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Abstract

A nonlinear computational aeroelasticity model based on the Euler equations of compressible flows and the linear elastody-
namic equations for structures is developed. The Euler equations are solved on dynamic meshes using the ALE kinematic
description. Thus, the mesh constitutes another field governed by pseudo-elatodynamic equations. The three fields are dis-
cretized using proper finite element formulations which satisfy the geometric conservation law. A matcher module is incor-
porated for the purpose of pairing the grids on the fluid-structure interface and for transferring the loads and displacements
between the fluid and structure solvers. Two solutions strategies (Gauss Seidel and Schur-Complement) for solving the non-
linear aeroelastic system are discussed. Using second order time discretization schemes allows us to use large time steps in
the computations. The numerical results on the AGARD 445.6 aeroelastic wing compare well with the experimental ones
and show that the Schur-complement coupling algorithm is more robust than the Gauss-Seidel algorithm for relatively large
oscillation amplitudes.
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1 INTRODUCTION

Multi-physics problems represent a large class of applications. The study of fluid-structure interactions in aerody-
namics, the thermo-mechanical coupling problem of turbo-machines and the vibro-aeroacoustic problems are some
relevant engineering examples. Because the solution to these problems requires the coupling of equations from dif-
ferent engineering fields, this cross-disciplinary coupling increases the computational load and the complexity of
computational procedures. Transonic airflows around a flexible structure is characterized by the existence of non-
linearities, such as shock waves and flow induced vibrations [1]. In the classical linear aeroelasticity theory [2,3],
airflow is assumed inviscid, incompressible and irrotational. Corresponding numerical methods can be found in the
early literature, such as the well-known Doublet Lattice method, the Vortex-Lattice method, the panel method and
the transonic-small-disturbance (TSD) method. However, the linear theory cannot accurately predict the transonic
dip [4], therefore nonlinear aeroelasticity theories are required. Discussions on the behaviors of the aerodynamic
nonlinearity can be found in Ref. [5]. The full-potential equation, which describes the nonlinearity of a transonic
flow, gives better solutions [6] when the shock is weak. But for flows with strong shocks, a high order model such
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as the Euler equations that describe more completely the nonlinearity in transonic regime are required to obtain
accurate solutions [7,8]. Indeed, the computational cost increases evidently.

In this paper, the aeroelastic system is modeled by coupling numerically three fields, which are respectively the
structural, the fluid, and the mesh fields, through an information transfer module. We assume that the flow is
described by the Euler equations and the structure is modeled by the linear elastodynamic equations. The nonlinear
coupling between the structure and the fluid is enforced by imposing kinematic and dynamic compatibility conditions
at the fluid-structure interface(FSI). The outline of the following sections is as follows : The governing equations of
the complete system will be presented, followed by a description of the coupling algorithms and then a discussion of
numerical results. The paper will end with concluding remarks.

2 AEROELASTICITY PROBLEM

Aeroelasticity is one of the most important and challenging examples of multi-physics applications. It couples two
nontrivial applications and is characterized by multi-scale phenomena, both in time and space. The efficient solution
to this problem is of critical importance to the design of aircrafts. The coupling between the fluid flow and the flexible
structure displacement can produce instabilities that may compromise structural integrity. The flutter is a dynamical
instability phenomenon exhibited by a flexible structure under the effect of high flow speed. It is thus crucial to
ensure the aeroelastic stability of the flexible structure especially for structures used as aeronautic components.

2.1 Governing equations

Equations for the structure. The displacement us of a flexible elastic structure satisfies the dynamic equilibrium
equations:

ρsu
s
i,tt + σs

ij,j(u
s) = gi in Ωs (1)

where ρs is the structure density and σs is the Cauchy stress tensor. We assume an elastic material of the struc-
ture and small structural deformations. Thus, the constitutive relation between the Green strain tensor ǫs and the
Cauchy stress tensor reads σs = Cs.ǫs, with Cs the fourth order constitutive tensor of the structural material and
ǫs
ij,j = 1

2 (us
i,j + us

j,i). The structure is subjected to external forces and initial conditions. Particularly, kinematic and
dynamic compatibility conditions at the fluid-structure interface Γfs should be respected.

Equations for the fluid. We consider that the fluid flow is modeled by the compressible Euler equations. These
are written in a moving frame of reference(i.e. moving mesh) [9,10] and in terms of the conservative variables
U = ρ(1,u, e + ‖u‖2/2)T as:

U,t + wiU,i + Fi,i = 0 in Ωf (2)

where ρ is the fluid density, u = {ui} is the fluid velocity, p the pressure, e the total energy per unit mass,
Fi = uiU + p(0, δi, ui)

T is the convective flux in the ith direction, δi = {δij} is the Kronecker delta and w = {wi}
is the mesh velocity.

Compatibility conditions at the fluid-structure interface. Since the fluid is assumed non-viscous, the inter-
face is a slip material boundary. This means that we have the following kinematic boundary condition along Γfs:
(u − us

,t).n
s = 0 with ns is the unit normal vector at Γfs. The force acting on the structure is due to the fluid

pressure. Thus, we have the dynamic compatibility conditions along the interface: σs
ij ns

j = −p ns
i .

Equations for the mesh movement. The mesh of the fluid domain is animated with its own motion so as to fulfill
the kinematical compatibility constraints (i.e., to preserve the fact that the interface is a material boundary) and to
maintain the quality of the discretization. This can be done by solving an elliptic problem for the mesh displacement
um [10]. At the fluid-structure interface (FSI) the mesh displacement is imposed to that of the structure. In the
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following, we assume that the mesh represents an isotropic elastic material. Its motion is assumed to be governed
by the elastodynamic equations:

ρmum
i,tt + σm

ij,j(u
m) = 0 in Ωf (3)

where ρm is the fictitious mesh density and σm is the Cauchy stress tensor. The mesh velocity is given by w = um
,t.

The boundary conditions are : um = us at Γfs and zero elsewhere. We denote by Fm the deformation tensor of
the mesh movement, i.e. Fm

ij = δij + um
i,j . The mesh deformations are not assumed to be small, so the Green strain

tensor Em is given by Em = 1
2 (FmT Fm − I). Thus the constitutive relation between the Green strain tensor Em

and the second Piola-Kirchoff stress tensor Sm reads: Sm = CmEm, with Sm = J Fm−1σmFm−T , J = det(Fm)
and Cm the fictitious fourth order tensor for the mesh material.

2.2 Space discretizations

Finite elements for the structure. The equilibrium equations for the structure and for the mesh are discretized
using a classical weak variational formulation and finite element interpolations (three-dimensional continuum ele-
ments for the mesh, and structural elements such as shells, solids, beams and trusses). The discrete sets of equations
for the structure are written in the matrix form as:

Ms{Us},tt + Ks{Us} = {Gs(pfs)} (4)

with {Us} is the set of structural degrees of freedom. Note that by introducing the dynamic boundary conditions at
the fluid-structure interface, the right-hand side of (4) is dependent on the fluid pressure. The linear time-dependent
system (4) can be solved using a direct time-stepping approach or by using a modal superposition analysis. We adopt
the latter approach. Thus, equations (4) are transformed into a set of m ordinary differential equations where the
unknown is the generalized modal displacement vector {Z(t)}:

{Z},tt + Λ{Z} = {gs(pfs)} (5)

where Λ = diag(ω2
1 , ..., ω2

m), ω2
i are the m-eigenvalues of the problem: Ks{φi} = ω2

i M
s{φi} and φi are the eigen-

vectors. The vector of nodal displacements {Us} is related to {Z} by {Us} = Φ{Z} with Φ = [φ1, ..., φm] and
{gs} = ΦT {Gs}.

Finite elements for the fluid. The space discretization of the Euler equations is made using the Stream-Line-
Petrov-Galerkin method [11,12]. Consider a partition of the fluid domain into elements Ωe. The SUPG formulation
reads: find U such that for all weighting functions W,

∑

e

∫

Ωe

(W + (At
iW,i) · τ) · (U,t + wi,iU + Fi,i) dΩ +

∑

e

∫

Ωe

νeW,iU,j dΩ = 0 (6)

and with Ai = ∂Fi/∂U is the Jacobian matrix of the convective flux, νe is a positive coefficient dependent on
the local residual vector R = (U,t + wi,iU + Fi,i), and the matrix τ is commonly referred to as the matrix of
time scales [11–13]. The SUPG formulation is built as a combination of the standard Galerkin integral form and
a perturbation-like integral form depending on the local residual vector. The objective is to reinforce the stability
inside the elements. The FE approximation of the variational formulation (6) uses linear piecewise polynomials over
tetraedral elements. The discrete system corresponding to (6) is written in the form:

Mf{Uf},t + Kf ({Uf}, {Wf}){Uf} = {Gf} (7)

with {Uf} the set of the fluid nodal degrees of freedom, Mf is the fluid mass matrix and Kf is the stiffness matrix
of the fluid. Since theses matrices and the right-hand side of (6) are obtained by an integration over a moving
domain (then unknown domain), they are implicitly dependent on the structural displacement {Us}. Thus, there is
a two-way coupling between the structure, the fluid and the moving mesh fields.
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Finite elements for the mesh. A standard Galerkin variational formulation is established to solve (3). The
corresponding discrete set of equations for the mesh are written in matrix form as:

Mm{Um},tt + Km({Um}){Um} = {Gm({U}s)} (8)

with {Um} is the set of mesh nodal degrees of freedom. Since the density ρm can be chosen arbitrarily, we set it
to zero. Thus, (8) becomes a nonlinear steady problem. In order to avoid large distortions of small elements as the
interface moves, the constitutive material properties of the mesh are chosen in the form Cm ≃ I/|Ωe|, where |Ωe| is
the volume of the corresponding element. Linear FE approximations over tetraedral elements are used.

2.3 Time discretizations

Implicit time marching schemes enable the use of large time steps for the structure as well as for the mesh and fluid
fields. We adopt the trapezoidal rule (Newmark scheme) to integrate (5). At the time step n + 1, one must solve:

Z
(n+1)
i =

∆t2/4

1 + ω2
i ∆t2/4

(

gs(pfs)
(n+1) +

1

4∆t
[
Zn

i

∆t
+ Żn

i +
∆t

4
Z̈n

i ]
)

(9)

with Żn
i = 2(Zn

i − Zn−1
i )/∆t− ˙Zn−1

i , Z̈n
i = 4(Zn

i − Zn−1
i )/∆t2 − 4 ˙Zn−1

i /∆t− ¨Zn−1
i, and ∆t is the time step.

For the fluid, we choose an implicit scheme where the time derivative is approximated by a second-order backward
difference scheme,

{Uf},t ≃ (3{Uf ,n+1} − 4{Uf ,n} − {Uf ,n−1})/(2∆t)

Inserting this approximation into (7) leads to a nonlinear system for the fluid d.o.f. at each time step. This system
as well as (8) is solved by a Newton-GMRES iterative algorithm [14].

2.4 Fluid-structure interface

A major stumbling block here is that the mesh for the fluid and the one for the structure do not match. A mechanism
must be incorporated to make the correspondence when moving from the fluid to structure solves (Figure 1). In
particular, compatibility conditions must be guaranteed on the interface between fluid and the structure [15–17].
Since nodes on both sides of the interface do not need to match, a search algorithm is used to identify the structure
element that contains the fluid node. Once this mapping is obtained, local pressure forces are computed at each
fluid interface node and then interpolated at the structure interface nodes. The resulting pressure load is used as a
boundary condition for the structure. As the structure moves, the displacements of the fluid nodes at the interface
are obtained by simple interpolation. These are then used as boundary conditions for the mesh solver. The grid
velocity is computed for each fluid node and the kinematic boundary conditions at the interface are updated.

Local pressure
Pressure forces at fluid

 interface nodes

Projection

Pressure forces at solid
 interface nodes

Pressure loadStructural analysis

Fig. 1. Fluid-Structure data exchange
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3 SOLUTION METHODS

The nonlinear aeroelasticity model describing the coupling (Fig. 1) of the fluid, mesh and structure fields can be
presented in the following form [18]:

{

R1(Y,Z(pfs))

R2(Y,Z(pfs))

}

= 0 (10)

where Y is the set of fluid and mesh variables which consist of vectors Uf and um, Z(pfs) is the set of structural
variables, pfs is the pressure at the fluid-structure interface, R1 and R2 are the nonlinear discrete residuals of the
fluid, mesh and structural variables, respectively.

The above coupled system can be formulated as a system of nonlinear equations:

F (U) = 0; with U =

(

Y

Z

)

(11)

One can think of several approaches for solving the system (10) or (11). The first approach that comes to mind is to
linearize the system and use a Newton-type method. The linear system resulting from the linearization would be,

KT

(

δY

δZ(pfs)

)

= −

(

R1(Y,Z(pfs))

R2(Y,Z(pfs))

)

(12)

where KT is the tangent matrix, formally written as:

KT =

[

A C

D B

]

(13)

A major difficulty with this “fully-coupled” approach is that the coupling sub-matrices C and D are not practically
available. Indeed, they are difficult to express analytically and their approximation by some approximate differencing
formulas would end-up being too costly.

An alternative which does not require Jacobians explicitly is to use a nonlinear Generalized Minimal Residual
(GMRES) procedure to solve the system of nonlinear equations F (U) = 0, see, e.g., [19–21]. Given the current
iterate Un, we seek a new iterate Un+1 = Un + δn, where δn is in some subspace to be defined shortly. Ideally
we wish to minimize ‖F (Un + δn)‖2 over this subspace. This is a nonlinear optimization problem which is best
solved by using a linear model. Specifically, an approximate solution is obtained by seeking to minimize instead
‖F (Un) + Jnδn‖2 where Jn is the Jacobian matrix of F at the point Un. If we were able to solve the linear system
Jδn = −F (Un) exactly in the selected subspace this would just lead to a standard Newton step. A natural idea is to
take an approximate Newton step which corresponds to selecting the Krylov subspace Km = {v1, Jnv1, · · · , J

m−1
n v1}

where Jn is the Jacobian matrix of F at the point Un and v1 = −F (Un)/‖F (Un)‖2. This amounts to an inexact
Newton iteration where each linear system is approximated by m steps of the (linear) GMRES algorithm. It is also
possible to add a backtracking strategy, see, e.g., [19] to improve global convergence.

The Nonlinear GMRES algorithm is sketched below. Note that the algorithm only requires the Jacobian matrix J
in the form of matrix-vector produtcs in Line 6. Even when the Jacobian is not explicitly available, this product can
be performed by a finite difference formula, such as,

J.v ≈
F (U + ǫv)− F (U)

ǫ
. (14)

Note that this requires one residual evaluation per nonlinear loop (Lines 2 to 15) since F (U) does not change
throughout this loop and it can be saved.
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Algorithm 1: Nonlinear GMRES

1. Start: Choose initial U and a dimension m of the Krylov subspace.
2. Arnoldi process:
3. Compute β = ‖F (U)‖2
4. and v1 = −F (U)/β.
5. For j = 1, 2, ..,m do:
6. Compute Jvj (where J = Jacobian of F at U)
7. hi,j = (Jvj , vi), i = 1, 2, ..., j,

8. v̂j+1 = Jvj −
∑j

i=1 hi,jvi

9. hj+1,j = ‖v̂j+1‖2 and vj+1v̂j+1/hj+1,j

10. EndDo
11. Define the (m + 1)×m matrix H̄m{hij if i ≤ j + 1, 0 otherwise}
12. and Vm ≡ [v1, v2, . . . vm]
13. Form the approximate solution: Find ym the minimizer of
14. φ(y) ≡ ‖βe1 − H̄my‖2, where e1 = [1, 0, . . . 0]T .
15. Compute δ = Vmym and Un+1 = Un + δ.
16. Backtrack: Choose a damping scalar λ ≤ 1 such that
17. ‖F (U + λδ)‖2 decreases sufficiently relative to ‖F (U)‖2.
18. Restart: If satisfied stop, else set U← U + λδ , n← n + 1, and goto (2).

3.1 Nonlinear Block-Jacobi

When the mapping F is linear, i.e, when it is of the form F (U) = b−K ∗U, then the algorithm just given would be
equivalent to a standard GMRES method for solving the system KU = b, without preconditioning. One possibility of
preconditining is to use a block-Jacobi approach which consists of defining the preconditioner as the matrix obtained
from neglecting the coupling submatrices C,D in (13):

[M] =

[

A 0

0 B

]

(15)

Note that in contrast with the coupling matrices C,D, the subbloks A and B are readily available.

Another intrepretation of the resulting procedure, is that the nonlinear GMRES algorithm is attempting to accelerate
a secant-Newton procedure of the form

(

Ynew

Znew

)

=

(

Y

Z

)

−

(

A−1R1(Y,Z(pfs))

B−1R2(Y,Z(pfs))

)

(16)

The resulting procedure essentially solves equation (12) iteratively by replacing the tangent matrix KT by the block
diagonal matrix (15).

3.2 Nonlinear Gauss-Seidel algorithm

We next consider two alternative iterative schemes. The first is a nonlinear Gauss-Seidel iteration whereby the so-
lution of the CFD solver at instant tn+1 is computed with the assumption that the solution of the CSD solver at
the same step is already known and vice versa, for the solution of the CSD solver. Under well-known conditions [22,
chap. 10] this iteration will be contracting [22, chap. 12] in some domain D, so that it will converge to a unique fixed
point for any initial guess in the domain D. At the limit the coupling is ‘consistent’, in the sense that the pair of
solutions found will satisfy both equations at the same time. The overall convergence rate is conditioned by the time
step used and the magnitude of the motion. Though the analysis in [22] is for the scalar SOR-Newton iteration, it
is generalizable to a block-SOR case. Recall that the case ω = 1 corresponds to the (Block) Gauss-Seidel iteration.
This algorithm is summarized next.
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Algorithm 2: Nonlinear Block Gauss-Seidel iteration

1. Loop over time steps:
2. Until convergence Do:
3. Update the fluid field using the new boundary conditions.
4. Project fluid forces on the structure.
5. Update the structure displacements.
6. Update the mesh configuration using the new interface positions.
7. Check for convergence criterion.
8. EndDo
9. EndDo time loop

This specific scheme has often been advocated in the literature. For example, in the semi-conductor device simulation
literature, it takes the name of Gummel’s methods [20].

Many researchers observed that this form of block-relaxation schemes can be accelerated by some projection-type
technique such as GMRES [19,21,23,24]. This is based on the observation made above that Algorithm 1 requires
the Jacobian only in the form of matrix-vector products which can be evaluated with the simple formula (14). The
resulting scheme is often referred to as a Nonlinear Krylov method.

The procedure can be described as follows. After each step in Algorithm 2, the iterates undergo a transformation
which can be written as:

(

Ynew

Znew

)

= M

(

Y

Z

)

(17)

in which M is the nonlinear mapping which correspond to applying one step of the nonlinear Gauss-Seidel iteration.
The iteration is attempting to solve the nonlinear equation:

(

Y

Z

)

−M

(

Y

Z

)

= 0 . (18)

One can think of applying a Newton-like procedure based on Algorithm 1 for solving this system of equations. We
will refer to this scheme as a Gauss-Seidel-Newton iteration.

3.3 Nonlinear Schur-complement algorithm

Upon eliminating the Y variable from the system (10), the equations to be solved can be restated in the following
form

ℜ(Z(pfs), t)) = 0 (19)

The idea now is to attack the above problem as a nonlinear equation in Z. It can be seen that ℜ = R2 −DA−1R1.
Applying Newton’s iteration to equations (19), leads to solving a linear system of the following form :

ℜ′(Z)δZ = −ℜ(Z(pfs)) (20)

with ℜ′ = B −DA−1C the Jacobian of ℜ. Thus, if the problem (19) has a solution then a solution to the original
coupled fluid-structure problem can easily be obtained. When δZ = 0, the fluid-structure interface does not move
which implies that the fluid force does not change. However, the Jacobian ℜ′ is not practically computable. Since the
Nonlinear version of GMRES, Algorithm 1, requires only the action of the product of this Jacobian times a vector
V, the matrix ℜ′ is actually not explicitly needed. Algorithm 1 can be used to solve the Schur complement problem
(19). The products Jv in Line 6 of this algorithm, can be approximately evaluated by a simple forward finite scheme,
analogous to (14):

ℜ′(Z) ·V ≈
ℜ(Z + εV)−ℜ(Z)

ε
(21)
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where ε is a small coefficient. The small-size linear system (20) (its size is actually the number of structural dry
modes m) converges exactly in m iterations, even without any preconditioning. The most time consuming part of
this algorithm is in the construction of the Krylov subspace. A significant saving can be obtained by freezing the
Krylov subspace for a few time-iterations. However, in order to generate the Krylov directions, the pressure at the
interface must be computed by the following computational steps :

Calculation of interface pressures :

1. Compute the coordinates of the structure corresponding to the
perturbed modal coordinates Z + εV.

2. Update the coordinates of the fluid nodes at the interface.
3. Update the mesh coordinates.
4. Update the fluid field.
5. Project the fluid pressure on the interface.

4 NUMERICAL RESULTS

Numerical simulations have been performed on the aeroelastic wing AGARD 445.6. This wing, has a symmetrical
airfoil NACA 65A004 and a quarter-chord sweepback of 45 degrees, is immersed at a zero angle of attack in a transonic
airflow. It has a mass of 0.1276 slug (1.86227 kg), a Young’s modulus of 4.7072 × 105 psi (3.2455 × 109 N/m2),
a Poisson ratio of 0.31 and a density of 0.8088 slug/ft3 (416.86 kg/m3). The structural domain is discretized by
1176 quadrilateral shell elements. The modal parameters are extracted with the commercial software ANSYS. The
natural frequencies of the first five modes which are respectively 9.6, 39.4, 49.6, 96.1, 126.3 Hz and the modal vectors
presented in Fig. 2 are in good agreement with the experimental results [4]. A coarse fluid mesh having 177042 linear
tetrahedral elements and 37965 nodes is used. Since the strongest variation of the fluid variables occurs around the
wing, the elements near the wing are much smaller than those in the rest of the fluid domain. There are 12921 fluid
nodes and 25684 triangular elements on the wet surface of the wing on which slip boundary conditions are applied.
Since the structural motion has no influence on the far-field boundaries, the flow is imposed as the incoming flow.
The initial solution for the CFD solver is obtained by considering the wing as a rigid structure. The corresponding
fluid configuration is considered as the initial state of the unsteady flow. From this state, a Dirac force is applied on
the point located at the intersection between the wing tip and the leading edge. The Mach number of the oncoming
flow is chosen as 0.96 in order to simulate the critical point of the transonic dip. The results of the flutter boundary
prediction with our parallel code can be found in [25].

4.1 Numerical simulations with nonlinear Gauss-Seidel coupling algorithm

First, for the purpose of capturing the flutter dip with accuracy, a relatively small nondimensional time step of 0.1
which corresponds to a real time step of 2.01×10−4 seconds is used in the numerical simulations. At the aerodynamic
pressure of 60 lb/ft2 of the oncoming flow, the amplitudes of the lift and the generalized displacements(z1, z2) of
the first two modes, which dominate the responses of the structural displacements, are constant and the critical
flutter is captured. When the aerodynamic pressure of the oncoming flow increases to 61.3 lb/ft2, the responses of
the wing get increasing amplitudes and the wing is beyond the flutter point (Fig. 3). For the purpose of reducing
the computing time, the numerical simulations with an increased nondimensional time step of 0.3 are performed,
the flutter point is also captured at the aerodynamic pressure of 60 lb/ft2. Figure 4 represents the time histories
of the generalized displacement of the first two modes in comparison with another case with a higher aerodynamic
pressure of 61.3 lb/ft2.

At the flutter point with aerodynamic pressure of 60.0 lb/ft2 and Mach number of 0.96, the damping coefficients
are very small positives or negatives (see simulation (1) and (3) in Table 1), the coalesced frequency of 13.5 Hz
(84.8 rad/s) of the first two modes is very close to the experimental one of 13.9 Hz (87.3 rad/s)[4]. The spectral
distributions of the first two modes obtained with the Fast Discrete Fourier Transform confirm well the frequency
coalescence (Fig. 5). The frequencies of the lift and the first two modes have practically the same value at the flutter
point. This flutter aerodynamic pressure also agrees with the computational ones in [26,27]. When the aerodynamic
pressure was increased to 61.3 lb/ft2, the amplitudes of the generalized displacements of the first two modes start to
increase and so does the difference of the frequencies of the oscillation. Table 1 summarizes the damping coefficients
and the frequencies of the oscillation of the lift and the generalized displacements of the first two modes of the
numerical simulations [28]. In simulation (1) and simulation (3) with aerodynamic pressure of 60.0 lb/ft2, the
damping coefficients are nearly zero and the frequencies are very close. The system reaches the flutter point (Fig.6).
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In simulation (2) and simulation (4) with aerodynamic pressure of 61.3 lb/ft2, the damping coefficients become
negative and the difference of the frequencies of the first two modes starts to increase. The responses of the system
indicate the flutter (Fig. 7). Simulation (3) and simulation (4) show that the nondimensional time step can be
increased to 0.3, thus the computational speed is three times faster than simulation (1) and simulation (2).

Yate's Results
computed Results
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Fig. 2. Modal vectors of wing AGARD 445.6 extracted with ANSYS

4.2 Numerical simulations with nonlinear Schur-complement coupling algorithm

The Gauss-Seidel coupling algorithm gives satisfying results when the perturbation is small. However, this algorithm
may have numerical instability and even may crash as the perturbation becomes strong. Schur-complement coupling
algorithm can improve the robustness of the code. However, as the structural displacements increase, the linear mesh
model is no longer stable. Figure 8 shows the comparisons of the generalized displacements of the first two modes
obtained by Schur-complement algorithm with linear and nonlinear mesh models. From this figure we can see that
the code gives the same results at the beginning of the simulations, but the simulation with linear mesh model stops
at one instant due to the difficulty of convergence. Figure 9 shows the comparison of the numerical results obtained
from the two nonlinear coupling algorithms at Mach number of 0.96 and aerodynamic pressure of 60 lb/ft2. The
strong force perturbation yields strong structural displacements which are 20 times larger than that of the test in
the previous section. It is observed that the aeroelastic responses with Schur-complement coupling algorithm are
more stable than those with the Gauss-Seidel coupling algorithm.

5 CONCLUSIONS

A nonlinear computational aeroelasticity model is developed using tight coupling algorithms. These coupling tech-
niques reuse the developed linear CSD solver based on the modal analysis and the nonlinear CFD solver described by
Euler equations. However, a matcher module and a mesh solver are required to match the CSD and CFD grids on the
fluid-structure interface and to adapt the moving fluid boundaries. The use of the second order time discretization
scheme and a nonlinear moving mesh model allows us to use large time steps for the staggered coupling algorithms.
This model is applied to the standard aeroelastic wing AGARD 445.6 to predict the wing flutter, especially the
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Fig. 3. Time history of the generalized displacements of the first two modes under a load perturbation with nondimensional
time step of 0.1 at aerodynamic pressures 60 lb/ft2 and 61.3 lb/ft2

transonic dip. With a modest perturbation in transonic flows at Mach number 0.96, the results of the flutter simula-
tion by the Gauss-Seidel coupling algorithm agree well with those in the references. The Schur-complement coupling
algorithm improves the robustness of the code under stronger perturbation conditions.
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P_ref = 61.3 lb/sqftP_ref = 60  lb/sqft

calculated flutter point  flutter with a small increasing amplitude
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University of Quebec, Montreal.

12



-10

-5

0

5

10

15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

G
en

er
al

iz
ed

  d
is

pl
ac

em
en

t (
10

-4
)

Time (s)

Fig. 6. Time history of the generalized displacements of the first two modes of the wing AGARD 445.6 under a load perturbation
with nondimensional time step of 0.1 (blue and red curves for mode 1 and mode2 respectively) and 0.3 (green and black curves
for mode 1 and mode2 respectively), aerodynamic pressure of q = 60 lb/ft2

-10

-5

0

5

10

15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Time (s)

G
en

er
al

iz
ed

  d
is

pl
ac

em
en

t (
10

-4
)

Fig. 7. Time history of the generalized displacements of the first two modes of the wing AGARD 445.6 under a load perturbation
with nondimensional time step of 0.1 (blue and red curves for mode 1 and mode2 respectively) and 0.3 (green and black curves
for mode 1 and mode2 respectively), aerodynamic pressure of q = 61.3 lb/ft2

13



-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

G
e
n
e
ra

liz
e
d
  
d
is

p
la

c
e
m

e
n
t 
(1

0
-2

)
G

e
n
e
ra

liz
e
d
  
d
is

p
la

c
e
m

e
n
t 
(1

0
-2

)

Mode 1

Time (s)

with linear mesh model

with nonlinear mesh model

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

Time (s)

G
e
n
e
ra

liz
e
d
  
d
is

p
la

c
e
m

e
n
t 
(1

0
-2

)

Mode 2
with linear mesh model

with nonlinear mesh model

Fig. 8. Comparisons of the generalized displacements obtained by Schur-complement algorithm with linear and nonlinear
mesh models of the first two modes under a load perturbation at aerodynamic pressures 60 lb/ft2
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Fig. 9. Comparisons of the generalized displacements obtained by Gauss-Seidel and Schur-complement algorithms of the first
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