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Abstract

This paper discusses a class of Filtered Conjugate Residual Algorithms (FCR) as
a way to compute the product of the exponential of a matrix by an arbitrary vector.
These methods utilize implicitly expansions of the exponential function in a basis of
orthogonal polynomials. FCR methods based on Laguerre, Hermite, and Chebyshev
polynomials, are described and their performances are compared. The paper discusses
how scaling and staging can affect convergence.
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1 Introduction

The problem of calculating expressions of the form exp(−τA)b , A ∈ Rn×n being a non-
negative definite matrix and b ∈ Rn an arbitrary vector, occurs frequently in applications.
The problem is equivalent, for example, to that of finding the solution to the system of
ordinary differential equations

ẏ = −Ay, y(0) = b (1)

at time τ . Equation (1), in turn, arises out of finite difference or finite element discretizations
of thermal problems (A symmetric) or convection-diffusion and vibration problems (A non-
symmetric). Similarly, very stiff systems of the form (1) arise in predicting the time-evolution
of electrical circuits. Another occurrence of (1) is in computing the transient solution of
Markov chains [22].

The calculation of a matrix exponential times a vector is a treacherous task; see [17] for
a survey of potential difficulties. Many methods have been proposed [10, 4, 9, 14, 16, 6]. For
very large, sparse matrices, perhaps the preferred method [12, 11, 21, 13, 7, 18, 8] is to use
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Lanczos or Arnold iterations to obtain a matrix Vm ∈ Rn×m whose columns span the Krylov
subspace span{b, Ab, · · · , Am−1}, and then to write

exp(−τA)b ≈ Vmexp(−τHm)βe1 (2)

where Hm is the tridiagonal or Hessenberg matrix resulting from the Lanczos or Arnoldi
process and β = ‖b‖2. Since Hm will normally be much smaller than A, dense matrix
methods such as Padè approximations to exp(t) can be used to evaluate exp(−τHm).

The recent paper [20] showed how to apply a filtered conjugate residue-like algorithm
(FCR) to problems as diverse as regularization in graphics, information retrieval, and in
electronic structure calculations. Here, we take up the question whether a FCR-type algo-
rithm can also be usefully applied to exponential propagation. The family of techniques we
examine in this paper are based on the expansion of exp(t) as a series of orthogonal poly-
nomials. Bergamaschi et al. has recently proposed a technique for exponential propagation
that uses Chebyshev polynomials [3, 2]; that this technique appears to be competitive with
(2) adds interest to the question whether other choices for orthogonal polynomials might be
used to good effect. This work was initially motivated by an intriguing question. The use of
Chebyshev polynomials requires some prior knowledge of an interval [a, b] which contains the
spectrum of the matrix [3, 2]. In contrast, polynomials that are orthogonal on the half real
line (e.g., Laguerre) or the whole line (Hermite) would normally require no bounds. This is
an important practical advantage. As will be seen, this advantage is somewhat mitigated by
the requirement to pre-scale the matrix and proceed in stages.

2 Orthogonal Expansions for exp(−τt)
One can approximate exp(−τA)v by using either rational or polynomial approximations
to exp(−τt). Methods based or rational approximations require inversion of large sparse
matrices, and are not considered here. To avoid inversion, we therefore consider methods
based on approximating exp(−τt) by a polynomial p(t). Then, in place of exp(−τA)b,
we compute p(A)b by a series of matrix-vector mutliplies using A. As background to this
strategy, we briefly consider in this section how to expand exp(−τt) in series of

• Generalized Laguerre polynomials

• Hermite polynomials

• Chebyshev polynomials.

These polynomials can be thought of as being generated from the sequence {1, t, t2, . . . } by
a Gram-Schmidt procedure using an appropriate inner product.

2.1 Generalized Laguerre Polynomials

The Generalized Laguerre Polynomials Lα
n(t), n = 0, 1, 2, . . . and α > −1, are orthogonal

with respect to the inner product
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〈p, q〉L =

∫

∞

0

tαe−tp(t)q(t)dt (3)

The expansion of the exponential function exp(−τt) in terms of laguerre polynomials is know
to be [15, p. 90]

e−τt = (τ + 1)−α−1

∞
∑

n=0

(

τ

τ + 1

)

Lα
n(t), 0 < t <∞. (4)

By truncating the above summation to only m terms an mth degree polynomial will be
obtained that will approximate exp(−τt) over some interval.

2.2 Hermite Polynomials

The Hermite Polynomials Hn(t), n = 0, 1, 2, . . . , are orthogonal with respect to the inner-
product

〈p, q〉H =

∫

∞

−∞

e−t2p(t)q(t)dt (5)

In terms of these orthogonal polynomials the exponential exp(−τt) has the following expan-
sion [15, p. 74]

e−τt = eτ2/4

∞
∑

n=0

(−1)nτn

2nn!
Hn(t), −∞ < t <∞. (6)

2.3 Chebyshev Polynomials

The Chebyshev Polynomials Tn(t), n = 0, 1, 2, . . . , are orthogonal with respect to the inner-
product

〈p, q〉T =

∫ +1

−1

p(t)q(t)dt√
1 − t2

. (7)

In this case, it is useful to give the expansion of the exponential that is fitted in a general
interval with half-width l1, and centered at l2, rather than just the interval [−1, 1]. The
expansion of exp(−τt) in terms of Chebyshev polynomials over the intervals [l2 − l1, l2 + l1]
is given by [1, section 9.6]

e−τt =
∞

∑

n=0

anTn

(

t− l2
l1

)

, l2 − l1 < t < l2 + l1. (8)

where

a0 = exp(−τ l2)I0(−τ l1) (9)

ak = 2exp(−τ l2)Ik(−τ l1), k > 1, (10)

Ik(t) being the modified Bessel function of the first kind and l1 and l2 being the semi-width
and the midpoint, respectively, of the interval over which the approximation is desired.

For further information on orthogonal polynomials, the reader is referred to [15, 1].
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2.4 Rate of Convergence

To give the reader a sense of how well these expansions fit the exponential z(t) = exp(−τt),
we plot partial sums for (4), (6), and (8) using several values of τ and different numbers
of terms. Fig. (1) shows the convergence performance for a moderately slow exponential,
z(t) = exp(−t) ( τ = 1) with m = 7 terms summed. Fig. 2 shows convergence for a
somewhat faster decaying exponential, z(t) = exp(−2.5t) ( τ = 2.5) using a partial sum
of m = 10 terms. Finally, Fig. 3 shows how the three orthogonal expansions behave for a
decaying oscillation z(t) = exp(−0.2t)cos(3t) ( τ = 0.2+3j) with m = 15 terms. In all cases
the Chebyshev expansions were over the interval [l2 − l1, l2 + l1] = [−1, 7]. The generalized
Laguerre expansions all used α = 0.

A number of observations about the rate of convergence of these expansions can be
made from these plots. The expansions with Lα

n(t), Hn(t), and Tn(t) all performed well
for the moderately decaying exponential, see Fig. 1. However, the interval over which the
fit is good varies depending on the family of orthogonal polynomials used. For Laguerre
polynomials, the region of good fit is anchored at zero and gradually grows toward the right
as more terms are added in the expansion. For Hermite polynomials, the fit is concentrated
in a narrower region around zero; again, as one adds more terms, the region of better fit
gradually expands. Finally, for Chebyshev polynomials, the region where the polynomial fits
exp(−τt) is explicitly under the user’s control, being [l2 − l1, l2 + l1]; adding more terms does
not expand the fit region but does improves the quality of fit within the region.

Fig. 2 and (3) indicate how problems might arise with these orthogonal expansions.
Specifically, the middle picture on the left in Fig. 2 indicates that Hermite polynomials
may have numerical difficulties with rapidly decaying exponentials. In the picture one sees
how the polynomial expansion is ‘working very hard’ to fit the steeply rising part of the
exponential to the left of zero, and consequently does a poor job fitting the curve for t
greater than zero.

To further examine this phenomena, we plot in Fig. 4 the error

∥

∥

∥

∥

∥

e−τt − eτ2/4

m−1
∑

n=0

(−1)nτn

2nn!
Hn(t)

∥

∥

∥

∥

∥

(11)

versus m, the number of terms included in the partial sum. The plot used τ = 3 and t = 0.5.
The rate of convergence is very poor, and many terms need to be included in the partial
sum before the fit is close. Evidently, if we wish to use Hermite expansions to evaluate
exp(−τA)b, we must ensure that τλmax ( λmax being the largest eigenvalue of A) is not very
large (say less than 2).

Laguerre polynomials pose a different problem, as indicated in Fig. 3: these polynomi-
als seem to struggle more when fitting rapidly oscillating exponentials. This behavior is
exemplified by the first picture on the left in Fig. 3, which shows that in this example the
rate of convergence for Laguerre polynomials is considerably worse than that for Hermite
or Chebyshev polynomials. One must go up to 50 terms in the partial sum—see Fig. 5—
to get a fit comparable to the Hermite or Chebyshev expansions with only 15 terms. This
suggests that Laguerre polynomials may not be well suited for evaluating exp(−τA)b when
A has eigenvalues with large imaginary parts.
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Figure 1: Fit of z = e−τt, τ = 1, with zApprox =
∑6

n=0 cnL
0
n(t) (top), zApprox =

∑6
n=0 cnHn(t)

(middle), and zApprox =
∑6

n=0 cnTn(t), l1 = 4, l2 = 3 (bottom). Pictures on left plot e−τt and
polynomials; pictures on right show error ‖e−τt − zApprox‖ versus t.
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Figure 2: Fit of z = e−τt, τ = 2.5, with zApprox =
∑9

n=0 cnL
0
n(t) (top), zApprox =

∑9
n=0 cnHn(t)

(middle), and zApprox =
∑9

n=0 cnTn(t), l1 = 4, l2 = 3 (bottom). Pictures on left plot e−τt and
polynomials; pictures on right show error ‖e−τt − zApprox‖ versus t.
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Figure 3: Fit of z = Re [e−τt] , τ = 0.2 + 3j, with zApprox =
∑14

n=0 cnL
0
n(t) (top), zApprox =

∑14
n=0 cnHn(t) (middle), and zApprox =

∑14
n=0 cnTn(t), l1 = 4, l2 = 3 (bottom). Pictures on

left plot Re [e−τt] and polynomials; pictures on right show error ‖Re [e−τt] − zApprox‖ versus
t.
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Figure 5: Fit of z = Re [e−τt] , τ = 0.2 + 3j, with zApprox =
∑49

n=0 cnL
0
n(t) (50 terms). Left is

plot of Re [e−τt] and polynomials; right is error ‖Re [e−τt] − zApprox‖ versus t.
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3 Computing exp(−τA)b Using Orthogonal Polynomials

All of the above families of orthogonal polynomials satisfy recurrence relations of the form

βn+1Pn+1(t) = (t− αn)Pn(t) − βn−1Pn−1(t). (12)

These three-term recurrences for the generalized Laguerre, Hermite, and Chebyshev polyno-
mials are given by

−(n+ 1)Lα
n+1(t) = (t− α− 2n− 1)Lα

n(t) + (n+ α)Lα
n−1(t) (13)

(1/2)Hn+1(t) = tHn(t) − nHn−1(t) (14)

Tn+1(t) = 2tTn(t) − Tn−1(t) (15)

together with the following starting values,

Lα
0 (t) = 1, Lα

1 (t) = 1 + α− t (16)

H0(t) = 1, H1(t) = 2t (17)

T0(t) = 1, T1(t) = t. (18)

These recurrences allow one to easily generate successive members of these orthogonal fam-
ilies.

Assuming exp(−τt) has the following expansion in terms of orthogonal polynomials Pn(t)
(see (4), (6), and (8)),

e−τt =
∞

∑

n=0

cnPn(t), (19)

the following algorithm can be used to compute exp(−τA)b:

Algorithm 3.1 exp(−τA)b by Orthogononal Polynomials

1. pj−1 = P0(A)b ; pj = P1(A)b
2. z = c0pj−1 + c1pj

3. For j = 1, 2, . . .
4. pj+1 = (Apj − αjpj − βj−1pj−1)/βj+1

5. z = z + cj+1pj+1

6. if |cj+1| ‖pj+1‖ ≤ ǫ, break

7. pj−1 = pj ; pj = pj+1

8. EndFor

The algorithm uses (12) in line 4 and (19) in lines 2 and 5. If A is an n × n matix
with Nz(A) non-zeros, then Algorithm 3.1 requires a storage of 4n numbers (the 4 vectors
z, pj−1, pj, pj+1) and entails a computational cost of about 9n+ 2Nz(A) operations per pass
through the for-loop ( step 7 can be carried out in O(2) operations by redirecting pointers
rather than copying data).
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4 Filtered Conjugate Residual-type Algorithm

An alternative way of computing exp(−τA)b using orthogonal polynomials is based on the
Filtered Conjugate Residual (FCR) algorithm presented in [20]. The algorithm parallels the
usual Conjugate Residual algorithm [19] except that constants α̃j and βj are computed using
an inner-product 〈 , 〉w in function space rather than by the usual vector inner-product:

〈p, q〉w =

∫ b

a

p(t)q(t)w(t)dt (20)

w(t) ≥ 0 being some weight function. In addition, the updates to xj use a different coefficient
αj than the coefficient α̃j used to update r̃j. Inputs to the algorithm are a filter function ψ,
an inner-product 〈p, q〉w, a matrix A and a vector b:

Algorithm 4.1 Filtered Conjugate Residual Polynomials Algorithm

0. Compute r̃0 := b− Ax0, p0 := r̃0 π0 = ρ̃0 = 1; s0 = 0
1. Compute λπ0

2. For j = 0, 1, . . . , until convergence Do:

3. α̃j := 〈ρ̃j, λρ̃j〉w/〈λπj, λπj〉w
4. αj := 〈ψ, λπj〉w/〈λπj, λπj〉w
5. xj+1 := xj + αjpj sj+1 = sj + αjπj

6. r̃j+1 := r̃j − α̃jApj ρ̃j+1 = ρ̃j − α̃jλπj

7. βj := 〈ρ̃j+1, λρ̃j+1〉w/〈ρ̃j, λρ̃j〉w
8. pj+1 := r̃j+1 + βjpj πj+1 := ρ̃j+1 + βjπj

9. Compute λπj+1

10. EndDo

Here πj(λ), ρ̃j(λ), and sj+1(λ) are polynomials of degree j and the vectors pj, r̃j, xj are
the corresponding sequences of vectors

pj = πj(A)r0 (21)

r̃j = ρ̃j(A)r0 (22)

xj+1 = x0 + sj+1(A)r0 (23)

where r0 = b− Ax0.
We interject one implementation detail. To get FCR to work with Hermite polynomials,

one can use the inner-product

〈p, q〉H′ =

∫

∞

−∞

e−(t−ts)2p(t)q(t)dt (24)

in place of (5). This stratagem ensures that 〈ρ̃j, λρ̃j〉 6= 0 in line 3 when j = 0 and ρ̃0 = 1.
For simplicity, we take ts = 1.

The Filtered Conjugate Residue algorithm satisfies the following properties:
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Proposition 4.1 The solution vector xj+1 computed at the j-th step of Algorithm 4.1 is of

the form xj+1 = x0 + sj+1(A)r0, where sj is the j-th degree polynomial:

sj+1(λ) = α0π0(λ) + · · · + αjπj(λ) . (25)

The polynomials πj and the auxiliary polynomials ρ̃j(λ) satisfy the orthogonality relations,

〈λπj(λ), λπi(λ)〉w = 〈λρ̃j(λ), ρ̃i(λ)〉w = 0 for i 6= j . (26)

In addition, the filtered residual polynomial ψ(λ) − λsj(λ) minimizes ‖ψ − λs(λ)‖w among

all polynomials s of degree ≤ j − 1.

The proof is given in [20] for a general inner product.
It is worth remarking that the πj’s generated by algorithm 4.1 are the orthogonal poly-

nomials on [a, b] associated with the weight t2w(t); this result follows from (26). When the
FCR algorithm with Laguerre polynomials Lα

n(t) is used, for example, then the πj’s are the
generalized Laguerre polynomials Lα+2

n (t).

Corollary 4.1 If φ = 1−ψ, then the polynomial ζj(λ) = 1−λsj minimizes ‖φ−ζj‖w among

all polynomials pj(λ) ∈ Pj satisfying pj(0) = 1.

Note that the FCR algorithm has a cost per loop of 3 vector saxpy operations, and one
matrix-vector multiply. All other operations are with polynomials and these are usually
negligible. They include two polynomial saxpys (the calculation of sj+1 on line (5) is not
necessary but has been inserted for clarity), 3 polynomial inner-products, and one polynomial
multiply by λ. If we write ψ, πj, and ρ̃j using as basis the orthogonal polynomials associated
with 〈 , 〉w, then we can evaluate a polynomial inner-product at a cost of 2j; the λ-polynomial
multiply will also incur a cost of 6j (by employing the 3-term recurrence relation for the
orthogonal polynomials to express λπj+1 in the orthogonal polynomial basis). In short, the
over-all cost per loop is 6n + Nz(A) + 16j, j being the loop index and Nz(A) the number
of non-zeros in A. To add a termination test like ‖xj+1 − xj‖ < ǫ, analogous to line 6
in algorithm (3.1), would increase the loop-cost by another 2n. FCR requires storage of
4n+ 3j (the 4 vectors xj, r̃j, Apj, and pj, and coefficients for the 3 polynomials ρ̃j, πj, λπj).
Our bookkeeping suggest that (4.1) may be marginally faster but requires marginally more
memory than (3.1), provided j remains small compared to n.

To use FCR to compute exp(−τA)b, let φ = exp(−τλ). Then, with x0 = 0, apply the
FCR algorithm to get xj =

∑j−1
k=0 αkπk(A)b. Finally, compute zj = b−Axj = (I−Asj(A))b =

ζj(A)b as an approximation for φ(A)b = exp(−τA)b. If one wants the current estimate for
exp(−τA)b at each step in the iteration, one can replace line (5) in algorithm (4.1) by

zj+1 = zj − αApj. (27)

If A is symmetric with eigen-decomposition A = V ΛV T , then

‖exp(−τA)b− zj‖ = ‖φ(A)b− ζj(A)b‖2 (28)

= ‖V (φ(Λ) − ζj(Λ))V T b‖2 (29)

≤ max
i

|φ(λi) − ζj(λi)| · ‖V T b‖2 (30)

The hope is that if ‖φ(λ) − ζj(λ)‖w is small over some interval [a, b] containing the
spectrum of A, then maxi |φ(λi)− ζj(λi)| will also be small, although it is hard to guarantee
this since ‖ ‖w is only a least squares norm.
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5 Scaling and Staging

The FCR algorithm involves calculation of vector sequences sj(A)b, ρ̃j(A)b, and πj(A)b,
which involve polynomials in A. If the polynomials sj(λ), ρ̃j(λ), or πj(λ) become very large
in absolute value at any of the eigenvalues of A, there could be significant loss in accuracy
and even numerical overflow during computation of successive polynomials in the sequence.

One strategy to reduce the risk of numerical overflow is to scale A by a number |a| ≈ ‖A‖
and then to break the calculation of the exponential into nstage stages, where nstage ≈ τ |a|:

Algorithm 5.1 Scaled and Staged Calculation of exp(−τA)b

1. Â = A/|a|
2. τ̂ = τ |a|/nstage

3. z0 = b
4. For t = 1 : nstage

5. zt = exp(−τ̂ Â)zt−1

6. EndFor

One way to view the above algorithm is from the angle of solving systems of differential
equations. Computing exp(−τA)b is equivalent to solving the differential equation y′ =
−τAy for t ∈ [0, 1] with the initial condition y0 = b. Instead of attempting to solve this
differential equation in a single step, the above algorithm splits the interval [01] into nstage

subintervals and solves the differential equation in nstage steps.

The reasoning here is that, in the first place, scaling A by |a| moves the spectrum of Â
(assumed to be symmetric non-negative definite) into an interval [0, |a|] near [0, 1]; second,
the act of subdividing the calulation into nstage stages ensures that τ̂ ≈ 1, which should help
our orthogonal polynomial approximation for φ(λ) = exp(−τ̂λ) converge after a relatively
few number of terms in the partial sum. The condition τ̂ ≈ 1 means we are closer to situation
in Fig. 1 than that in Fig. 2.

6 Numerical Results

In this section we apply the FCR approach described above to some sample calculations of
exp(−τA)b.

6.1 Stiff Symmetric Matrix

As our first example, consider the computation of exp(−A)b ( τ = 1) when A is the matrix

A = V Tdiag
{

10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 102
}

V. (31)

V is a randomly chosen orthogonal matrix, and b = [1, 1, · · · , 1]T . This problem highlights
the effect of the relatively large eigenvalue λmax = 102 on the convergence rate of various
FCR methods, with and without scaling. The condition number of A is κA = 108.

A linear system of differential equations like (1) that has a very wide range of time con-
stants (eigenvalues) is called a stiff system. Such systems are difficult to integrate by explicit

12



FCR Method |a| nstage Iters Time(s) ‖φ− zIters‖
1 Laguerre 1.0 1 * * *
2 Laguerre ‖A‖1 1 4333 22.101 4.6e-13
3 Laguerre ‖A‖1 10 4470 3.4541 1.8e-12
4 Laguerre ‖A‖1 100 5200 2.1109 3.0e-12

5 Hermite 1.0 1 * * *
6 Hermite ‖A‖1 1 * * *
7 Hermite ‖A‖1 10 * * *
8 Hermite ‖A‖1 100 2300 1.3026 3.0e-13

9 Chebyshev 1.0 1 66 0.047 1.3e-13
10 Chebyshev 1.0 10 220 0.1863 1.7e-12
11 Chebyshev 1.0 100 1000 1.1619 2.1e-11

Table 1: FCR method applied to matrix A given by (31). Asterisks in a row indicate the
method did not converge. For the Chebyshev cases, [l2 − l1, l2 + l1] = [0, ‖A‖1].

integration methods (e. g., Forward Euler), often requiring a very small time-step to avoid
instability. Because exponential propagation can be considered equivalent to integrating a
system like (1), our choice of matrix (31) tests the ability of the FCR method to integrate a
stiff system of ODEs.

Results for this problem are given in Table 1. From the table we see that FCR with the
Chebyshev inner product converged the fastest; the method converged without scaling or
staging. FCR with Laguerre polynomials was the second best performer; here, scaling by
‖A‖1 was necessary for the method to converge, and staging the calculation by nstage = 10
and nstage = 100 materially improved the speed of the calcuation. Since A is a relatively
small matrix (8x8), the cost of the calculation for such large iteration counts is dominated
by the cost of the inner-products and the polynomial updates. Finally, FCR with Hermite
polynomials did not converge unless A was scaled by ‖A‖1 and the calculation was broken
into sufficiently many stages (nstage = 100); however, when these accommodations were
made, the method converged faster than the Laguerre method with the same scaling and
staging.

6.2 Non-symmetric Matrix

As a second example, consider the computation of exp(−τA)b when A is the unsymmetric
matrix









0 1 0 0
−1 0 0 0
0 0 2 10
0 0 −10 2









(32)

and, as before, τ = 1 and b = [1, 1, · · · , 1]T . The eigenvalues ofA are {+i,−i, 2 + 10i, 2 − 10i}.
Results for this case are given in Table 2. For this non-symmetric A, all methods required

scaling and staging. The FCR with Hermite polynomials did best, followed by FCR with
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FCR Method |a| nstage Iters Time(s) ‖φ− zIters‖
1 Laguerre 1.0 1 * * *
2 Laguerre ‖A‖1 1 * * *
3 Laguerre ‖A‖1 5 435 0.1861 3.7e-10
4 Laguerre ‖A‖1 20 548 0.2574 1.8e-10

5 Hermite 1.0 1 * * *
6 Hermite ‖A‖1 1 * * *
7 Hermite ‖A‖1 5 175 0.0790 2.0e-11
8 Hermite ‖A‖1 20 296 0.1948 1.7e-11

9 Chebyshev 1.0 1 * * *
10 Chebyshev 1.0 5 * * *
11 Chebyshev 1.0 20 200 0.2399 2.5e-10

Table 2: FCR method applied to non-symmetric matrix A given by (32). Asterisks in a row
indicate the method did not converge. As before, for the Chebyshev cases, [l2 − l1, l2 + l1] =
[0, ‖A‖1].

Laguerre polynomials.

6.3 3D Diffusion-Convection Equations

As a third example, we consider the problem of exponential propagation for a discretization
of the system

ut = uxx + uyy − βux − γuy, (x, y) ∈ Ω. (33)

For our test problem, A is obtained by dividing a square domain Ω into a uniform 500× 500
mesh and then applying the standard 5-point diffusion-convection discretiation

duij

dt
=

1

δx2

{

4ui,j −
(

1 − βδx

2

)

ui+1,j −
(

1 +
βδx

2

)

ui−1,j

−
(

1 − γδy

2

)

ui,j+1 −
(

1 +
γδy

2

)

ui,j−1

}

.

(34)

Taking βδx/2 = 0.2 and γδy/2 = 0.4 and stamping the righthand side of (34) yields a
250, 000 × 250, 000 non-symmetric A. The b vector is chosen as the initial shape ui,j(0) =
xi(1 − xi)yj(1 − yj).

The data in Table 3 show clearly that, for this problem at least, performance of the various
FCR methods depends strongly on the choice of the scaling parameter |a| and number of
stages, nstage. For a given choice of nstage, the Chebyshev FCR algorithm generally converges
faster than the Hermite FCR method, which in turn converges faster than the Laguerre FCR
method, although it is not as robust. This general behavior seems to hold in this example

1A rather inefficient version of the Lanczos algorithm was used in that Vmexp(−τTm)βe1 in the algorithm
is computed at each iteration; this was done to match the availability of zm = ζm(A)b at each step for FCR
methods.
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FCR Method |a| nstage Iters Time(s) ‖φ− zIters‖
1 Laguerre 0.09 1 * * *
2 Laguerre 0.1 1 16 0.929 4.9e-12
3 Laguerre 0.2 1 17 0.986 6.0e-13
4 Laguerre 1.0 1 43 2.272 6.0e-13
5 Laguerre ‖A‖1 1 254 12.885 6.0e-13
6 Laguerre ‖A‖1 4 296 14.766 6.0e-13
7 Laguerre ‖A‖1 8 344 17.658 6.0e-13
8 Laguerre ‖A‖1 10 370 19.195 6.0e-13
9 Laguerre ‖A‖1 100 1200 71.979 6.0e-13

10 Hermite 0.2 1 * * *
11 Hermite 1.0 1 20 1.1254 6.0e-13
12 Hermite ‖A‖1 1 * * *
13 Hermite ‖A‖1 4 124 6.507 6.0e-13
14 Hermite ‖A‖1 8 160 8.829 6.0e-13
15 Hermite ‖A‖1 10 180 10.091 6.0e-13
16 Hermite ‖A‖1 100 800 52.494 6.0e-13

17 Chebyshev 1.0 1 20 1.084 6.0e-13
18 Chebyshev 1.0 4 52 2.857 6.0e-13
19 Chebyshev 1.0 8 88 4.947 6.0e-13
20 Chebyshev 1.0 10 100 5.695 6.0e-13
21 Chebyshev 1.0 100 600 37.232 6.0e-13

18 Lanczos1 – 1 31 8.9487 –

Table 3: FCR method applied to diffusion-convection matrix A given by (34). Asterisks in a
row indicate the method did not converge. As before, for the Chebyshev cases, [l2−l1, l2+l1] =
[0, ‖A‖1]. Errors are computed against the output of the Lanczos algorithm, row 21 in the
table.

at least for the standard choice of |a| = ‖A‖1 for Laguerre/ Hermite methods and interval
[l2 − l1, l2 + l1] = [0, ‖A‖1] for Chebyshev method.

It is interesting to note that choices of scale |a| less than 1.0 can actually accelerate
convergence of the Laguerre FCR algorithm. The fastest convergence occurs when |a| ≈ .1,
which is at the edge of instability: setting |a| = 0.09 causes the method to diverge. One
observes that for this choice of |a| the incremental change ‖xj+1 − xj‖2 becomes quite small
very quickly and then begin to slowly and inexorably grow:

iter = 100 ‖x− xprev‖ = 1.4417e− 05
iter = 200 ‖x− xprev‖ = 0.061399
iter = 300 ‖x− xprev‖ = 12.1377
iter = 400 ‖x− xprev‖ = 220.6484
iter = 500 ‖x− xprev‖ = 37628.1412
iter = 600 ‖x− xprev‖ = 30367310.0993
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λmax |a| nstage Iters Time(s) ‖φ− zIters‖
1 1 ‖A‖1 1 37 0.0282 1.0e-12
2 10 ‖A‖1 1 261 0.1616 3.9e-13
3 100 ‖A‖1 1 2574 7.8707 1.8e-13
4 100 ‖A‖1/10 1 269 0.1602 3.2e-11
5 100 ‖A‖1/10 4 304 0.1334 3.0e-14
6 1000 ‖A‖1 1 25388 799.8 1.2e-12
7 1000 ‖A‖1/10 1 2574 7.8473 4.1e-12
8 1000 ‖A‖1 40 26120 24.9746 1.2e-12
9 1000 ‖A‖1/10 40 3040 1.0734 1.2e-12

Table 4: FCR method with Laguerre polynomials applied to matrix A given by (35).

iter = 700 ‖x− xprev‖ = 6370402512.9629 etc.

6.4 Further Investigation of |a| and nstage

To further emphasize the role played by scaling and staging, we examine the convergence
behavior of exp(−τA)b with

A =

(

λmin 0
0 λmax

)

(35)

and bT = [1, 1]T . For out study we choose λmin = 10−6 and let λmax assume successively the
values 1, 10, 100, 1000. For simplicity, we let τ = 1 and consider only Laguerre polynomials.
Results are summarized in Table 4.

Notice that for λmax ≥ 100, we have for all intents and purposes

z = exp(−A)b =

(

e−λmin

e−λmax

)

≈
(

e−λmin

0

)

. (36)

For λmax = 100, for example, e−λmax ≈ 3.7e− 44.
Despite the negligible contribution of λmax to the value of z = exp(A)b when λmax ≥ 100,

we see from Table 4 that the value of λmax strongly affects the rate of convergence of the
FCR algorithm. Comparing rows 3 and 7 of the table, for example, we see that while the
final answer is essentially unchanged in going from λmax = 100 to λmax = 1000, the run time
increases from ∼ 8 sec to over 800 sec .

A judicious choice of |a| and nstage considerably amerliorates the situation. Qualitatively,

|a| can be thought of as moving the spectrum of Â = A/|a| onto an interval over which the
Laguerre polynomials converge fairly quickly. From Fig. 1 and Fig. 2, it seems that the
Laguerre expansion for e−τt converges reasonably fast on the interval [0, 10]; accordingly, a
reasonable heuristic is to set |a| ≈ ‖A‖1/10. This choice of |a| localizes the spectrum of a
positive definite Â within [0, 10]. Next, division of the calculation into nstage stages has the
advantage of ensuring that τ̂ = τ |a|/nstage is not too large a number. Appeal being made
again to Fig. 2, which shows that the Laguerre expansion for e−2.5t converges fairly quickly

16



over our chosen interval [0, 10], we surmise that choosing nstage such that τ̂ = τ |a|/nstage ≈ 2.5
is a reasonable policy. The performance of these heuristics can be judged by comparing rows
3 and 5 and rows 6 and 9 of Table 4.

7 Conclusion

Matrix exponential algorithms based on approximating exp(−τt) by a suitable polynomial
p(t) have several advantages. Because A only occurs in matrix-vector products, code can be
made independent of the data structure chosen for A; the user can ’own’ A’s data structure,
so to speak, and does not even have to explicitly store A as a matrix. Further, restricting
A to matrix-vector multiplies makes it easy to exploit A’s sparsity, no fill-in occurs, and
memory usage is capped at A’s storage plus a few vectors.

All these advantages accrue to Algorithm 3.1 and Algorithm 4.1. They accrue also,
however, to explicit integration schemes like forward Euler (FE), which solves (1) by time-
stepping with

y(t+ h) = y(t) −
∫ t+h

t

Ay(τ)dτ ≈ (I − hA)y(t). (37)

The drawback of FE and other explicit integration schemes, of course, is that the time-step
h must be taken very small when A is stiff. In the framework of polynomial methods, FE is
based on the approximation

e−τt ≈ (1 − τt/n)n , (38)

where n is the number of time steps taken to integrate from t = 0 to t = τ . The left hand
side of (38) is stable only if h = τ/n is taken small enough that |(1 − τt/n)n| < 1.

The question arises whether the more sophisticated polynomial methods we have studied
in this paper escape the stability issue faced by explicit integration methods when too large
a time-step is taken? Using orthogonal polynomials to compute exp(−τA)b can be thought
of as a semi-implicit method for integrating (1). Unfortunately, as we have seen, the FCR
method has the property that the number of iterations or ’time-steps’ increases with τλmax.
Even when the contribution of e−τλmax to the final answer is entirely negligible, the presence
of a large λmax in A’s spectrum forces FCR to iterate more. Thus, semi-implicit methods
still suffer from the bane of stiffness.

Viewed differently, all polynomial methods require one to approximate z(t) = exp(−τt)
by a polynomial over the interval or region that contains the spectrum of A. The larger

that region is, the more difficult it is (i. e. the higher the degree of polynomial required) to
adequately fit z(t) over that region. Staging can be thought of as a way to make that region
smaller by replacing each eigenvalue λi by λi/nstage.

With suitable scaling and staging, we have seen that FCR can handle quite stiff systems of
ODEs (large spread in eigenvalues) as well as exponentials of unsymmetric matrices. Clearly,
scaling and staging are an essential part of the FCR method.

We examined the performance of FCR with three systems of orthogonal polynomials:
Laguerre, Hermite, and Chebyshev. In theory, Chebyshev expansions converge within an
ellipse of the complex plane; Laguerre polynomials, within a parabola; Hermite, over the
entire plane [5]. This might lead one to expect Hermite polynomials to be the best for expo-
nential propagation, especially with non-symmetric A. Any theoretical advantage Hermite
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expansions enjoy is somewhat illusory, however, when one considers the adverse impact of
finite-precision arthmetic. Because the individual terms in the series (4), (6), and (8) can
be quite large in magnitude but alternate in sign, one may experience significant loss of
precision and even numerical overflow as one tries to compute such an expansion with finite-
precision arithmetic. We saw that the Hermite expansion for exp(−τx) converges especially
slowly when τ is small, and there is more opportunity for loss of precision and overflow in
this situation.

Our tests found that Chebyshev usually performed better than Hermite or Laguerre.
Between the latter two, when FCR with Hermite polynomials converged, it usually did so
faster than with Laguerre. Contrarily, FCR with Laguerre was more robust than Hermite,
converging sometimes when Hermite did not. Although Laguerre and Hermite do not require
A’s spectrum to be localized rigorously within the interval [l2 − l1, l2 + l1], as Chebyshev
does, one still needs to make sensible choices for scaling parameter |a| and number of stages
nstage. In the case of FCR with Laguerre, we proposed the heuristic |a| ≈ ‖A‖1/10 and
nstage ≈ τ |a|/2.5.
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