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Abstract. The power of Density Functional Theory is often limited by the high computational
demand in solving an eigenvalue problem at each Self-Consistent-Field (SCF) iteration. The method
presented in this paper replaces the explicit eigenvalue calculations by an approximation of the
wanted invariant subspace, obtained with the help of well-selected Chebyshev polynomial filters.
In this approach, only the initial SCF iteration requires solving an eigenvalue problem, in order
to provide a good initial subspace. In the remaining SCF iterations, no iterative eigensolvers are
involved. Instead, Chebyshev polynomials are used to refine the subspace. The subspace iteration
at each step is easily five to ten times faster than solving a corresponding eigenproblem by the most
efficient eigen-algorithms. Moreover, the subspace iteration reaches self-consistency within roughly
the same number of steps as an eigensolver-based approach. This results in a significantly faster SCF
iteration.
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1. Introduction. Since its formulation, density-functional theory (DFT) [18,
21] has been recognized as a major achievement in the development of quantum many-
body theories. Its basis lies in describing the ground state of a many-electron system
solely in terms of the charge density function. As a result, the task of solving the
Schrodinger equation for a many-electron system is replaced by the immensely sim-
pler one of solving a non-linear, self-consistent eigenvalue problem: the Kohn-Sham
equations. During the last several decades, DFT has been successfully applied to a
range of problems in condensed matter physics, material sciences, chemistry and biol-
ogy [29, 13]. In typical numerical implementations of DFT, the most time-consuming
part is spent in computing the self-consistent solution of the Kohn-Sham equations.
Because of the high computational demand of matrix diagonalizations when the num-
ber of wanted eigenvalues as well as the matrix dimension are large, applying DFT
to very large system (e.g., molecules containing thousands of atoms) still remains a
highly challenging problem.

Many researchers have considered avoiding matrix diagonalization or reducing its
cost. Typical examples of alternatives that have been explored include the use of
the Conjugate Gradient (CG) method which directly minimizes the total energy (or
Rayleigh-quotient) [30], the Car-Parrinello molecular dynamics method [7], and the
DIIS variants [31, 32, 42, 22] which minimize the residual vectors instead of Rayleigh-
quotients.

It has long been realized that full diagonalization is too expensive for large prob-
lems and so iterative eigensolvers which only compute the wanted eigenpairs have
been utilized, with varying degree of success. In the early days of the development
of DFT computational codes, the linear Subspace Iteration algorithm was used. For
example, the 1988 paper by Martins and Cohen [26], see also [27], mentioned the
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use of a code called Ritzit, initially published in Algol [33], which constituted an ide-
ally suited technique for diagonalization in planewave codes at the time. In [27], the
Chebyshev acceleration in Ritzit was replaced by a Jacobi preconditioner. In contrast
with [27], the classical Ritzit code (with Chebyshev acceleration) was found to be
an excellent partial diagonalization tool in the solution of self-consistent Schrédinger
equations which arise in the simulation of electrons in quantum wires [20]. The main
difference with our approach is that we do not use subspace iteration for computing
eigenvalues and eigenvectors. Instead, our approach can be viewed as a nonlinear
subspace iteration in that after each subspace filtering the Hamiltonian is updated.

More recent examples of the use of iterative diagonalization, include the use of
multigrid approaches [5, 6, 11, 14, 17, 24] and preconditioned Davidson method [35,
39]. We note that the complexity of the minimization-based methods is similar to that
of the iterative eigensolver-based methods. The computational cost of an eigensolver
approach is usually dominated by the cost of the matrix-vector products and that of
maintaining orthogonality of the basis vectors. In [4] partial reorthogonalized Lanczos
without restart is used in order to reduce the orthogonalization cost, at the expense
of a higher memory requirement.

In this paper we present a method which avoids solving large eigenvalue problems
explicitly. The method utilizes Chebyshev polynomial filtered subspace iteration. In
this approach only the initial SCF iteration requires solving an eigenvalue problem,
by means of any available efficient eigensolver. This step is used to provide a good
initial subspace. Because the subspace dimension is slightly larger than the number
of wanted eigenvalues (denoted by kyant), the method does not require as much
memory as standard restarted eigensolvers such as ARPACK (see [38, 25]) and TRLan
(Thick - Restart Lanczos) [43, 44]. Moreover, the cost of orthogonalization is much
reduced. This is because the new approach only requires a subspace of dimension
around Kqyqnt, and the orthogonalization is done only once per SCF iteration. In
contrast, standard eigensolvers using restart usually require a subspace of dimension
2kypant in order to compute kyqn: eigenpairs efficiently, the orthogonalization cost
approximately amounts to orthogonalizing 2k.,qntkrestart NumMber of vectors, where
krestart 18 the number of restarts needed in order to converge the eigenvectors.

Chebyshev polynomial filtering has been utilized in electronic structure calcula-
tions (see e.g. [36, 40, 16, 2, 19]), where the focus is on approximating the Fermi-Dirac
operator, i.e., Chebyshev polynomials only over interval [—1, 1] is considered. The ap-
proach we take here is different from the existing Chebyshev methods in electronic
structure calculations. The fundamental difference is that we exploit the exponen-
tial growth property of Chebyshev polynomial outside the [—1,1] interval, hence the
polynomial degree required is much lower. In our approach, we never map the full
spectrum of the Hamiltonian into [—1, 1]; instead, we adaptively decide on the un-
wanted part of the spectrum and map only this part into [—1, 1] for damping it. Our
Chebyshev filtering is based on [45]. Note that the focus in [45] is on eigenvalue
computations while here we only use Chebyshev polynomial to filter subspaces. More
details are presented in Section 4.

The current approach has been implemented in PARSEC, our real-space DFT
code, and it has been observed to be significantly faster than iterative eigensolver-
based approaches. As an example, it took less than 2 hours for the sequential imple-
mentation of the new method to reach self-consistency for the Silicon cluster Siso5 Horg
on a single SGI 1.3 GHz Madison processor. In contrast, a parallel calculation done
with the preceding version of PARSEC around the year 1997, on the CRAY T3E,



took a total of 20 hours [39] using 48 processors. Back in 1997 the problem could not
be solved in fewer than 48 processors due to memory requirements. The remarkable
gains do not come only from a reduced cost of diagonalization but also from exploiting
symmetry [41] and from gains made in other parts of the code. Section 5 presents
comparisons with methods based on two of the most efficient eigensolvers currently
available (ARPACK and TRLan). All three methods utilize the same symmetry op-
erations, therefore the reported speedup is from the Chebyshev filtering approach.

2. Basics of Self-consistent-field calculation. In this section we briefly re-
view the self-consistent-field calculation. Here we focus discussion on SCF in DFT
calculations, but we note that SCF is also used in Hartree-Fock and other approx-
imations. As mentioned in the introduction, the most time-consuming part of an
SCF calculation is in matrix diagonalization, which consists of computing the self-
consistent solutions of the following Kohn-Sham equation:

%VQ + Viotat(p(r),7)| ¥, (r) = E; U, (r), (2.1)

where ¥, (r) is a wave function, E; is a Kohn-Sham eigenvalue, 7 is the Planck con-
stant, M is the electron mass. The total potential

‘/total (P(T), T) = V;on (T') + VH (T) + VXC(T.) (22)

includes the ionic potential Vj,,, the Hartree potential Vg and the exchange-correlation
potential Vx¢. In DFT the total potential depends only on p(r)—the charge density.
The charge density is given by

Noce

o) =2 ()P, 23)

where 1. is the number of occupied states (half the number of valence electrons
in the system) and the factor of two comes from spin multiplicity. Equation (2.3)
can be easily extended to situations where the highest occupied states have fractional
occupancy or when there is an imbalance in the number of electrons for each spin
component.

Because the potential (2.2) depends on the charge density (2.3), which in turn
depends on eigenfunctions of the the Hamiltonian in Equation (2.1), the eigenvalue
problem (2.1) is in fact nonlinear. Self-consistent iterations for solving this problem
consist of starting with an initial guess of the charge density po(r), then obtaining
a guess for Vipar and solving (2.1) for ¥;(r)’s to update p(r) and Vipia;- Then (2.1)
is solved again for the new ¥;(r)’s and the process is carried on until the difference
between two consecutive Vioq’s is below a certain tolerance (equivalently, the wave
functions are close to stationary). Algorithm 2.1 contains a pseudo code for this SCF
loop.

We note that, since the charge density does not depend on eigenstates beyond n ¢,
the number of eigenvectors needed in Step 2 of Algorithm 2.1 is limited. Nevertheless,
the eigenvalue problem is still very challenging in complex systems (i.e., systems with
a very large number of electrons), when the Hamiltonian has large dimension and n ¢
is also large.

Our computational code uses a real-space implementation of the above SCF
method [10, 35, 39]. In this implementation, wave functions are expressed directly as
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ALGORITHM 2.1. Self-Consistent Iteration:

Initial guess for p(r), get Vietar(p(r),r)
Solve Q—EVQ + Viotat (p(r), )| Oi(r) = E;W(r)  for Ui(r), i =1,2,..00cc
Compute new charge density p(r) =231 |¥;(r)|?

Solve for new Hartree potential Vg from ;—]'?;VQVH = 2mp(r)

A NS B

Update Vxc and Vien; get new Vtoml(p(r),r) = Vion(r) + Vu(r) + Vxc(r)
(often followed by a potential-mizing step)
6. ]f ”f/total - VYtotalH < tOl, StOP;' El3€7 V;ﬁotal — f/;fotal: gOtO 2.

functions of position, and they are required to vanish outside a specified boundary
that encloses the physical system (alternatively, periodic boundary conditions can be
imposed [1]). The region inside this boundary is discretized by using a regular grid
with adjustable spacing between neighbouring points. We use pseudopotentials to
describe the interaction between valence electrons and ionic cores (core electrons +
nuclei) and solve the SCF problem for valence electrons only. In addition, we make
use of symmetry operations in the arrangement of atoms and reduce the sampled
region to a smaller one: the “irreducible wedge”. Appropriate boundary conditions
and the existing symmetry operations are used to expand wave functions from the
irreducible wedge to the full volume. For highly symmetric systems, such as the atom
clusters analyzed in Section 5, reducing the volume of interest to an irreducible wedge
can easily lead to a 10-fold reduction in the computational load [41] than without
exploiting symmetry.

3. Self-consistent-field calculation without explicit eigenvectors. While
the charge density p(r) depends explicitly on the wave functions ¥;(r), see (2.3), it
has been observed that any basis for the subspace spanned by these eigenvectors can
be used. After discretization each ¥,(r) becomes an eigenvector (denoted as 1);) of
the discretized Hamiltonian. The charge density is then simply the diagonal of the
density matrix

P =307, (3.1)

in which ® is the matrix with column vectors the {1;}’s. Entry (4, j) of this projector
P is equal to the charge density at the mesh-point ;. Notice that for any orthonormal
matrix @ of dimension s, P = (®Q)(®Q)”. Explicit eigenvectors are therefore not
needed to calculate the charge density in Algorithm 2.1. Any orthonormal basis of the
eigensubspace corresponding to occupied states will give the correct charge density.

Techniques based on this observation have appeared in, e.g., [40, 37, 19, 4, 3]. In
particular, the recent article [4] stresses the importance of de-emphasizing eigenvectors
in favor of the underlying eigenspace. This observation has also been exploited in the
linear scaling approaches to DFT, see e.g. [15] for a survey.

In our approach we progressively refine a subspace by rather low degree Chebyshev
polynomials. After self-consistency is reached, this subspace includes the eigensub-
space corresponding to occupied states. Explicit eigenvectors can be easily obtained
by a Rayleigh-Ritz refinement step [28] (called a subspace rotation in materials science
terminology).



4. SCF subspace iteration with Chebyshev filtering. The main idea of
the proposed approach is to start with a good initial eigen-basis V' corresponding to
occupied states of the initial Hamiltonian Hj, and then to adaptively improve the
subspace by polynomial filtering. That is, at a given self-consistent step, a degree-m
polynomial filter p,,(t) is constructed for the current Hamiltonian H. Note that the
polynomial will be different at each SCF step since H will change. The goal of the
filter is to make the subspace spanned by p,,(H)V approximate the eigensubspace
corresponding to the occupied states of H. There is no need to make p,,(H)V ap-
proximate the wanted eigensubspace of H to high accuracy at the intermediate steps.
Instead, the filtering is designed so that each new subspace obtained at the end of the
self-consistent loop will progressively approximates the wanted eigensubspace of the
final Hamiltonian when self-consistency is reached. This can be efficiently achieved by
exploiting the Chebyshev polynomials, specifically the fast growth property outside
the [—1, 1] interval. All that is required to obtain a good filter at a given SCF step,
is to provide a lower bound and an upper bound of an interval of the spectrum of
the current Hamiltonian H in which we want p,,(t) to be small. Moreover, the lower
bound can be readily obtained from the Ritz values computed from the previous step,
and the upper bound can be inexpensively obtained by a very small number of (say,
4 or 5) Lanczos steps [23]. Hence the main cost of the filtering at the i-th step is in
computing p,,(H)V. This computation is accomplished by exploiting the convenient
three-term recurrence property of Chebyshev polynomials.

4.1. The main algorithm. The pseudo code of the Chebyshev polynomial fil-
tered subspace iteration is presented in Algorithm 4.1. The purpose of Algorithm 4.1
is to replace the eigenvalue problem at Step 2in Algorithm 2.1 by a single Chebyshev
filtering step. At the first step of the SCF loop, Step 2 in Algorithm 2.1 is carried out
by an iterative eigensolver like ARPACK or TRLan to provide an initial orthonormal
basis ® = [¢1, ...,1s]. In order not to miss occupied eigenstates, a standard practice
is to choose s > n,c., here we follow this practice by fixing an integer ng;qte Wwhich is
slightly larger than nge., then set s = ngtate + Naaga (Where ngqq < 10).

ALGORITHM 4.1. Chebyshev polynomial Filtered Subspace Iteration:

Get the lower bound by from previous Ritz values (use the largest one).
2. Compute the upper bound by, of the spectrum of the current discretized
Hamiltonian H (call Algorithm 4.3).
3. Perform Chebyshev filtering to the previous basis ®: (call Algorithm 4.2)
® = Chebyshev_filter(®, m, biow, bup)
Perform ortho-normalization to ® to make it ortho-normal.
Perform the Rayleigh-Ritz step: Compute H=30TH®:;
Compute the eigendecomposition of H: fIQ =QD;
(where @ contains eigenvectors of the H, D contains Ritz values of H)

Refine the basis as: ® = ¢Q).

For the ortho-normalization step in Algorithm 4.1 (step 4) we use the DGKS
method [12] which uses iterated classical Gram-Schmidt.



Note that Algorithm 4.1 does not compute eigen-basis of the current Hamiltonian
H, but it computes eigen-decomposition of the projected H of size s. Even though
s is normally much smaller than the size of H, the Rayleigh-Ritz refinement (step 5)
may still be expensive when s becomes very large (e.g., large complex systems without
physical symmetry), since the eigen-decomposition step is of complexity O(s?).

A important feature of the Chebyshev filtered subspace iteration is that the whole
step 5 in Algorithm 4.1 can be waived for huge systems where s is very large. The
theoretic foundation is that ®() spans the same subspace as ®. In this case we
can construct another suitable filter so that the components of ® corresponding to
unoccupied states will be filtered out. Rayleigh-Ritz refinement is performed when
s is moderate because it is not expensive, and this refinement makes columns in ®Q
approximate the eigenvectors of H better than ® does. That is, the n,.. columns
in ®Q that correspond to the n,.. smallest Ritz values can be readily returned to
the main program for the calculation of p(r) to continue the SCF loop. Results in
the literature (e.g. [22, 11]) for different approaches also show that subspace rotation
improves stability and convergence rate. In our approach, the Rayleigh-Ritz step is
also helpful because it provides a convenient lower bound for the next Chebyshev
filtering.

If the Rayleigh-Ritz step is not performed, the wanted lower bound can still be
estimated from the largest Rayleigh-quotient among t/JjTH ¥;, where ©; (j =1,...5) is
the column vector of ®. Thanks to the Courant-Fisher min-max theorem [28, p.206]
this will still be a good enough approximation for the filtering to work well.

The next section will show useful properties of Chebyshev polynomials and discuss
how to adaptively change these filters.

4.2. Controlling the Chebyshev polynomial filters. The well-known Cheby-
shev polynomials of the first kind are defined by ([28, p.371] [34, p.142])

Cult) = cos(k cos™L(t)), -1<t<1,
MU cosh(k cosh™i(1), [t] > 1.

Note that Cy(t) = 1,C1(t) = t. The following important 3-term recurrence is easy to
derive from properties of cos(t) and cosh(t),

Crr1(t) =2t Cp(t) — Cr_1(t), teR. (4.1)

The rapid growth property of the Chebyshev polynomial outside [—1,1] is dis-
cussed in [28]. Figure 4.1 illustrates this property. Here we only plot the [—2,1]
interval, but note that the farther away from -1 or 1, the larger the magnitude of the
real part of the Chebyshev polynomials.

Assume that the full spectrum of H (denoted as o(H)) is contained in [ag,b]. As
is well-known [33, 28, 34, 45|, in order to approximate the eigensubspace associated
with the lower end of the spectrum, say [ag,a] with ag < a < b, essentially one only
needs to map [a, b] into [—1, 1]. This can be easily realized by a linear mapping defined
as

(1) = tfc; o a+b7 . b—a
e 2 2
where ¢ denotes the center and e the half-width.

The Chebyshev iteration, which utilizes the three-term recurrence (4.1) with the
goal to dampen values on a given [a, b] is presented in Algorithm 4.2. Here the formula
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F1G. 4.1. Rapid increase outside [—1,1] of the m-th degree Chebyshev polynomial.

derived in [34, p. 223] for the complex Chebyshev iteration is adapted to the real case.
The iteration of the algorithm is equivalent to computing

Y = pu(H)X  where  pu(t) = Cn [t - C} . (4.2)

Although Algorithm 4.2 only explicitly filters the [a, b] interval, we note that by
the property of the Chebyshev polynomial, the filter values on the interval to the left
of [a, b] will be magnified—which is what is needed to approximate the eigensubspace
associated with the lower end of o(H).

As seen from Algorithm 4.2, a desired filter can be easily controlled by providing
two endpoints of the higher end of o(H). The higher endpoint can be estimated
by a few steps of standard Lanczos (which is presented in Algorithm 4.3 below). A
lower bound of the full o(H) is not needed. Instead, the wanted lower bound is
any value which is larger than the Fermi-level but smaller than the higher endpoint.
As presented in Algorithm 4.1, this lower bound is readily available as the largest
Rayleigh-quotient of the previous iteration. Hence there is negligible extra work
associated with computing bounds for the Chebyshev filtering, the major cost being
in the three-term recurrences in Algorithm 4.2 which involve matrix-vector products.
The polynomial degree m is left as a free parameter. Our experiences indicates that
an m within 8 to 20 is good enough to achieve overall fast convergence in the SCF
loop.
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ALGORITHM 4.2. [Y] = Chebyshev_filter(X,m,a,b).

Purpose: Filter vectors in X by an m degree Chebyshev polynomial that dampens on
the interval [a,b], and output the filtered vectors in'Y .

1. e=(b—-a)/2; c=(b+a)/2;
2. oc=e/(a—c);

3. 01 =o0;

4. Y =(HX —cX)o1/e;

5. Fori=2:m

6. oo =1/(2/01 — 0);

7. Yiew = 2(HY — c¢Y)og/e — 003X
8. X=VY;

9. Y = Yoou:

10. o = 09;

11. End For

4.3. Estimating an upper bound of the spectrum. Now we present an
inexpensive way to estimate an upper bound of o(H). As pointed out in [45], the
upper bound has to bound the full spectrum of H. This is because the Chebyshev
polynomial also grows fast on the right of [—1,1]. So if [a,b] with b < opa(H)
is mapped into [—1,1], then the [b, omas(H)] portion of the spectrum will also be
magnified, which will cause the whole procedure to fail. We need b to be larger than
Omaz(H) but it cannot be too large as this will affect convergence. There are several
ways to estimate this type of upper bound, for example, by using the one-norm of H,
or by applying Gerschgorin’s Circle Theorem if possible. Bounds obtained this way
can, however, overestimate o4, (H).

We found that a few steps of the standard Lanczos procedure are sufficient to
provide an effective upper bound. For example, a k-step Lanczos leads to a Lanczos
decomposition

HVy, = Vi, Ty, + frel

where V}, contains the k Lanczos basis, T}, is a size-k tridiagonal matrix, fj is a residual
vector and ey, is a length k unit vector with only the first element nonzero.

Notice that Lanczos iteration often quickly approximate the outermost eigenval-
ues, and that

[HVill2 = IViTr + frer ll2 < [ Tellz + || frll2-

We can start with a random unit vector, carry out k steps of the Lanczos procedure,
and use ||Tk||2 + || fx]|2 as an upper bound for o(H). This is presented in Algorithm
4.3. For simplicity we skip the safeguards for 8 = 0, as this does not happen for small
values of k in general.

In practice, we found that k = 4 or k = 5 is sufficient to yield a proper upper
bound of o(H). In fact we found that it is often counter-productive to take the bounds
obtained from larger values of k (say, k > 10).

5. Numerical Results. The numerical experiments are performed using our
own DFT package called PARSEC which is written in Fortran 95. PARSEC is based



ALGORITHM 4.3. Estimating an upper bound of o(H) by k-step Lanczos:

1. Generate a random vector v, set v — v/||v||2;
2. Compute f = Hv; a= fTv; f« f—av; T(1,1)=q;
3. Do j =2 to min(k,10)
4 B = 1ll2;
. vo = v v — f/B;
6. f=Hv; f—[=puo;
7. a=fTv; f f—oau;
8. TG.j-1)=p T@G-14)=p8 T(.j) =0
9. End Do
10. Return ||T||2 + || f|l2 as the upper bound.
y A |
h
t
e _""'"::’-‘l -
/,/ _ - :QL’ .-’ > \ X\
) . ,'0";.: o " T
A - ‘_;A“.._‘________ _______________ -7

Fic. 5.1. 87-stencil of a 12-th order centered finite difference.

on the real-space pseudopotential method [9, 10], where higher order finite differences
are used for the discretization of the Kohn-Sham equation on a uniform grid, as
discussed in Section 2. We use a 12th order centered finite difference scheme. At each
point (z,y, z) the local stencil involves 37-points. Figure 5.1 illustrates this stencil.

We compare three different methods in PARSEC, two of which are based on solv-
ing eigenvalue problems (2.1) at each SCF iteration. The solvers used are ARPACK
[25] and TRLan [43, 44] which represent two of the most efficient publicly available
eigenvalue packages. The third method is our Chebyshev filtered subspace iteration,
with the initial SCF step solved using TRLan. Note that each method is applied in
the same package to the same problems, that is, each method can exploit the same
physical symmetry operations if they exist, hence the performance difference is due
solely to the three different methods.

Note that we only use the solver for standard symmetric eigenproblems in ARPACK.
We mention that ARPACK is currently one of the most efficient general purpose
eigensolvers, especially for nonsymmetric eigenproblems. It is by far the best known
package for general eigenvalue calculations.

TRLan is a Fortran 90 package for standard symmetric eigenproblems. It uses
reduced full orthogonalization and several thick restart strategies [43, 44], hence it
can be more efficient than the symmetric eigensolver in ARPACK. We call TRLan
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for the first step SCF iteration for our Chebyshev filtered subspace iteration method.
We denote the new method as ChebSL.

Fic. 5.2.  Atomic structure of the quantum dot Sisas Hare. The red and white balls represent
Si and H atoms respectively. The quantum dot contains 25 shells of Si atoms and is 27.2 A in
diameter [8].

The test problems are a Silicon clusters Sisos Ho7g, a Silicon Germanium cluster
SigsGegs Hog, a Gallium Arsenide cluster Gag1 Asy1 Hre, and two iron clusters Fesr
and Fes;. These problems constitute four typical materials in electronic structure
calculations. We note that metallic systems are difficult for SCF calculation because
of the charge sloshing effect [22].

Figure 5.2 shows the atomic structure of Sisa5Ha7g. Table 5.1 contains some
numerical parameters related to these test problems. The number of symmetry op-
erations used to construct the irreducible wedge is denoted nsymm, and “reduced H
size” is the number of grid points in the wedge (equal to the dimension of the dis-
cretized reduced Hamiltonian). At each SCF iteration, ARPACK and TRLan com-
pute approximately nstqte €igenpairs from 7y reduced Hamiltonians at Step 2 of
Algorithm 2.1, while ChebSI replaces Step 2 of Algorithm 2.1 by Algorithm 4.1 and
returns the same number of wave vectors as ARPACK or TRLan does from Step 2
to Step 8 in Algorithm 2.1. The number of states of Fes7 and Fes; is doubled by 2
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because of spin degrees of freedom, i.e., for each spin channel at least 520 eigenpairs
are computed.

In each table, the total_eV/atom counts the total energy per atom, given in
electron-volts. This is a control parameter used to assess the accuracy of the final
result. The # SCF steps is the iteration steps used to reach self-consistency; the #
MV products counts the number of matrix-vector products. Clearly this is not the
only factor that determines CPU time, the reduced orthogonalization can also have a
crucial effect in CPU time.

model size of H | MNstate Neymm | Teduced H size
SigosHorg 292584 1194 4 73146
SigsGegs Hog 185368 313 2 92684
Gag1Asy1 Hro 268096 210 1 268096
Feor 697504 520 x 2 8 87188
Fes, 874976 520 x 2 8 109372
TABLE 5.1

Relevant data of the test problems

method | # MV products | # SCF steps | total eV /atom | CPU(secs)
ChebSI 124761 11 -77.316873 5946.69
ARPACK 142047 10 -77.316873 62026.37
TRLan 145909 10 -77.316873 26852.84
TABLE 5.2
Sisos Hare, Polynomial degree used is 8.
method | # MV products | # SCF steps | total_eV /atom | CPU (secs)
ChebSI 42919 13 -140.076118 2344.06
ARPACK 51752 9 -140.076118 12770.81
TRLan 53892 9 -140.076118 6056.11
TABLE 5.3

SiesGees Hog, Polynomial degree used is 8.

All the numerical runs are performed on the SGI Altix 3700 cluster of the Min-
nesota supercomputing Institute. The CPU type is a 1.3 GHz Intel Madison processor.
The Operating System is a 64bit Linux with kernel version 2.4.21. The compiler used
is the Intel Fortran compiler ifort, with optimization flag -03 for all codes.

As seen from Tables 5.2—5.6, the ChebSI method is usually five to ten times faster
than the eigenvector-based methods represented by two of the best available iterative
sparse eigensolvers ARPACK and TRLan. Although eigenspaces are not explicitly
and accurately computed at each SCF step, ChebSI only requires a few more SCF
steps to reach self-consistency. However, each SCF step using ChebSI is much cheaper
than an SCF step based on eigenvectors. About ten other tests on smaller systems
(Hamiltonian sizes around 100K-160K) not reported here showed similar results. We
also mention that there are cases where the Chebyshev filtering may become less
effective. We observed these in Gallium Arsenide clusters, as seen from Table 5.4.
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Gayg1Asq1 Hra. Polynomial degree used is 16. The spectrum of each reduced Hamiltonian spans

method | # MV products | # SCF steps | total eV /atom | CPU (secs)
ChebSI 138672 37 -89.634940 12923.27
ARPACK 58506 10 -89.634940 44305.97
TRLan 58794 10 -89.634940 16733.68
TABLE 5.4

a large interval, making the Chebyshev filtering not as effective as other examples.

method | # MV products | # SCF steps | total_eV /atom | CPU (secs)
ChebSI 363728 30 -776.575290 15408.16
ARPACK 750883 21 -776.586420 118693.64
TRLan 807652 21 -776.586422 83726.20
TABLE 5.5

Feg7, Polynomial degree used is 9.

The cases of reduced efficiency correspond to situations where the full spectrum of a
given Hamiltonian spreads over a very large interval. In such situations, high degree
Chebyshev polynomials must be used. However, we see that even in these unfavorable
cases, ChebSlI is still reasonably faster than eigenvector-based methods.

Finally, we should mention that ChebSlI is as robust as eigenvector-based meth-
ods. In fact, it has been used successfully for unreported periodic systems, with
performance gains similar to the ones obtained in clusters. On the other hand, an
eigenvector-based method using the preconditioned Davidson method failed to con-
verge for the same periodic systems.

6. Conclusions. An algorithm based on Chebyshev filtered subspace iteration
has been developed for performing SCF calculations in Density Function Theory,
which has the advantage of not explicitly relying on eigenvectors, except at the first
SCF step. This leads to significant gains in computational time relative to traditional
eigenvector-based methods which are inevitably constrained by the high computa-
tional cost of diagonalization at each SCF step. Numerical results show that the
new method is five to ten times faster than eigenvector-based methods using two of
the best iterative eigensolvers. Even though implemented sequentially at present,
the ChebSI method can solve realistic systems of moderate size within a reasonable
time frame. Parallel implementation of the ChebSI method will be reported in a
forthcoming paper, where we study larger and more complex material systems.
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