
Diagonalization methods in PARSEC ∗

Yousef Saad † Yunkai Zhou † Constantine Bekas ‡

Murilo L. Tiago § James R. Chelikowsky §

June 1st, 2006

Abstract

The Pseudopotential Algorithm for Real-Space Electronic Calculations (PARSEC)
is a software package written by a team consisting of materials scientists and computer
scientists over approximately one decade. During this period, the algorithms used in
PARSEC have undergone a series of improvements. This paper reviews the nature of
the eigenvalue problems encountered in solving the Kohn-Sham equations and discusses
the evolution of the diagonalization methods used in PARSEC.

Keywords: Diagonalization, Kohn-Sham equations, Density Functional Theory, Lanczos
algorithms, subspace iteration

1 Introduction: The Kohn-Sham Equations

The electronic structure of a condensed matter system, e.g., cluster, liquid or solid, is de-
scribed by a wave function Ψ which can be obtained by solving the Schrödinger equation:

HΨ = EΨ, (1)

where H is the Hamiltonian operator for the system and E the total energy.
In its original form the operator H is very complex, involving sums over all electrons and

nuclei, Laplacian related to each nucleus, etc. However, most theories of condensed matter
systems make two fundamental approximations which render the problem more tractable.
These are the Born-Oppenheimer approximation and the one-electron approximation [1].

∗Work supported by NSF under grants DMR/0325218 and DMR/0551195 and by the Minnesota Super-
computer Institute

†Computer Science & Engineering, University of Minnesota, 200 Union st. SE, Minneapolis, MN 55455.
E-mail: {saad,yunkai}@cs.umn.edu

‡IBM Research, Zurich Research Laboratory, Saumerstrasse 4, 8003 Rüschlikon - Switzerland Email:
bek@zurich.ibm.com

§Institute for Computational Engineering and Sciences (ICES) (C0200), ACES Building, Room 4.324, 201
East 24th Street ACES, 1 University Station, University of Texas at Austin, Austin, Texas 78712. Email:
{mtiago, jrc} @ices.utexas.edu.

1

With these approximations the following simplified form of the Schrödinger equation,
known as the Kohn-Sham equation, is obtained:

[

−~
2∇2

2m
+ Vtot[ρ(r), r]

]

ψ(r) = Eψ(r), (2)

Here, the Laplacian represents the kinetic operator, ~ is Planck’s constant, m is the electron
mass, and Vtot is the total potential at some point r in space. As the equation indicates, the
potential depends on the charge density ρ whose expression will be given below. The poto-
tential Vtot is the sum of three components: The ionic potential which reflects energy from
the core electrons, the Hatree potential which reflects electron-electron Coulombic energies,
and the Exchange-Correlation potential which arises from the one-electron approximation:

Vtot = Vion + VH + Vxc .

Both of the terms Vxc and VH depend on the charge density ρ(r), in a certain point in space.
This charge density in turn depends on the wavefunctions of the above equation via,

ρ(r) =
∑

occupied states

|ψi(r)|
2. (3)

The numerical problems encountered in solving the above Kohn-Sham equations are
among the most challenging in computational sciences today. The central computation
involved is the repeated solution of a large, symmetric eigenvalue problem. Traditional ap-
proaches use a plane-wave basis to expand the required wave-functions (eigenvectors). This
approach is comparable to spectral techniques used in solving other types of partial differen-
tial equations. In the mid-1990s, our group started exploring an alternative to this approach
which is based on exploiting high-order finite difference schemes. For localized systems, the
methods proved to be as accurate and more efficient than plane-wave techniques [2, 3, 4].
The matrices resulting from both finite difference methods and plane-wave techniques are
large, and the number of eigenvalues and eigenvectors required is proportional to the number
of atoms in the system. Herein lies the challenge in DFT calculations.

2 Solution methods

It is important to understand the nature of the problem embodied by the Kohn-Sham equa-
tions. The potential and charge density must be self-consistent in the Kohn-Sham equations.
This means that the charge density (for example) as defined by (3), where the wavefunc-
tions ψi are solutions of (2), should be identical with the charge density used in solving (2).
Therefore, one can view the KS equations under different angles:

1. A nonlinear eigenvalue problem ;

2. A system of nonlinear equations;

3. A nonlinear optimization problem whereby the charge density and wavefunctions are
sought to minimize total energy.

2

In practice, the problem is viewed as a nonlinear eigenvalue problem, where the nonlin-
earity is treated by an SCF (self-consistend field) iteration which exploits a Broyden-type
quasi-Newton approach. In most situations the nonlinear SCF iteration takes a few steps,
though the iteration may encounter convergence difficulties for metallic systems.

Initial Guess for V , V = Vat

Solve (−1
2
∇2 + V)ψi = ǫiψi

Calculate new ρ(r) =
∑occ

i |ψi|
2

Find new VH : −∇2VH = 4πρ(r)

Find new Vxc = f [ρ(r)]

Vnew = Vion + VH + Vxc + ‘Mixing’

If |Vnew − V | < tol stop

V = Vnew

?

?

?

?

?

?

6

�

-

Figure 1: Schematic representation of the SCF loop

A schematic representation of the SCF loop is shown in Figure 1. The most time con-
suming part of the calculation is in solving the eigenvalue problems. The main difficulty
is not just the sheer size of the problem but rather the fact that the number of wanted
eigenvalues (occupied states) can be quite large. It has often been observed, though not
emphasized in the scientific computing community, that in this situation, the orthogonal-
ization process often constitutes a significant part of the cost of the whole diagonalization
process. It is therefore important to try to consider methods which attempt to reduce the
orthogonalization cost. Several of the methods considered recently have been motivated by
this observation.

3 Real-space Finite Difference Methods and PARSEC

Efforts by our team to develop an effective real-space package began over a decade ago.
These resulted in the recently released Pseudopotential Algorithm for Real Space Electronic

3

Calculations (PARSEC) code. This software represents the collaborative efforts of several
researchers (see a partial list in the acknowledgments at the end of the paper). It runs on
parallel as well as sequential platforms. The parallel option runs as a distributed memory
program, using MPI for communication. Many improvements, some major, others minor,
were added over the years. The last two major changes are (1) procedure to take advantage of
(geometric) symmetry (2) inclusion of new diagonalization methods. The following illustrates
some milestones of the code development:

• Sequential real-space code developed on a Cray YMP [up to ’93]

• Ported to a cluster of SGI workstations [up to ’96]

• CM5 [’94-’96] (Massive parallelism begins).

• IBM SP2 (Using PVM)

• Cray T3D (Combining PVM + MPI) – around ’96-’97

• Cray T3E (using MPI) – ’97

• IBM SP with +256 nodes – ’98+

• SGI Origin 3900 [128 processors] – ’99+

• IBM SP - PARSEC name given, ’02

• SGI Altix, IBM SP4, and other platforms. Code rewritten in F90. PARSEC V.1.0
released in ’05.

PARSEC discretizes the Kohn-Sham equations in real space by using High-Order Finite
Difference Methods. The typical base geometry is a cube from which points outside of a
sphere are removed. The advantages of using finite differences on regular meshes are many
and have been emphasized elsewhere [5, 2, 3, 4]. For example, the matrix associated with the
Laplacian need not be actually stored. Indeed, the result of multiplying it by a vector can be
implemented using “stencils” [6]. Second, implementation aspects of the code are simplified,
relative to planewave-based codes. Thus, parallelization, based on a domain-decomposition
approach, becomes straightforward.

In recent years, electronic structure codes based on real space finite difference implemen-
tations have become increasingly popular and gained ground over the standard planewave-
based codes. They now allow to handle very large systems effectively and accurately on
massively parallel computers.

One question which is often asked is: Why not use Finite Element Method (FEM) dis-
cretizations? Finite elements allow to reduce the number of discretization points by refining
the mesh only where this is necessary. However, using an FEM approach with irregular
meshes, would be far more complex to implement. In particular, any benefits gained from
using FEM meshes, namely the reduction of the number of points required, may be out-
weighed by the loss of simplicity and the additional cost of indirect addressing inherent
to irregular sparse computations. Using high-order finite differences allows to reduce the
number of points required – possibly in a better way – without having to sacrifice simplicity.

4

x

yz

Figure 2: Order 4 Finite Difference Approximation stencil.

Our current code uses up to order-12 finite difference formulas, but typically order six
to eight formulas are more common. A stencil of order 4 is shown if Figure 2. Using higher
degree formulas in order to reduce the number of points further does not pay in general
because of other limitations and inaccuracies in other parts of the method. An example of a
nonzero pattern of a sparse matrix resulting from the FD discretization is shown in Figure 3.
Recall however, that even though the matrix is sparse, it is not stored as a sparse matrix.

Figure 3: Pattern of resulting matrix for Ge99H100

As an example of the improvements made by the code over the past few years, consider the
example of the quantum dot reported in [5]. One particular system discussed in the paper
is an Si525H276 cluster. This particular system leads to a discretized Hamiltonian of size
N ≈ 290, 000 and a number of states nstates = 1, 194. The experiment performed in around
1997, took about 20 hours of CPU time to complete on a Cray T3E, using 48 processors. The

5

exact same example calculated with the latest version of PARSEC, takes only two hours, on

one Processor [7]. The processor is an Intel Madison processor with a clock rate of 1.3GHz.
This means that the same calculation which could only be done with sizable super-computer
resources in 1997, can now essentially be handled by a good workstation. Needless to say,
as is always the case, the gains are to be attributed to improvements in both hardware and
algorithms. On the algorithms side, the two main ingredients to the gains are (1) more
efficient diagonalization (2) inclusion of capability to exploit symmetry. The next section
explores the diagonalization methods used.

4 Diagonalization methods in PARSEC

Diagonalization methods used in the early versions of PARSEC emphasized simplicity and
robustness. We used an algorithm, called DIAGLA, based on a block-Davidson approach
with various enhancements. One of the important features of DIAGLA is its ability to use
parts of subspaces from previous SCF iterations as a starting point to a new SCF loop. This
was the work-horse for the earlier versions of PARSEC until about 2000 when we explored
the usefulness ARPACK [8], a well-tuned public domain package which became available a
few years earlier. ARPACK was added as an option, as it was found to be competitive in
general, and superior in many cases to DIAGLA.

An inconvenient feature of ARPACK is that it does not have the ability to reuse previous
spaces, as did DIAGLA, for starting new SCF loops. It was also not easily amenable to
changes that would enable this feature. In fact, ARPACK can be viewed as a highly effective
method for computing a relatively small number of eigenvectors, but it was not designed for
computing large eigenspaces.

4.1 Focus on eigenspaces

In our recent work this observation was taken a step further and we considered methods that
are specifically designed for computing large eigenspaces instead of focussing on eigenvalues.
The rationale for this viewpoint is that most eigenvalue codes over-emphasize the accuracy
of individual eigenvectors at substantial cost. In particular, as in Lanczos-type methods,
large subspaces are needed in order to extract accurate eigenvectors. This implies higher
orthogonalization costs if full reorthogonalization is used.

4.2 Partial Reorthogonalization Lanczos

A first approach we attempted for computing invariant subspaces was a Partial Reorthogo-
nalization Lanczos algorithm [9, 10].

We set as a goal to primarily consider the problem as an eigenspace problem instead of an
eigenvalue problem. The difference between these two viewpoints is that an eigenspace may
have a basis other than an eigenbasis, and this basis may be accurate enough for computing
charge densities.

The charge density ρ(r) at a point r in space is traditionally computed from the eigen-

6

vectors Ψi of the Hamiltonian matrix H via the formula

ρ(r) =
no

∑

i=1

|Ψi(r)|
2, (4)

where the summation is taken over all occupied states of the system under study. However,
it is also possible to compute ρ(r) without explicitly resorting to using eigenvectors. Let the
vectors ψi be the discretizations of Ψi(r) with respect to r. Then, the charge densities are
the diagonal entries of the “functional density matrix”

P = Vno
V ⊤

no

with Vno
= [ψ1, . . . , ψno

]. (5)

Specifically, the charge density at the j-th point rj is the j diagonal entry of P . An important
observation here is that any orthogonal basis V which spans the same subspace as the
eigenvectors ψi, i = 1, . . . , no can be used, not just the eigenbasis.

In [11] a Lanczos procedure was used to generate a good subspace from which an apro-
priate basis is extracted to use in Equation (5). The algorithm is based on the Lanczos
procedure with partial reorthogonalization and the use of a special stopping criterion for
determining when the underlying desired subspace has copnverged. The Lanczos procedure
is used without restarts and this results in larger bases than would normally be required by
a standard restarted algorithm.

Recall the Lanczos recurrence:

βj+1vj+1 = Avj − αjvj − βjvj−1

Here the scalars βj+1, αj are selected so that vj+1 ⊥ vj, vj+1 ⊥ vj−1, and ‖vj+1‖2 = 1. In
theory this is enough to guarantee that the whole system {vj} is orthonormal and using the
notation Vm ≡ [v1, . . . , vm], we have:

V T
mAVm = Tm =















α1 β2

β2 α2 β2

.

βm−1 αm−1 βm

βm αm















However, in practice the algorithm undergoes a severe loss of orthogonality as soon as first
eigenvalues start to converge. The remedy is to use some form of reorthogonalization. In
Partial Reorthogonalization the current Lanczos vector is reorthogonalized against all previ-
ous vectors only when this is deemed necessary. This can be done thanks to an inexpensive
recurrence relation [9, 12, 13, 14, 15]. In recent work [14, 15] this idea which dates from the
mid-80s was revived and a code became available. Our tests with real-space Hamiltonians
from PARSEC, revealed that the need for reorthogonalization is not too strong, see Figure 4
for an example.

The second important ingredient of this procedure is a test whose goal is to indicate how
good is the underlying eigenspace without knowledge of individual eigenvectors. When the
test indicates that the underlying subspace has converged – then we can compute the desired

7

0 20 40 60 80 100 120 140 160 180 200
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Lanczos steps

le
ve

l o
f o

rt
ho

go
na

lit
y

0 20 40 60 80 100 120 140 160 180 200
10

−14

10
−13

10
−12

Lanczos steps

le
ve

l o
f o

rt
ho

go
na

lit
y

Figure 4: Loss of orthogonality in standard Lanczos (left) and recovery of orthogonality with
partial reorthogonalization Lanczos (right). The curves show the levels of orthogonality of
the Lanczos basis in both cases, for a Hamiltonian of size n = 17077 corresponding to Si10H16.
Note that a total of 34 reorthogonalizations were taken.

Partial Lanczos ARPACK
no A ∗ x orth mem. secs A ∗ x rest. mem. secs

248 3150 109 2268 2746 3342 20 357 16454
350 4570 184 3289 5982 5283 24 504 37371
496 6550 302 4715 13714 6836 22 714 67020

Table 1: Partial Reorth. Lanczos vs. ARPACK for Ge99H100.

orthogonal basis (eigenvectors). This test is inspired from the meaning of the sum of eigen-
values associated with the occupied states, which correspond to energies. The underlying
eigenspace is deemed to have converged when this total energy has converged. This requires
the computation of the sum of the no lowest eigenvalues of the tridiagonal matrix generated
by the Lanczos algorithm, where no is the number of occupied states.

Table 1 shows an example of the performance of this approach, see also, [11]. Here the
matrix size is N = 94, 341; and the number of nonzeros is nnz = 6, 332, 795. The number
of occupied states is 248. Generally, the approach requires more memory than ARPACK
or other standard diagonalization methods, but this results in a factor of 4 to 6 gain in
CPU time. On the memory issue, one may note that in most cases we have tested, the
demand was still manageable. In addition, there is the option of using secondary storage
which, if properly implemented, should bypass problems with storage. The above mentioned
partial Lanczos is not implemented in PARSEC. On the other hand, we have integrated
the Thick-Restart Lanczos (TRLan) code [16, 17] into PARSEC [7] because it requires less
memory.

8

4.3 Chebyshev Subspace Iteration

A further improvement of the idea of exploiting subspaces, can be obtained by resorting
to a subspace iteration algorithm which exploits Chebyshev filtering. The main idea of
Chebyshev subspace iteration is not new, see for example, [9, 18, 19]. In fact the classical
subspace iteration has long been viewed as incompetitive relative to the Lanczos algorithm.
An algorithm which is sub-optimal in a general context, can become the method of choice
in a specific context. This has to do with the way in which the algorithm is used and with
some appealing features of subspace iteration. In particular, subspace iteration is easier to
extend to a nonlinear version.

0 1 2 3 4 5 6 7 8
−0.2

0

0.2

0.4

0.6

0.8

1

x

y

Poly. filter; Intervals: [0 0.3] ; [0.3 1.3927] ; [1.3927 7.957] ; deg = 5

Figure 5: A typical Chebyshev filter.

Given a subspace Vi = [v1, . . . , vm], the basic step of the algorithm is to “filter” the
subspace as

V̂i+1 = Pk(A)Vi

where Pk is a polynomial of low degree selected to enhance desired eigencomponents of each
of the vectors vi. Instead of iterating the subspace to convergence as is done in the traditional
subspace iteration, the procedure we propose avoids this and accepts whatever improvements
have been made by filtering, to directly proceed with the next SCF iteration. In other words
diagonalization has been replaced by subspace filtering. Another way to view this is that
the SCF loop and the diagonization loop are merged into a form of “nonlinear subspace
iteration”. A flowchart of the algorithm is shown in Figure 6. A question is whether this
will have a negative effect on convergence. We observed that, in most cases, the method
converges within similar number of iterations as eigenvector-based methods do.

Extensive numerical experiments available in [7, 20] indicate that the new algorithm is
several times faster than methods based on standard iterative diagonalizations. We reproduce
here a typical example with the silicon cluster Si525H276 example mentioned earlier. For this
example the matrix size is 292, 584 and the number of occupied states is 1,194. However,
the system benefits from a 4-fold symmetry which leads to actual diagonalizations with four

9

Select initial V = Vat

Get initial basis {ψi} (diag)

Calculate new ρ(r) =
∑occ

i |ψi|
2

Find new VH : −∇2VH = 4πρ(r)

Find new Vxc = f [ρ(r)]

Vnew = Vion + VH + Vxc + ‘Mixing’

If |Vnew − V | < tol stop, else V = Vnew

Filter basis {ψi} (with new H)

?

?

?

?

?

?

?

-

�

Figure 6: Schematic representation of the SCF loop using Chebyshev filters instead of regular
diagonalization

matrices of size 73, 146. The tests were performed on one 1.3 GHz Intel Madison processor
of the SGI Altix cluster at the Minnesota Supercomputing Institute.

Table 2 shows a comparison of Chebyshev filtering (CheFSI) versus ARPACK and Thick-
Restart Lanczos (TRLan, [16, 17]) within PARSEC. CheFSI uses degree-8 polynomials, with
the first step diagonalization done by calling TRLan. All three methods exploit the same
symmetry operations. We also note that the total energies calculated by the three methods
agree to more than eight digits, more than the accuracy provided by DFT approximations.

5 Eigenvalue-free methods

As the size of the eigenvalue problem in the Kohn-Sham equation increases for larger systems,
it is natural to ask how far one can go with classical approaches. It is important to remember
that no matter what improvements are made to the algorithms, the scaling of an eigenvector-
based approach is at least cubic with the number of states. For example, in the case of the

10

method # A ∗ x SCF its. CPU(secs)
CheFSI 124761 11 5946.69
ARPACK 142047 10 62026.37
TRLan 145909 10 26852.84

Table 2: ChebSI versus 2 standard diagonalization schemes for Si525H276

Chebyshev-Subspace iteration, the overall cost of the orthogonalization process scales like
n × p2 where p is the number of states and n is the number of mesh-points. The number
of mesh-points is indirectly related to the number of atoms, and it is ultimately at least
linear with respect to this number. This is because it has to reflect the volume of the overall
geometry. In addition, as p becomes larger, we should no longer ignore the burden of solving
the projected problem, a dense eigenvalue problem whose cost is cubic with respect to size,
i.e., with respect to the number of states. In fact, as the systems will become ever larger
this cost will start exceedingly high. As an example, in a recent calculation done for a
Silicon cluster of about 9,000 silicon atoms, the discretized Hamiltonian had a size close to
3 millions, and the number of states was close to 20,000.

Therefore, it is important to ask whether or not we can completely avoid diagonolization
and replace it by a much more economical procedure. There exist techniques which avoid
solving eigenvalue problems (or equivalent optimization problems). The main ingredient
of these techniques, to which the class of “Order(n) methods” or “linear scaling methods”
belong, is to obtain the charge density by other means than using eigenvectors, e.g. by
exploiting certain decay features of the density matrix ρ(r, r′).

Recall that the density matrix is defined as P = f(H), where f is a step function.
We can approximate f by, e.g., a polynomial and this will result in a procedure to obtain
columns of P inexpensively via: Pej ≈ pk(H)ej. Doing this for j = 1 : n will not result in
a practical procedure. However, one can exploit the sparsity of P (especially in planewave
bases). Here, ideas of “probing” allow to compute several columns of P at once. The
probing technique is illustrated in Figure 7. In a nutshell, when (and if) P is sparse and
its sparsity pattern is known, it is possible to compute all the columns that do not share
common nonzero entries at once with a single multiplication with a well selected vector. For
example, for a tridiagonal matrix, columns 1, 4, 7, 10, (3k−2), can all be computed at once
by multiplying it with the vector [1, 0, 0, 1, 0, 0, 1, 0, 0, ..]T . Similarly, it is possible to compute
colums 3k − 1 for k = 1, . . . , .., ⌈n/3⌉ with a single matrix-vector product, and then colums
3k for k = 1, . . . , .., ⌈n/3⌉ with a single matrix-vector product. In all the entire matrix can
be obtained in 3 matvecs. This can be extended to general sparse matrices provided the
pattern is known in advance.

Probing computes the whole matrix P whereas we are interested only in its diagonal
which represents the charge density. One can ask the question as to what can be done if the
pattern is known and we seek only the diagonal. This was explored for the case of banded
matrices, in [21].

11

1 3 16
1

1

(1)

(3)

 (12)

(15)

1

1

5 20

1

1

1

(5)

(13)

 (20)

12 13

Figure 7: Probing in action: blue columns can be computed at once by one matrix-vector
product. Then red columns can be coumputed the same way.

6 Conclusion

In exploring various techniques for solving the eigenvalue problems in DFT, we observed
that to improve efficiency one must exploit two important factors: (1) the problem is an
eigenspace problem instead of a standard eigenvalue problem; (2) it is important to take
into account the outer nonlinear loop. Observation (1), means that we need to pay less
attention to the convergence of the individual eigenvectors. Instead, a subspace can be built
which has just the required size, and can be improved by operating with the Hamiltonian.
The result is a dramatic reduction in diagonalization costs. The second observation enables
us to merge the SCF and diagonalization loops and consider the problem as fully nonlinear.

It remains to consider what can be done for much larger systems. Existing “linear scaling
methods” may be adapted by adding techniques from linear algebra, such as probing, or some
of the techniques seen in [21].

Acknowledgements

The PARSEC work is an on-going team effort. Among the main contributors to the code are
(in an approximatly chronological order): J. Chelikowsky, Y. Saad, N. Troullier, K. Wu, X.
Jing, H. Kim, A. Stathopoulos, I. Vassiliev, M. Jain, L. Kronik, A. Makmal, R. Burdick, M.
Alemany, M. Tiago, Y. Zhou. Many others have contributed in other ways, with algorithmic
ideas or with technical support.

References

[1] W. Kohn and L. J. Sham. Phys. Rev., 140:1133–, 1995.

12

[2] J. R. Chelikowsky, N. Troullier, and Y. Saad. The finite-difference-pseudopotential
method: Electronic structure calculations without a basis. Physical Review Letters,
72:1240, 1994.

[3] J. R. Chelikowsky, N. Troullier, K. Wu, and Y. Saad. Higher order finite difference
pseudopotential method: An application to diatomic molecules. Physical Review B, B
50:11355, 1994.

[4] X. Jing, N. Troullier, D. Dean, N. Binggeli, J. R. Chelikowsky, K. Wu, and Y. Saad. Ab
initio molecular dynamics simulations of Si clusters using a high-order finite-difference-
pseudopotential method. Physical Review B, B 50:12234, 1994.

[5] A. Stathopoulos, S. Öğüt, Y. Saad, J.R. Chelikowsky, and H. Kim. Parallel methods
and tools for predicting materials properties. Computing in Science and Engineering,
2:9–18, 2000.

[6] Y. Saad. Iterative Methods for Sparse Linear Systems, 2nd edition. SIAM, Philadelpha,
PA, 2003.

[7] Y. Zhou, Y. Saad, M. L. Tiago, and J. R. Chelikowsky. Self-consistent-field calcula-
tion using Chebyshev polynomial filtered subspace iteration. Journal of Computational

Physics, (to appear).

[8] R. Lehoucq, D. C. Sorensen, and C. Yang. Arpack User’s Guide: Solution of Large-Scale

Eigenvalue Problems With Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia,
1998.
URL http://www.caam.rice.edu/software/ARPACK.

[9] B. N. Parlett. The Symmetric Eigenvalue Problem. Prentice Hall, Englewood Cliffs,
1980.

[10] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear
differential and integral operators. J. Res. Nat. Bur. Standards, 45:255–282, 1950.

[11] C. Bekas, Y. Saad, M. L. Tiago, and J. R. Chelikowsky. Computing charge densities with
partially reorthogonalized Lanczos. Computer Physics Communications, 171(3):175–
186, 2005.

[12] H. D. Simon. Analysis of the symmetric Lanczos algorithm with reorthogonalization
methods. Linear Algebra and its Applications, 61:101–132, 1984.

[13] H. D. Simon. The lanczos algorithm with partial reorthogonalization. Math. Comp.,
42:115–142, 1984.

[14] R. M. Larsen. PROPACK: A software package for the symmetric eigenvalue problem
and singular value problems on Lanczos and Lanczos bidiagonalization with partial
reorthogonalization, SCCM, Stanford University
URL: http://sun.stanford.edu/∼rmunk/PROPACK/.

13

[15] R. M. Larsen. Efficient Algorithms for Helioseismic Inversion. PhD thesis, Dept.
Computer Science, University of Aarhus, DK-8000 Aarhus C, Denmark, October 1998.

[16] K. Wu, A. Canning, H. D. Simon, and L.-W. Wang. Thick-restart lanczos method for
electronic structure calculations. J. Comput. Phys., 154:156–173, 1999.

[17] K. Wu and H. Simon. Thick-restart Lanczos method for large symmetric eigenvalue
problems. SIAM J. Matrix Anal. Appl., 22:602–616, 2000.

[18] H. Rutishauser. Computational aspects of F. L. Bauer’s simultaneous iteration method.
Numerische Mathematik, 13:4–13, 1969.

[19] Y. Saad. Numerical Methods for Large Eigenvalue Problems. Halstead Press, New York,
1992.

[20] Y. Zhou, Y. Saad, M. L. Tiago, and J. R. Chelikowsky. Accelerating self-consistent-
field calculations using Chebyshev-filtered subspace iteration — the parallel version.
Technical report, Minnesota Supercomputing Institute, University of Minnesota, 2006
(in preparation).

[21] C. Bekas, E. Kokiopoulou, and Y. Saad. An estimator for the diagonal of a matrix.
Applied Numerical Mathematics, 2007. To appear.

14

