hand the eigenbasis
expansion can lead to large coefficients (Ill-conditioned bases for example). The Schur
factorization on the other hand does not have such difficulties as it should retain the
non-normality effects in the quantity ǫm.

A number of papers give a detailed analysis of the minimum of ‖p(A)v‖2 or
‖p(A)‖2 under a normalization assumption of the form p(0) = 1, see for example
the papers [1, 2]. In [2] for example, it is shown that there is a universal constant
ĉ ≤ 33.75 such that if W (A) is the field of values of A then for any polynomial

‖p(A)‖2 ≤ ĉ max
z ∈ W (A)

|p(z)| .

These bounds can easily be adapted to our situation to have an idea of the scalar ǫm.
Consider, for example, the situation where λ1 is the dominant eigenvalue and

the other eigenvalues are located in a disk of center c and radius r not containing
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λ1. For illustration we will take instead of the optimal polynomial, a simple power
polynomial, namely

pk(λ) =
(λ − c)k

(λ1 − c)k
.

Then,

pk(λ1) = 1; pk(R1) =

(
R1 − cI

λ1 − c

)k

.

Notice that the spectral radius of R1−cI
λ1−c

is

ρ

(
R1 − cI

λ1 − c

)
=

r

|λ1 − c| < 1,

so (R1 − cI)k/(λ1 − c)k tends to zero. We can write

ǫ̂m ≡ ‖pm−1(R1)z̃‖2 =
‖(R1 − cI)m−1z̃‖2

|λ1 − c|m−1
= δm

(
r

|λ1 − c|

)m−1

,

where δm is a sequence which converges to a certain constant δ ≤ ‖z̃‖2. One of
the difficulties of all methods based on an analysis of this sort, is the well-known
fact that the sequence δm can become very large before settling to its limit. This is
characteristic of highly non-normal matrices.

5. Analysis in terms of eigenvectors. A common technique for estimating
‖(I − Pm)ui‖2 assumes that A is diagonalizable and expands v, the first vector of
the Krylov sequence, in the eigen-basis. If A is diagonizable then for some matrix
of eigenvectors U , we have A = U Λ U−1, where Λ = diag(λ1, . . . , λN ). We examine
the convergence of a given eigenvalue which is indexed by 1, i.e., we consider u1,
the 1-st column column of U . The initial vector v is expanded in the eigen-basis
as v =

∑N
j=1 αjuj . It is assumed throughout that α1 6= 0 and ‖uj‖2 = 1 for all

j. In [11], it was shown that, under the above assumptions, we have in the general
non-Hermitian case,

‖(I − Pm)u1‖2 ≤ ξ1ǫ
(m)
1 , (5.1)

where

ξ1 =
∑

j 6=1

∣∣∣∣
αj

α1

∣∣∣∣ and ǫ
(m)
1 = min

n

p ∈Pm−1

p(λ1)=1

max
j 6= 1

|p(λj)| . (5.2)

This result, which requires a few easy manipulations to prove, does not exploit the
orthogonality of the eigenbasis in the normal case. In this particular case, the same
result holds but ξ1 can be sharpened to

ξ1,normal =

√∑n
j=2 |αj |2

|α1|
,

which represents the tangent of the angle between u1 and v. Note that the distance
‖(I − Pm)u1‖2 is nothing but the sine of the angle ∠(u1, Km).

Once an estimate for ǫ
(m)
1 is available, Theorem 2.1 can be invoked to give an

idea on the residual of the exact eigenpair with respect to the approximate (projected)
problem. See also [15, th. 3.10] for an alternative approach which exploits the spectral
decomposition.
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5.1. The approximation theory viewpoint. What is left to do is to estimate

ǫ
(m)
1 . For the sake of notational convenience, we will consider estimating ǫ

(m+1)
1 instead

of ǫ
(m)
1 . The underlying problem is one of approximation theory. For any continuous

function f defined on a compact set Ω, denote the uniform norm:

‖f‖∞ = max
z ∈ Ω

|f(z)| . (5.3)

The set Ω will later be taken to be the spectrum of A excluding λ1. Estimating ǫ
(m+1)
1

amounts to finding an upper bound for the distance, in the sense of the inf-norm just
defined, between the function f(z) = 1 and polynomials of degree ≤ m of the form
p(z) = (z − λ1)q(z), or, equivalently:

ǫ
(m+1)
1 = min

q ∈ Pm−1

‖1 − (z − λ1)q(z)‖∞ .

We recall that a subspace S of continuous functions on Ω, generated by k functions
φ1, · · · , φk satisfies the Haar condition if each function in S has at most k−1 distinct
roots. This means that any linear combination of the φi’s vanishes iff it has k distinct
roots in Ω. Let f be a continuous function and let p∗ be the best uniform approxima-
tion of f over Ω. The difference f − p∗ reaches its maximum modulus at a number
of extremal points. The characteristic property [10] of the best approximation states
the following.

Theorem 5.1. Let f be a continuous function and S a k-dimensional subspace
of the space of continuous functions on Ω, which satisfies the Haar condition. Then
p∗ ∈ S is the best uniform approximation of f over Ω, iff there exist r extremal
points zi, i = 1, · · · , r in Ω, and positive numbers µ1, · · · , µr, with k + 1 ≤ r ≤ 2k + 1
such that

r∑

i=1

µi[f(zi) − p∗(zi)]φ(zi) = 0 ∀ φ ∈ S. (5.4)

One important point here is that the number of extremal points is only known to
be between k + 1 and 2k + 1 in the general complex case. That r must be ≥ k + 1
is a consequence of the Haar condition and can be readily verified. When Ω is real,
then r = k + 1. The fact that r is only known to be ≤ 2k + 1 in the complex case,
comes from Caratheodory’s characterization of convex hulls which expresses a point
in co(Ω), the convex hull of Ω, as a convex combination of k + 1 points of Ω in real
spaces and 2k + 1 points of Ω in complex spaces.

We will now translate the above result for our situation. Let Ω = Λ(A)\{λ1} and
S = span{φj(z)}j=1,··· ,m where φj(z) = (z − λ1)z

j−1. Then, the dimension of S is
m and therefore the theorem states that there are r eigenvalues from the set Ω, with
m + 1 ≤ r ≤ 2m + 1 such that

r∑

k=1

µk[1 − (λk+1 − λ1)q∗(λk+1)]φj(λk+1) = 0 j = 1, . . . ,m .

Although we do not know how many extremal points there are we can still express
the best polynomial by selecting any set of m extremal points. Assume without loss
of generality that these points are labeled from 2 to m+1. Let p∗(z) = (z−λ1)q

∗(z).
We can write 1 − p∗(λk) at each of the extremal points λk as

1 − p∗(λk) = ρeiθk
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where θk is a real number and ρ is real and positive. Then it is easily seen that

1 − p∗(z) =

m+2∑
k=2

eiθk lk(z)

m+2∑
k=2

eiθk lk(λ1)

, (5.5)

where each lk(z) is the Lagrange polynomial:

lk(z) =
m+2∏

j=2
j 6=k

z − λj

λk − λj

. (5.6)

Indeed, 1 − p∗(z), which is of degree m, takes the values ρeiθk at the m + 1 points
λ2, . . . , λm+2. Therefore it is uniquely determined by the Lagrange formula

1 − p∗(z) =

m+2∑

k=2

ρeiθk lk(z) .

In addition 1 − p∗(λ1) = 1 and this determines ρ as the inverse of
m+2∑
k=2

eiθk lk(λ1),

yielding the relation (5.5). This establishes the following theorem.
Theorem 5.2. There are r eigenvalues in Ω = Λ(A)\{λ1}, where m + 1 ≤ r ≤

2m + 1, at which the optimal polynomial 1 − p∗(z) = 1 − (z − λ1)q
∗(z) reaches its

maximum value. In addition, given any subset of m + 1 among these r eigenvalues,
which can be labeled λ2, λ3, . . . , λm+2, the polynomial can be represented by (5.5). In
particular,

ǫ
(m+1)
1 =

1
m+2∑
k=2

eiθk

m+2∏
j=2
j 6=k

λ1−λj

λk−λj

. (5.7)

Proof. The result was proved above. Note that ǫ
(m+1)
1 is equal to ρ which is the

inverse of the denominator in (5.5).
In [11] it was shown that when r = m + 1, then the sign eiθk in the denominator

of (5.7) becomes equal to the conjugate of the sign of lk(λ1), which is the product
term in the denominator of (5.7). In this case, (5.7) simplifies to

ǫ
(m+1)
1 =

1
m+2∑
k=2

m+2∏
j=2
j 6=k

∣∣∣ λ1−λj

λk−λj

∣∣∣
. (5.8)

The result in [11] was stated incorrectly for the general complex case, because the
lemma on which it was based is only valid for real functions. Therefore, the result
holds true only for the situation when the spectrum is real or when it is known that
r = m + 1 (e.g., when N = m + 1). A proof of this result is given in Appendix 1.

5.2. Optimization viewpoint. An explicit formula for ‖(I − Pm)u1‖2 is ob-
tained immediately from Lemma 3.1.
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Corollary 5.3. Let Lm+1 be the rectangular matrix of C
N×(m+1), with column-

vectors α1 u1, v, A v, . . . , Am−1 v, then

‖(I − Pm)α1 u1‖2 =
1

eH
1 (LH

m+1Lm+1)
−1

e1

. (5.9)

Proof. The result follows by applying Lemma 3.1 with w = α1 u1, and V =
[v,Av, · · · , Am−1v].

We now consider a factorization of the matrix Lm+1. If we set α to be the vector
of C

m such that v = U α, then we obtain Aj v = U Λjα for j = 0, . . . ,m − 1. Then,
we have

Lm+1 = [α1u1, v, A v, . . . , Am−1 v]

= U [α1 e1, α,Λ α, . . . ,Λm−1 α]

= U Dα Wm+1,

with

Dα =




α1 0 . . . 0

0 α2
. . .

...
...

. . .
. . . 0

0 . . . 0 αN




and Wm+1 =




1 1 λ1 . . . λm−1
1

0 1 λ2 . . . λm−1
2

...
...

... . . .
...

0 1 λi . . . λm−1
i

...
...

... . . .
...

0 1 λN . . . λm−1
N




. (5.10)

As a result,

LH
m+1 Lm+1 = WH

m+1 DH
α (UHU)Dα Wm+1. (5.11)

With theses formulas, it is now possible to express the residual norms of the Arnoldi
process in terms of eigenvalues, eigenvectors, and the expression of v in the eigenbasis.

Theorem 5.4.

‖(I − Pm)α1 u1‖2 =
1

eH
1 (WH

m+1 DH
α (UHU)DαWm+1)

−1
e1

.

In the case of normal matrices (AH A = AAH), we have UH U = I, so the
preceding formula simplifies to

‖(I − Pm)α1 u1‖2 =
1

eH
1 (WH

m+1 DH
α DαWm+1)

−1
e1

. (5.12)

It is interesting to consider first the particular situation when m = 1. If m = 1, and
A is normal, a little direct calculation yields,

‖(I − P1) α1u1‖2 =

|α1|2
N∑

i=2

|αi|2

N∑
i=1

|αi|2
.

11



Now, let β the vector whose components are defined by

βi =
|αi|2∑N

j=1 |αj |2
.

We then obtain, as a consequence of the above equality,

‖(I − P1) u1‖ =

√√√√
N∑

i=2

βi =
√

1 − β1.

Note that β1 = cos2 θ(u1, v), where θ(u1, v) is the angle between v and u1, and so the
above relation can be expressed as ‖(I − P1) u1‖ = | sin θ(u1, v)|, which is another
expression for the well-known relation ‖(I − Pm)u1‖ = sin θ(u1,Km), for the case
m = 1. Observe that the bound given in (5.1) does not exploit the orthogonality of
the eigenvectors (for the normal case). Indeed, for the situation when m = 1, it yields

‖(I − P1) u1‖ ≤

N∑
i=2

|αi|

|α1|
. (5.13)

If we exploit this orthogonality in the proof of the result, we would obtain a slightly

sharper bound in which the numerator in (5.13) is replaced by
√∑N

i=2 |αi|2.
For the general case (m ≥ 1), we will derive the optimal bound for

‖(I − Pm) α1 u1‖2

‖α‖2
=

1

fm(β)
,

by solving the following optimization problem

min
β1≥0,······ ,βn≥0

N
P

i=1

βi=1

fm(β),

where

fm(β) = eH
1 (WH

m+1 DβWm+1)
−1

e1.

We now state the main result which gives an upper bound for the general situation.
Theorem 5.5. If m < N and ‖(I − Pk) u1‖ 6= 0 for k ∈ {1, . . . ,m}, then
1. If the matrix A is normal then

‖(I − Pm) u1‖ ≤ ‖α‖
|α1|

η
(m)
1 . (5.14)

2. If the matrix A is non normal but diagonalizable then

‖(I − Pm) u1‖ ≤

N∑

j=1

|αj |

|α1|
η
(m)
1 , (5.15)

where η
(m)
1 is defined as follows
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• If all eigenvalues are real or if m = N − 1, there exists m eigenvalues, labeled
λ2, . . . , λm+1 such that

η
(m)
1 =

1

1 +
m+1∑

k=2

m+1∏

j=2
j 6=k

|λj − λ1|
|λj − λk|

.

• If at least one eigenvalue is non real and if m < N − 1, there exist m eigen-
values, labeled λ2, . . . , λm+1, and m real numbers, θ2, . . . , θm+1 such that

η
(m)
1 =

1

1 −
m+1∑

k=2

eıθk

m+1∏

j=2
j 6=k

(λj − λ1)

(λj − λk)

.

The proof is given in Appendix 2. We now make a few remarks. In order to
compare the bound given in (5.1) and the bound given in Theorem 5.5, we need to

unravel a relationship between ǫ
(m)
1 and η

(m)
1 . From the expression of ǫ

(m)
1 we deduce

that

η
(m)
1 =

ǫ
(m)
1

1 + ǫ
(m)
1

.

Hence if the matrix is normal, the inequality (5.14) becomes

‖(I − Pm) u1‖ ≤ ‖α‖
|α1|

ǫ
(m)
1

1 + ǫ
(m)
1

. (5.16)

A second remark is that if m = N − 1 and λk = (k − 1)/(N − 1), k = 1, . . . , N
(Uniform distribution) then (5.16) reduces to

‖(I − PN−1) u1‖ ≤

√∑N
i=1 |αi|2

|α1|
1

2N−1
,

while (5.1) becomes

‖(I − PN−1) u1‖ ≤
∑N

i=2 |αi|
|α1|

1

2N−1 − 1
,

If the components of v in the eigen-decomposition are of equal size, i.e., αi = w,∀i ∈
{1, . . . , N} then we obtain for normal matrices

‖(I − PN−1) u1‖ ≤
√

N

2N−1
,

while (5.1) becomes

‖(I − PN−1) u1‖ ≤ N − 1

2N−1 − 1
.

In general, for normal matrices the bound (5.16) is a slight refinement of (5.1). This
comes from the fact that the bound (5.1) restricts the polynomials with the constraint
p(λ1) = 1 to obtain a simple result. There is no such restriction with the above result.
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Example 1. We now examine an example to illustrate Theorem 5.5 in the

complex case. We consider the following diagonal matrix, A =




1 0 0 0
0 2 0 0
0 0 2 + ı 0
0 0 0 3


,

and let v = (α1, α2, α3, α4)
T . We have uj = ej for j = 1, . . . , 4. Let us set λ1 = 1 and

consider the step m = 2. Using (5.12), we have

‖(I − P2)α1 e1‖2 = ‖α‖2 1

f2(β1, β2, β3, β4)
,

where

f2(β1, β2, β3, β4) =
β1β2 + 2β1β3 + β2 β3 + 4β1β4 + β2 β4 + 2β3 β4

β1(β2 β3 + β2 β4 + 2β3 β4)
.

Solving the optimization problem

min
β1≥0,β2≥0,β3≥0,β4≥0

β1+β2+β3+β4=1

f2(β),

we obtain:
1. f2(β

∗) = 6 + 2
√

5 = (1 +
√

5)2 and

β∗
1 =

√
5 − 1

4
, β∗

2 =
5 −

√
5

10
, β∗

3 =
5 −

√
5

10
, β∗

4 =
5 −

√
5

20
.

2. The optimal bounds are

‖(I − P1)α1 e1‖
‖α‖ ≤ 1

2
and

‖(I − P2)α1 e1‖
‖α‖ ≤ 1

1 +
√

5
.

3. The real numbers θ2, θ3, θ4 are such that

eı θ2 = −2 + ı√
5

, eı θ3 =
−1 + 2 ı√

5
, and eı θ4 =

1 − 2 ı√
5

.

It is important to remark that the vector β∗ solution of the minimization problem is
unique and all its components are non zero.

If all the eigenvalues are real and m = 2, we can show that there exists a solution
vector with only three non zero components, as we will see in the proof of Theorem
5.5.

6. Conclusion. The analysis of convergence of the Arnoldi process for comput-
ing eigenvalues and eigenvectors is difficult and results in the non-normal case are
bound to be limited in scope. This is essentially because the behavior of polynomials
of A or simply of the succesive powers Ak, can by itself be difficult to predict. All
three forms of analysis covered in this paper (based on projectors, or the Schur form
of A, or the diagonalization of A), confront this limitation. What is important is that
some insight can be gained from each of these forms of analysis. The Schur form
tells us that we can reduce the problem to that of estimating min p(B1)v̂ where B1

is a reduced Schur form of A, and v̂ is the orthogonal projection of the initial vec-
tor v onto the orthogonal of the eigenvector u1. The analysis based on eigenvectors
works essentially in the eigenbasis (assuming there is one) and converts the problem
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of estimating the error into a min-max problem. Here, there are three limitations.
The first comes from the nature of Theorem 2.1 which expresses the residual for the
projected problem of the exact eigenpair, not the other way around as desired. The
second one comes from the fact that the bounds utilize the eigen-coefficients αi of the
initial vector in the eigenbasis. These coefficients can be very large in case the basis
is ill conditioned. The last problem comes from the fact that the min-max quantities

required by the bounds (ǫ
(m)
1 , η

(m)
1 ) can themselves very difficult to estimate.
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Appendix 1. We denote by P
∗
m the set of polynomials p of degree ≤ m such

that p(λ1) = 0. We seek the best uniform approximation of the function f(z) = 1 by
polynomials of degree ≤ m in P

∗
m. Note that P

∗
m is of dimension m. Let the set of r

extremal points be λ2, . . . , λr+1 (See theorem 5.1). According to Theorem 5.2, given
any subset of m + 1 among these r extremal points, which we label λ2, λ3, . . . , λm+2,
the best polynomial can be represented by (5.5) in which eiθk = sign(1 − p∗(λk)).

Not much can be said from this result in the general situation. However, when
r = m + 1, then we can determine max |1 − p∗(z)|. In this situation the necessary
and sufficient conditions of Theorem 5.1 express the extremal points as follows. Let
us set ξj ≡ µj [f(zj) − p∗(zj)] for j = 1, · · ·m + 1, and select any basis φ1, · · · , φm of
the polynomial subspace P

∗
m. Then, the condition (5.4) translates to

m+1∑

k=1

ξkφj(λk) = 0 for j = 1, . . . ,m. (6.1)

The above equations constitute an underdetermined system of linear equations with
the unknowns ξk. In fact, since the ξk’s are all nonzero, we can fix any one component,
and the rest will then be determined uniquely. This is best done in a more convenient
basis of polynomials given by:

ωj(z) = (z − λ1)l̂j(z), j = 2, . . . ,m + 1, (6.2)

where l̂j is the Lagrange polynomial of degree m − 1,

l̂j(z) =

m+1∏

k=2
k 6=j

z − λk

λj − λk

, j = 2, . . . ,m + 1. (6.3)

With this we can prove the following lemma.
Lemma 6.1. The underdetermined linear system of m equations and m + 1 un-

knowns ξk, k = 2, . . . ,m + 2

m+2∑

k=2

ωj(λk)ξk = 0, j = 2, 3, . . . ,m + 1 (6.4)

admits the nontrivial solution

ξk =

m+2∏

j=2
j 6=k

λ1 − λj

λk − λj

, k = 2, . . . ,m + 2. (6.5)

Proof. The proof requires a straightforward algebraic verification; see [11] for
details.
We can now prove the main result of this appendix.

Theorem 6.2. Let p∗ be the (unique) polynomial of degree m satisfying the
constraint p(λ1) = 0, and which is the best uniform approximation to the function
f(z) = 1 on a compact set Ω consisting of at least m + 1 points. Assume that there
are m + 1 extremal points labeled λ2, . . . , λm+2 and let ξk, k = 2, . . . ,m + 2 be any
solution of the linear system (6.4). Write each ξk in the form ξk = δke−iθk where δk
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is real and positive and θk is real. Then, p∗ can be expressed as

1 − p∗(z) =

m+2∑
k=2

eiθk lk(z)

m+2∑
k=2

|lk(λ1)|
, (6.6)

where lk is the Lagrange polynomial of degree m

lk(z) =

m+2∏

j=2
j 6=k

z − λj

λk − λj

.

As a consequence,

ǫ
(m+1)
1 =




m+1∑

j=2

m+1∏

k=2,k 6=j

|λk − λ1|
|λk − λj |




−1

. (6.7)

Proof. Equation (5.4) states that

1 − p∗(z) = ρ
m+2∑

k=2

eiθk lk(z) with ρ =
1

∑m+2
k=2 eiθk lk(λ1)

. (6.8)

We now apply Theorem 5.1 which states that at the extremal points (now known to
be unique) there are m + 1 positive coefficients µj such that

ξk ≡ µk[1 − p∗(λk)] = ρµke−iθk (6.9)

satisfy the system (6.1). As was already mentioned, the solution to (6.1) is uniquely
determined if we set any one of its components. Set ξm+2 = lm+2(λ1). Then, accord-
ing to Lemma 6.1, we must have ξk = lk(λ1), for k = 2, . . . ,m + 2. Since ρ and µk

are positive, (6.9) shows that

e−iθk = sign(lk(λ1)) → eiθk =
lk(λ1)

|lk(λ1)|
→ ρ =

1
∑m+2

k=2 |lk(λ1)|
.

The result (6.7) is an expanded version of the above expression for ρ.
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Appendix 2: Proof of Theorem 5.5. We will consider the 2 cases, A nor-
mal and A non-normal, separately. In this appendix, the notation for the 2-norm is
changed to ‖.‖.

Case 1: A is normal. To prove the first part of this Theorem, we need two
lemmas.

Lemma 6.3. Let ω1, ω2, . . . , ωm be m distinct complex numbers and V the m×m
Vandermonde matrix whose entries Vi,j are given by :

v (i, j) = ωi−1
j , i, j = 1, . . . ,m.

and let y = (1, ρ, ρ2, . . . , ρm−1)T . Then, the dual Vandermonde system V T x = y
admits the unique solution x = (x1, x2, . . . , xm)T , where

xi =
∏

1≤j≤m
j 6=i

(
ρ − ωj

ωi − ωj

)
.

The proof is obvious.

Recall that β is the vector whose components are βi =
|αi|2∑N

j=1 |αj |2
and define

the matrix

Zm+1(β) = WH
m+1DβWm+1 ∈ C

m+1,m+1,

where Dβ and Wm+1 have been defined in (5.10). If the matrix function Zm+1(β) is
nonsingular, we define the functions fm by

fm(β) = eH
1 Z−1

m+1(β) e1,

with

β ∈ S =

{
β = (β1, · · · · · · , βN ) ∈ [0, 1]

N
/

N∑

i=1

βi = 1

}
.

Then we have the following result.
Lemma 6.4. If the matrix function Zm+1(β) is nonsingular, then the following

properties hold :
1. fm is homogeneous of degree −1, i.e., f(rβ) = r−1 f(β) for r > 0.
2. fm is a convex function defined on the closed convex set S.
3. fm is differentiable at β ∈ S and we have

∂fm

∂βi

(β) = − |eH
i Wm+1 t|2,

where t = (t1, t2, . . . . . . , tm+1)
T is such that Zm+1(β) t = e1.

Moreover, we have
∑N

i=1 βi

∂fm(β)

∂βi

= −fm(β).

Proof. The proof will proceed in 3 steps.
1. Let r be some positive real. Since Dr β = r Dβ , then

fm(rβ) = eH
1 (r (WH

m+1DβWm+1))
−1

e1 = r−1 fm(β).
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2. It is easy to verify that the set S is convex. By taking x = e1, G1 = Zm+1(rβ)
and G2 = Zm+1((1 − r)β′) where β, β′ ∈ S and 0 < r < 1 in the inequality

xH ( rG1 + (1 − r)G2)
−1

x ≤ xHr (G1)
−1

x + xH (1 − r) (G2)
−1

x

where G1 and G2 are positive definite hermitian matrices [16, p. 174], we obtain

fm(rβ + (1 − r)β′) ≤ r fm(β) + (1 − r) fm(β′).

Hence fm is convex.
3. Clearly, fm is differentiable at β ∈ S. By using the derivative of the inverse of the
matrix function, we have

∂Z−1
m+1(β)

∂βi

= −Z−1
m+1(β)

∂Zm+1(β)

∂βi

Z−1
m+1(β).

It follows that

∂Z−1
m+1(β)

∂βi

= −Z−1
m+1(β) WH

m+1 Ei Wm+1 Z−1
m+1(β)

where Ei = eie
T
i ∈ R

N,N . Therefore,

∂fm

∂βi

(β) = −|eT
i Wm+1 t|2.

The last equality follows from a simple algebraic manipulation, noting that

N∑

i=1

βi

∂fm(β)

∂βi

= −
N∑

i=1

tHWH
m+1(βieie

H
i )Wm+1 t = −tHWH

m+1DβWm+1 t = −f(β).

Proof of Theorem 5.5.. From (5.12) we deduce that

‖(I − Pm)α1 u1‖2 = ‖α‖2 1

eH
1 (WH

m+1 DβWm+1)
−1

e1

.

Since βi ≥ 0 and
∑N

i=1 βi = 1, in order to get an optimal bound of

‖(I − Pm)α1 u1‖2

‖α‖2
=

1

fm(β)
,

we must solve the following optimization problem

min
β1≥0,······ ,βN≥0

N
P

i=1
βi=1

fm(β). (6.10)

We introduce the Lagrangian function for this problem :

Lm(β, δ, µ) = fm(β) − δ

(
1 −

N∑

i=1

βi

)
−

N∑

i=1

µiβi,

where δ ∈ R ; µ = (µ1, · · · · · · , µN ) ∈ R
N . According to the Karush-Kuhn-Tucker

(KKT) conditions, if f has a local minimizer β∗ in S, then there exist Lagrangian
multipliers δ∗, µ∗ = (µ∗

1, · · · · · · , µ∗
N ), such that (β∗, δ∗, µ∗), satisfy the following

conditions:
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(i)
∂Lm

∂βi

( β∗, δ∗, µ∗) = 0 , for i = 1, . . . , N ,

(ii) (1 −
N∑

i=1

β∗
i ) = 0 and β∗

i ≥ 0, for i = 1, . . . , N .

(iii) µ∗
i β

∗
i = 0 for i = 1, . . . , N ,

(iv) µ∗
i ≥ 0 for i = 1, . . . , N .

We note that in this case the KKT conditions are also sufficient since the problem is
convex. Condition (i) and Lemma 6.4 give

∂Lm

∂βi

(β∗, δ∗, µ∗) = − |eH
i Wm+1 t∗|2 + δ∗ − µ∗

i = 0, (6.11)

where

t∗ = Z−1
m+1(β

∗) e1.

From (iii), it follows that for i = 1, . . . , N , either µ∗
i = 0 or β∗

i = 0. It can be
shown that β∗

1 6= 0. Indeed, notice that the best approximation to u1 from Km is
Pmu1 = K(KT K)−1(KT u1) and its first component β1 = uT

1 K(KT K)−1(KT u1) is
clearly zero iff KT u1 = 0. So if α1 6= 0 then β∗

1 6= 0.
We also notice that the vector β∗ = (β∗

1 , . . . , β∗
N ) has exactly m + s non zeros

components which will be labeled β∗
1 , . . . , β∗

m+s, with s ≥ 1. It follows that β∗ =
(β∗

1 , . . . , β∗
m+s, 0, . . . , 0) and µ∗

i = 0 for i = 1, . . . ,m + s. Substituting in (6.11) it
follows that

|eH
i Wm+1 t∗|2 = δ∗, for i = 1, . . . ,m + s, (6.12)

where t∗ = (t∗1, . . . , t
∗
m)T = (WH

m+1 Dβ∗ Wm+1)
−1

e1. Hence, we have

eH
i Wm+1 t∗ = eıθi

√
δ∗, for i = 1, . . . ,m + s, (6.13)

where ı =
√
−1 and θi ∈ R. We then obtain the following linear system





t∗1 + t∗2 + λ1 t∗3 + . . . . . . + λm−1
1 t∗m+1 = eıθ1

√
δ∗

t∗2 + λ2 t∗3 + . . . . . . + λm−1
2 t∗m+1 = eıθ2

√
δ∗

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

t∗2 + λm+s t∗3 + . . . . . . + λm−1
m+s t∗m+1 = eıθm+s

√
δ∗.

(6.14)

From Lemma 6.4 , we can easily show that t∗1 = δ∗

√
fm(β∗) =

√
δ∗ =

∣∣∣∣∣∣∣∣∣

eıθ1 1 λ1 . . . . . . . . . λm−1
1

eıθ2 1 λ2 . . . . . . . . . λm−1
2

...
...

... . . .
...

eıθm+1 1 λm+1 . . . . . . . . . λm−1
m+1

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

1 λ2 . . . . . . . . . λm−1
2

1 λ3 . . . . . . . . . λm−1
3

...
... . . .

...
1 λm+1 . . . . . . . . . λm−1

m+1

∣∣∣∣∣∣∣∣∣

. (6.15)
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Now, since WH
m+1 Dβ∗Wm+1t

∗ = e1, we deduce that

eıθ1 β∗
1 =

1√
δ∗

, and

m+s∑

i=1

λj−1
i eıθi β∗

i = 0, for j = 1, . . . ,m. (6.16)

Since β∗
1 is a positive real number, we obviously have: β∗

1 =
1√
δ∗

and eıθ1 = 1. Hence,

expanding the numerator of (6.15) with respect to its first column, gives

√
δ∗ = 1 −

m+1∑

k=2

eıθk

m+1∏

j=2
j 6=k

(λj − λ1)

(λj − λk)
= 1 −

m+1∑

k=2

eıθk lk(λ1), (6.17)

where lk(ω) =

m+1∏

j=2
j 6=k

(λj − ω)

(λj − λk)
. It is obvious that θ2, . . . , θm+1 are such that 1 −

∑m+1
k=2 eıθk lk(λ1) is real. The vector (eıθ2 β∗

2 , . . . , eıθm+s β∗
m+s)

T satisfies (6.16), which
is equivalent to the following linear system





e−ıθ2 β∗
2 + . . . . . . . . . . . . . . . . . . . . . . . . + e−ıθm+s β∗

m+s = − 1√
δ∗

,

λ2 e−ıθ2 β∗
2 + . . . . . . . . . . . . . . . + λm+s e−ıθm+s β∗

m+s = − λ1√
δ∗

,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λm−1
2 e−ıθ2 β∗

2 + . . . . . . . . . . . . + λm−1
m+s e−ıθm+s β∗

m+s = −λm−1
1√
δ∗

.

(6.18)

To obtain β∗
l and eıθl for l = 2, . . . ,m + s, we have to solve (6.18). Let us derive

the Lagrange multipliers µ∗
l . We have µl = 0, for l = 1, . . . ,m + s and the other

components are deduced from (6.11):

µ∗
l = δ∗ − |t∗2 + λl t∗3 + . . . . . . + λm−1

l t∗m+1|2 for l = m + s + 1, . . . , N.

In view of (6.14), and using Lemma 6.3, we obtain

µ∗
l = δ∗


1 −

∣∣∣∣∣∣∣∣

m+1∑

k=2

eıθk

m+1∏

j=2
j 6=k

(λj − λl)

(λj − λk)

∣∣∣∣∣∣∣∣

2
 ≥ 0 for l = m + s + 1, . . . , N.

Hence the eigenvalues λ2, . . . , λm+1 and the scalars θ2, . . . , θm+1 must be chosen such
that

∣∣∣∣∣

m+1∑

k=2

eıθk lk(λl)

∣∣∣∣∣ ≤ 1, for l = m + s + 1, . . . , N.

We have
√

δ∗ = pm(λ1), where pm is the complex valued polynomial of degree m − 1
satisfying the following conditions :





pm(ω) = 1 −∑m+1
k=2 eıθk lk(ω),

pm(λ1) =
√

δ∗ ≥ 2,
pm(λj) = 1 − eıθj for j = 2, . . . ,m + s,
|1 − pm(λj)| ≤ 1 for j = m + s + 1, . . . , N.

(C)
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To obtain the vector solution of the optimization problem we need to solve the linear
system (6.18). This can readily be solved by Cramer’s rule if for example s = 1.
If s > 1 and all the eigenvalues are real the system (6.18) will have infinitely many
solutions. But if one of the eigenvalues λl is complex, this system will have a unique
solution.

We will now investigate the possible values that s can take. There are 3 distinct
possibilities.

1) Case s = 1. This means that the system (6.18) has a solution with exactly
m + 1 non zeros elements. Using Lemma 6.3 for solving (6.18), we obtain

e−ıθl β∗
l = − ll(λ1)√

δ∗
for l = 2, . . . ,m + 1.

We can deduce β∗
l and eıθl , by noticing that β∗

l ≥ 0. So we get for l = 2, . . . ,m + 1

β∗
l =

|ll(λ1)|√
δ∗

and eıθl = − ll(λ1)

|ll(λ1)|
. (6.19)

Moreover β∗
1 =

1√
δ∗

and β∗
l = 0, for l = m + 2, . . . , N . Now, since

N∑

l=1

β∗
l = 1, then

√
δ∗ = 1 +

m+1∑

l=2

m+1∏

j=2
j 6=l

|λj − λ1|
|λj − λl|

. (6.20)

Since δ∗ is the minimum of the function fm(β), we deduce that λ2, . . . , λm+1 are such
that

m+1∑

l=2

m+1∏

j=2
j 6=l

|λj − λ1|
|λj − λl|

= min
λi1

,...,λim+1

m+1∑

l=2

m+1∏

j=2
j 6=l

∣∣λij
− λ1

∣∣
∣∣λij

− λil

∣∣ .

Since s = 1, the minimum is attained only for the set {λ2, . . . , λm+1} which will be
called the extremal set.

2) Case when s > 1 and all the eigenvalues are real. In this case eıθk = ±1. Let
us set σj = ζj β∗

j , where ζj = ±1. the system (6.18) can be written as





σ2 + . . . + σm+1 = − 1√
δ∗

− σm+2 . . . − σm+s,

λ2σ2 + . . . + λm+1σm+1 = − λ1√
δ∗

− λm+2σm+2 . . . − λm+sσm+s,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λm−1
2 σ2 + . . . + λm−1

m+1σm+1 = −λm−1
1√
δ∗

− λm−1
m+2σm+2 . . . − λm−1

m+sσm+s.

(6.21)

Using lemma 6.3, we obtain for l = 2, . . . ,m + 1

ζl β
∗
l = σl = − 1√

δ∗
ll(λ1) − σm+2 ll(λm+2) − . . . . . . − σm+s ll(λm+s).
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On the other hand, the conditions (C) can be written in this case





pm(ω) = 1 −∑m+1
k=2 ζk lk(ω),

pm(λ1) ≥ 2,
pm(λj) = 2 for j ∈ Θ− = {j ∈ {2, . . . ,m + s}, ζj = −1}
pm(λj) = 0 for j ∈ Θ+ = {j ∈ {2, . . . ,m + s}, ζj = 1}
pm(λj) ∈ [0, 2] for j = m + s + 1, . . . , N.

(C1)

First, we dispose of the case m = 2. If m = 2, conditions (C1) imply that s = 1
or pm ≡ 2. We assume now that m ≥ 3. In this case the polynomial pm is not
constant and we have pm(0) > 2. The sets Θ− and Θ− contain at least one element.
Otherwise pm ≡ 0 or pm ≡ 2, which is impossible since pm(λ1) > 2. Moreover, since
{2, . . . ,m + s} = Θ+

⋃
Θ−, the polynomials pm and 2 − pm are of degree m − 1 and

will have at most m−1 zero. Therefore, the number of elements of Θ+ and Θ− is less
or equal than m−1. Hence s ≤ m−1. The polynomial p′m is of degree m−2 and will
have m − 2 zeros. If we assume that λ2 < λ3 < . . . < λm+1, there exists an extremal
set of eigenvalues {λ2, . . . , λm+1} with alternating sign, i.e., ζj = (−1)j−1 ζ2. So in
the real case (all the eigenvalues are real), there exists a solution β∗ of the system
(6.21), with only m + 1 non zeros components:

β∗
l =

|ll(λ1)|√
δ∗

for l = 2, . . . ,m + 1.

Invoking the fact that
∑N

k=2 β∗
k = 1 we obtain

√
δ∗ = 1 +

m+1∑

l=2

|ll(λ1)|.

And the extremal {λ2, . . . , λm+1} is such that

m+1∑

l=2

m+1∏

j=2
j 6=l

|λj − λ1|
|λj − λl|

= min
λi1

,...,λim+1

m+1∑

l=2

m+1∏

j=2
j 6=l

∣∣λij
− λ1

∣∣
∣∣λij

− λil

∣∣ .

This extremal set is not the unique set verifying the preceding property.

3) Case when s > 1 and one of the eigenvalues is complex. Here the situation is
more complicated. If we consider the case m = 2. The conditions (C) now give





p2(ω) = 1 − eıθ2 l2(ω) − eıθ3 l3(ω),

p2(λ1) =
√

δ∗ ≥ 2,
p2(λj) = 1 − eıθj for j = 2, . . . , 2 + s,
|1 − p2(λj)| ≤ 1 for j = s + 3, . . . , N.

(C2)

We can have s = 2 (see the example). And it is not easy to explicit in general the
real numbers θ2, . . . , θm+s. We can only conclude that if there exists a solution of the
optimization problem (6.10) with only m + 1 non zeros components then the optimal
solution is given by (6.20). Otherwise the optimal solution satisfies (6.17).
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Case 2: A is non normal but diagonalizable. Let ∆ be the diagonal matrix
defined by

∆ =
1√√√√

N∑

j=1

|αj |




√
|α1| 0 . . . 0

0
√
|α2|

. . .
...

...
. . .

. . . 0

0 . . . 0
√
|αN |




.

By Theorem 5.4, we may write

‖(I − Pm)α1 u1‖2 =
1

eH
1 (WH

m+1 ∆∆−1DH
α UHU Dα∆−1 ∆Wm+1)

−1
e1

.

Using the Courant-Ficher theorem, we obtain

‖(I − Pm)α1 u1‖2 ≤ ‖U Dα∆−1‖2

eH
1 (WH

m+1 ∆2Wm+1)
−1

e1

.

Moreover, for all vector x = (x1, . . . , xN )T , we have

‖U Dα∆−1x‖ =




√√√√
N∑

j=1

|αj |


 ‖

N∑

j=1

αj√
|αj |

xjuj‖.

Since ‖ui‖ = 1, we have by the triangle inequality

‖U Dα∆−1x‖ ≤




√√√√
N∑

j=1

|αj |




N∑

j=1

|αj |√
|αj |

|xj | =




√√√√
N∑

j=1

|αj |




N∑

j=1

√
|αj | |xj |.

The Cauchy-Schwarz inequality implies that ‖U Dα∆−1‖ ≤




N∑

j=1

|αj |


, since

‖U Dα∆−1x‖ ≤




N∑

j=1

|αj |


 ‖x‖.

We thus have

‖(I − Pm)α1 u1‖2 ≤

(∑N
j=1 |αj |

)2

fm(ρ1, . . . , ρN )
, where ρj =

|αj |∑N
k=1 |αk|

.

Since ρj ≥ 0 and
∑N

k=1 ρk = 1, we conclude that

‖(I − Pm)α1 u1‖2 ≤

(∑N
j=1 |αj |

)2

minρ1≥0,...,ρN≥0
ρ1+...+ρN=1

fm(ρ1, . . . , ρN )
=

(∑N
j=1 |αj |

)2

δ∗
.

This completes the proof by denoting η
(k)
1 =

1√
δ∗

. Let us consider the following

examples for illustrating the conditions (C1) given in the preceding proof
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Example 2. If λk = k, k = 1, . . . , N .
1. If N is even ( N = 2n > 4).

• If m = 2, then s = 1 and the extremal set is unique and is {2, N}, the

polynomial verifying the conditions (C1) is p2(w) = 2− 2
w − 2

N − 2
and we

have p2(1) =
2n − 1

n − 1
, β∗

1 =
n − 1

2n − 1
, β∗

2 =
1

2
, β∗

3 =
1

2(2n − 1)
, therefore

‖(I − P2)α1 u1‖
‖α‖ ≤ n − 1

2n − 1
.

• If m = 3, then s = 1 and the extremal set is {2, n + 1, N}, and we have

p3(w) = 2 − 2
(w − 2)(w − N)

(n − 1)(n + 1 − N)
, and

‖(I − P3)α1 u1‖
‖α‖ ≤ (n − 1)

2(n + 1)
.

2. If N is odd (N = 2n + 1).
• If m = 2, then s = 1 and the extremal set is unique and is {2, N}, the

polynomial verifying the conditions (C1) is p2(w) = 2− 2
w − 2

N − 2
and we

have

‖(I − P2)α1 u1‖
‖α‖ ≤ 2n − 1

4n
.

• If m = 3, then s = 2. The sets {2, n + 1, 2n + 1} and {2, n + 2, 2n + 1}
are the two extremal sets with alternating sign. The polynomial p3 is

given by p3(w) = 2 − 2
(w − 2)(w − N)

(n − 1)(n + 1 − N)
, and we have

‖(I − P3)α1 u1‖
‖α‖ ≤ 2n + 2

2(n − 1)
.

Notice that p3(n + 1) = p3(n + 2) = 0. And the solution of the system
6.18, is





β∗
1 =

2n + 2

2(n − 1)

β∗
2 =

n2

2n2 + n − 1
− β∗

4

n + 1

2n2 + n − 1

β∗
3 =

1

n + 1
− β∗

4

β∗
5 =

n − 1

2(2n2 + n − 1)
+ 2β∗

4

n + 1

2(2n2 + n − 1)

β∗
4 ∈

[
0,

1

n + 1

]

We remark that neither β∗
2 nor β∗

5 can be zero.
Example 3. Here we reconsider Example 1 ( N = 4, λ1 = 1, λ2 = 2, λ3 = 2 +

ı, λ4 = 3).
• For m = 2, we have s = 2 and the polynomial p2 verifying conditions (C2) is

p2(w) = 1 +
8 − i√

5
− 3 − i√

5
w, and we have p2(1) = 1 +

√
5.
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