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Abstract

Solving the Kohn-Sham eigenvalue problem constitutes the most computationally expensive part
in self-consistent density functional theory (DFT) calculations. A nonlinear Chebyshev-filtered sub-
space iteration is developed which avoids computing explicit eigenvectors, except at the first SCF
iteration. The method may be viewed as an approach to solve the original nonlinear Kohn-Sham
equation by a nonlinear subspace iteration technique, without emphasizing the intermediate lin-
earized Kohn-Sham eigenvalue problems. The method reaches self-consistency within a similar
number of SCF iterations as eigensolver-based approaches. However, replacing the standard diag-
onalization at each SCF iteration by a Chebyshev subspace filtering step results in a significant
speedup over methods based on standard dagonalization. Algorithmic details of a parallel imple-
mentation of this method are discussed. Numerical results are presented to show that the method
enables to perform a class of highly challenging DFT calculations that were not feasible before.

Key words: Density functional theory, self-consistent-field, Chebyshev filtered subspace iteration,
Chebyshev-Davidson, eigenproblem, real-space, pseudopotential.

1 Introduction

Electronic structure calculations based on first principles use a very successful combination of density
functional theory (DFT) [15, 17] and pseudopotential theory [26, 27, 8, 23]. DFT reduces the original
multi-electron Shrodinger equation into an effective one-electron Kohn-Sham equation, where all non-
classical electronic interactions are replaced by a functional of the charge density. The pseudopotential
theory further simplifies the problem by replacing the true atomic potential with an effective “pseudopo-
tential” that is smoother but takes into account the effect of core electrons. Combining pseudopotential
with DFT greatly reduces the number of one-electron wave-functions to be computed. However, even
with these simplifications, solving the final Kohn-Sham equation can still be computationally challeng-
ing, especially when the systems being studied are complex or contain thousands of atoms.

The traditional approach for solving the Kohn-Sham equation utilizes planewave bases (e.g., [25, 18])
to expand the wave-functions for periodic structures. Real-space methods, which do not explicitly use
a functional basis, have gained ground in recent years [9, 10, 33, 6] due in great part to their simplicity.
Their first advantage, is that they are quite easy to implement in parallel. A second advantage relative
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to the planewave approach is that they do not require to use super-cells for non-periodic systems. Third,
the application of potentials onto electron wave-functions is performed directly in real-space. Although
the Hamiltonian matrices with a real-space approach is larger than with planewave, the Hamiltonians
are highly sparse and never stored or computed explicitly. Only matrix-vector products that represent
the application of the Hamiltonians on wave-functions need to be computed.

This paper focusses on effective techniques to handle the most computationally expensive part of
DFT calculations, namely the self-consistent-field (SCF) iteration. We present details of a recently
developed nonlinear Chebyshev-filtered subspace iteration (CheFSI) method, implemented in our own
DFT package called PARSEC (Pseudopotential Algorithm for Real-Space Electronic Calculations).

The Standard SCF iteration framework is used in CheFSI, and a self-consistent solution is sought,
which means that CheFSI has the same accuracy as other standard DFT approaches based on SCF
iteration. One can view CheFSI as a technique to directly tackle the original nonlinear Kohn-Sham
eigenvalue problems by a form of nonlinear subspace iterations, without emphasizing the intermediate
linearized Kohn-Sham eigenvalue problems. In fact, within CheFSI, explicit eigenvectors are computed
only at the first SCF iteration iteration, in order to provide a suitable initial subspace. After the first
SCF step, the explicit computation of eigenvectors at each SCF iteration is replaced by a single subspace
filtering step. The method reaches self-consistency within a number of SCF iterations that is close to
that of eigenvector-based approaches. However, since eigenvectors are not explicitly computed after the
first step, a significant gain in execution time results when compared with methods based on explicit
diagonalization. Around tenfold or more speedup over well-known efficient eigenvalue packages such as
ARPACK [22] and TRLan [40, 41] is normally observed. CheFSI enables us to perform a class of highly
challenging DFT calculations, including clusters with over ten thousand atoms, which were not feasible
to solve before. Numerical results are presented in Section 6.

The sequential version of CheFSI method is described in [45]. We also refer to [45] for a more
complete literature survey. This paper begins with a summary of SCF for DFT calculations and the
main features of the parallel paradigm of PARSEC, then turns to the description of the CheFSI method
and its parallel implementation within the PARSEC code. Note that in [45] the first diagonalization
is done by calling the thick-restart Lanczos (TRLan) method [40, 41], here we also discuss the block
Chebyshev-Davidson [44, 43] method, which improves the efficiency for diagonalization at the first SCF
iteration.

2 Eigenvalue problems in DFT SCF calculations

Within DFT, the multi-electron Schrédinger equation is simplified as the following Kohn-Sham equation:
h2
“51z V.t Vietat(p(r),m) | Wilr) = Ei¥y(r), (1)

where ¥, (r) is a wave function, F; is a Kohn-Sham eigenvalue, /i is the Planck constant, and M is the
electron mass. In practice we use atomic units, thus h = M = 1.
The total potential Vioar, also referred to as the effective potential, includes three terms,

‘/total(p(r)7 ’I“) = V;on(r) + VH(P(T)7 T) + VXC’(p(T)u 7")7 (2)

where Vj,, is the ionic potential, Vp is the Hartree potential, and Vx¢ is the exchange-correlation
potential.

The Hartree and exchange-correlation potentials depend on the charge density p(r), which is defined
as

Noce
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Here n,e. is the number of occupied states, which is equal to half the number of valence electrons in
the system. The factor of two comes from spin multiplicity. Equation (3) can be easily extended to
situations where the highest occupied states have fractional occupancy or when there is an imbalance
in the number of electrons for each spin component.

The most computationally expensive step of DFT is in solving the Kohn-Sham equation (1). Since
Viotal depends on the charge density p(r), which in turn depends on the wavefunctions of (1), eqn. (1)
can be viewed as a nonlinear eigenvalue problem. The SCF iteration is a general technique used to solve
this nonlinear eigenvalue problem. It starts with an initial guess of the charge density, then obtains
the initial Viote and solves (1) for U;(r)’s to update p(r) and Viytqr. Then (1) is solved again for the
new U;(r)’s and the process is iterated until Vit (also the wave functions) becomes stationary. The
standard SCF process is described in Algorithm 2.1.

Algorithm 2.1 Self-consistent-field iteration:

1. Provide initial guess for p(r), get Viotai(p(r),7).

2. Solve for W;(r), i =1,2,..., from
1
_§v2 + Viotal (p(’/‘), T) v; (T) = EY,; (’I“) (4)
3. Compute the new charge density p(r) =231 |¥;(r)|?.
4. Solve for new Hartree potential Vi from V2V (r) = —4np(r).

5. Update Vxc; get new f/toml(p, ) = Vion(r) + Vu(p,r) + Vxc(p,r) with a potential-mizing step.

6. ]f ||‘7total - Vvtotal” < t0l7 StOP; EZSC, V;Sotal — ‘Zﬁotal: gOtO Step 2.

The number of eigenvectors needed in Step 2 of Algorithm 2.1 is just the number of occupied states.
In practice a few more eigenvectors are usually computed. For complex systems, i.e., when the number
of valence electrons is large, each of the linearized eigenvalue problems (4) can be computationally
demanding. In addition to the large number of eigenvectors needed, the code must also cope with
Hamiltonian matrices of very large size.

For this reason, it is the goal of any DFT code to lessen the burden of solving (4) in the SCF
iteration. One possible avenue to achieve this is to use better diagonalization routines. However this
approach is limited as most diagonalization software has now reached maturation. At the other extreme,
one can attempt to avoid diagonalization altogether, and this leads to the body of work represented
by linear-scaling or order-N methods (see e.g. [13]). This approach however has other limitations. In
particular, the approximations involved rely heavily on some decay properties of the density matrix in
certiain function bases. In particular, they will be difficult to implement in real-space discretizations.
Our approach lies somewhere between these extremes. We take advantage of the fact that accurate
eigenvectors are unnecessary at each SCF iteration, since Hamiltonians are only approximate in the
intermediate SCF steps, and exploit the nonlinear nature of the problem. The main point of the new
algorithm is that once we have a good starting point for the Hamiltonian, it suffices to filter each basis
vector at each iteration. In the intermediate SCF steps, these vectors are no longer eigenvectors but
together they represent a good basis of the desired inveriant subspace. This will be discussed in Section
4. The next section summarizes parallel implementation issues in PARSEC.



3 The parallel environment in PARSEC

PARSEC uses pseudopotential real-space implementation of DFT. The motivation and original ideas
behind the method go back to the early 1990s, see [9, 10]. Within PARSEC, an uniform Cartesian
grid in real-space is placed on the region of interest, and the Kohn-Sham equation is discretized by a
high order finite-difference method [12] on this grid. Wavefunctions are expressed as functions of grid
positions. Outside a specified sphere boundary that encloses the physical system, wavefunctions are set
to zero for non-periodic systems. In addition to the advantages mentioned in the introduction, another
advantage of the real-space approach is that periodic boundary conditions are also reasonably simple to
implement [1].

The latest version of PARSEC is written in Fortran 90/95. PARSEC has now evolved into a mature,
massively parallel package, which includes most of the functionality of comparable DFT codes [20]. The
reader is referred to [31, 35] for details and the rationale of the parallel implementation. The following
is a brief summary of the most important points.

The parallel mode of PARSEC uses the standard Message Passing Interface (MPI) library for commu-
nication. Parallelization is achieved by partitioning the physical domain which can have various shapes
depending on boundary conditions and symmetry operations. Figure 1 illustrates four cube-shaped
neighboring sub-domains. For a generic, confined system without symmetry, the physical domain is a
sphere which contains all atoms plus some additional space (due to delocalization of electron charge).
In recent years, PARSEC has been enhanced to take advantage of physical symmetry. If the system is
invariant upon certain symmetry operations, the physical domain is replaced with an irreducible wedge
constructed according to those operations. For example, if the system has mirror symmetry on the xzy
plane, the irreducible wedge covers only one hemisphere, either above or below the mirror plane. For
periodic systems, the physical domain is the periodic cell, or an irreducible wedge of it if symmetry op-
erations are present. In any circumstance, the physical domain is partitioned in compact regions, each
assigned to one processor only. Good load balance is ensured by enforcing that the compact regions
have approximately the same number of grid points.

~

~

Figure 1: Sample decomposition of a physical domain in PARSEC.

Once the physical domain is partitioned, the physical problem is mapped onto the processors in a
data-parallel way: each processor is in charge of a block of rows of the Hamiltonian corresponding to the
block of grid points assigned to it. The eigenvector and potential vector arrays are row-wise distributed
in the same fashion. The program only requires an index function indx(i, j, k) which returns the number
of the processor in which the grid point (4, j, k) resides.

Because the Hamiltonian matrix is never stored, we need an explicit reordering scheme which renum-
bers rows consecutively from one processor to the next one. For this purpose we use a list of pointers
that gives for each processor, the row with which it starts.



Since finite difference discretizetion is used, when performing an operation such as a matrix-vector
product, communication will be require between nearest neighbor processors. For communication we
use two index arrays, one to count how many and which rows are needed from neighbors, the other to
count the number of local rows needed by neighbors.

With this design of decomposition and mapping, the data required by the program can be com-
pletely distributed. Being able to distribute the memory requirement is quite important in solving large
problems on standard supercomputers.

Parallelizing subspace methods for the linearized eigenvalue problems (represented as eqn. (4))
becomes quite straightforward with the above mentioned decomposition and mapping. Note that the
subspace basis vectors contain approximations to eigenvectors, therefore the rows of the basis vectors are
distributed in the same way as the rows of the Hamiltonian. All matrix-matrix products, matrix-vector
products, and vector updates (e.g., linear combinations of vectors), can be executed in parallel.

Reduction operations, e.g., computing inner products and making the result available in each pro-
cessor, are efficiently handled by the MPI reduction function MPI_ALLREDUCE().

4 The nonlinear Chebyshev-filtered subspace iteration

As previously mentioned, the Hamiltonians of the intermediate SCF steps are approximate, therefore
there is no need to compute eigenvectors of the intermediate Hamiltonians to high accuracy. Moreover,
as observed in, e.g., [4, 36, 33, 13, 7, 45], the (discretized) charge density is the diagonal of the “func-
tional” charge density matrix defined as P = ®®”'| where the columns of the matrix ® are discretized
wavefunctions corresponding to occupied states. Notice that for any orthonormal matrix @ of a suitable
dimension, P = (®Q)(®Q)T. Therefore explicit eigenvectors are not needed to calculate the charge den-
sity. Any orthonormal basis of the eigensubspace corresponding to occupied states can give the desired
intermediate charge density.

The proposed method combines the outer SCF iteration and the inner iteration required for diago-
nalization at each SCF step into one nonlinear subspace iteration. In this approach an initial subspace
is progressively refined by a low degree Chebyshev polynomials filtering. This means that each basis
vector u; is processed as follows:

Uj,new = pm(H)uz

where p,, is some shifted and scaled Chebyshev poynomial whose goal is to enhance eigencomponents
of u; associated with the occupied states. Throughout the paper, the integer m denotes the degree of
the polynomial p,, which is used for filtering.

If it were not for the nonlinear nature of the SCF loop, i.e., if H were a fixed operator, this approach
would be equivalent to the well-known Chebyshev accelerated Subspace iteration proposed by Bauer
[5], and later refined by Rutishauser [28, 29] (who later published an Algol routine in the “handbook
for automatic computations: linear algebra”, see [29]).

Chebyshev polynomial filtering has long been utilized in electronic structure calculations (see e.g.
[32, 36, 14, 2, 3, 16]), focussing primarily on approximating the Fermi-Dirac operator where Chebyshev
polynomials only over interval [—1, 1] were considered. Therefore Chebyshev polynomials of rather high
degree were necessary and additional techniques were required to suppress the Gibbs phenomena. In
contrast, our approach exploits the well-known fast growth property outside the [—1,1] interval of the
Chebyshev polynomial, so that only low degree Chebyshev polynomials are required to achieve sufficient
filtering.

The main idea of CheFSI is to start with a good initial subspace V' corresponding to occupied states of
the initial Hamiltonian, this initial V' is usually obtained by a diagonalization step. No diagonalizations
are necessary after the first SCF step. Instead, the subspace from the previous iteration is filtered by a
degree-m polynomial, p,,(t), constructed for the current Hamiltonian H. The polynomial differs at each
SCF step since H changes. Note that the goal of the filter is to make the subspace spanned by p,, (H)V



approximate the eigensubspace corresponding to the occupied states of the final H. At the intermediate
SCF steps, the basis need not be an accurate eigenbasis since the intermediate Hamiltonians are not
exact. The filtering is designed so that the resulting sequence of subspaces will progressively approximate
the desired eigensubspace of the final Hamiltonian when self-consistency is reached. At each SCF step,
only two parameters are required to construct an efficient Chebyshev filter, namely, a lower bound and
an upper bound of the higher portion of the spectrum of the current Hamiltonian H in which we want
pm(t) to be small. These bounds can be obtained with little additional cost, as will be seen in Section
4.2.

After self-consistency is reached, the Chebyshev filtered subspace includes the eigensubspace corre-
sponding to occupied states. Explicit eigenvectors can be readily obtained by a Rayleigh-Ritz refinement
[24] (also called subspace rotation) step.

4.1 Chebyshev-filtered subspace iteration

The main structure of CheFSI, which is given in Algorithm 4.1, is quite similar to that of the standard
SCF iteration (Algorithm 2.1). One major difference is that the inner iteration for diagonalization at
Step 2 is now performed only at the first SCF step. Thereafter, diagonalization is replaced by a single
Chebyshev subspace filtering step, performed by calling Algorithm 4.2.

Although the charge density (3) requires only the lowest n,.. states, the number of computed states,
which is the integer s in Algorithm 4.1, is typically set to a value larger than n,.., in order to avoid
missing any occupied states. In practice we fix an integer ngqte which is slightly larger than n,.., and
set 8 = Ngate + Nadd With ngqq < 10.

The parallel implementations of Algorithms 4.1 and 4.2 are quite straightforward with the par-
allel paradigm discussed in Section 3. We only mention that the matrix-vector products related to
filtering, computing upper bounds, and Rayleigh-Ritz refinement, can easily execute in parallel. The
re-orthogonalization at Step 4 of Algorithm 4.2 uses a parallel version of the iterated Gram-Schmidt
DGKS method [11], which scales better than the standard modified Gram-Schmidt algorithm.

Algorithm 4.1 CheFSI for SCF calculation:

1. Start from an initial guess of p(r), get Vietar(p(r),7).

2. Solve [—1V2+ Vit (p(r),r)] Ui(r) = E;W;(r)  for U;(r), i=1,2,..,s.

3. Compute new charge density p(r) =23 1% U, (r)[2.

4. Solve for new Hartree potential Vi from V2Vy(r) = —4np(r).

5. Update Vxc; get new ‘N/toml(p, 7) = Vion(r) + Vu(p,r) + Vxc(p,r) with a potential-mizing step.

6. If [Viotar — Viotal| < tol, stop; Else, Viotar — Viotar (update H implicitly),
call the Chebyshev-filtered subspace method (Algorithm 4.2) to get s approximate wavefunctions;
goto step 3.

The estimated complexity of the algorithm is similar to that of the sequential CheFSI method in
[45]. For parallel computation it suffices to estimate the complexity on a single processor. Assume that
p processors are used, i.e., each processor shares N/p rows of the full Hamiltonian. The estimated cost



Algorithm 4.2 Chebyshev-filtered Subspace (CheFS) method:

1. Get the lower bound b, and ag from previous Ritz values (use the largest one and the smallest

one, respectively).

2. Compute the upper bound by, of the spectrum of the current discretized
Hamiltonian H (call Algorithm 4.4 in Section 4.2).

3. Perform Chebyshev filtering (call Algorithm 4.3 in Section 4.2) on the previous basis ®, where ®
contains the discretized wavefunctions of W;(r), i =1,...,s:
® = Chebyshev_filter(®, m, bjow, bup, @o)-

4. Ortho-normalize the basis ® by iterated Gram-Schmidt.
5. Perform the Rayleigh-Ritz step:

(a) Compute H = dTH®;

(b) Compute the eigendecomposition of H: HQ=QD,
where D contains non-increasingly ordered eigenvalues of H, and Q contains the corresponding

eigenvectors;

(c) ’Rotate’ the basis as ® := ®Q; return ® and D.

of Algorithm 4.2 on each processor with respect to the dimension of the Hamiltonian denoted by IV,
and the number of computed states s, is as follows:

e The Chebyshev filtering in Step 3 costs O(s x N/p) flops. The discretized Hamiltonian is sparse
and each matrix-vector product on one processor costs O(N/p) flops. Step 3 requires m* s matrix-
vector products, at a total cost of O(s * m x N/p) where the degree m of the polynomial is small
(typically between 8 and 20).

e The ortho-normalization in Step 4 costs O(s? * N/p) flops. There are additional communication
costs because of the global reductions.

e The eigen-decomposition at Step § costs O(s3) flops.
e The final basis refinement step (® := ®Q) costs O(s? * N/p).

If a standard iterative diagonalization method is used to solve the linearized eigenproblem (4) at
each SCF step, then it also requires (i) the orthonormalization of a (typically larger) basis; (ii) the eigen-
decomposition of the projected Rayleigh-quotient matrix; and (iii) the basis refinement (rotation). These
operations need to be performed several times within this single diagonalization. But Algorithm 4.2
preforms each of these operations only once per SCF step. Therefore, although Algorithm 4.2 scales
in a similar way to standard diagonalization-based methods, the scaling constant is much smaller. For
large problems, CheF'S can achieve a tenfold or more speedup per SCF step, over using the well-know
efficient eigenvalue packages such as ARPACK [22] and TRLan [40, 41]. The total speedup can be more
significant since self-consistency requires several SCF iteration steps.

To summarize, a standard SCF method would have an outer SCF loop—the usual nonlinear SCF
loop, and an inner diagonalization loop, which iterates until eigenvectors are within specified accuracy.



Algorithm 4.1 simplifies this by merging the inner-outer loops into a single outer loop, which can be
considered as a nonlinear subspace iteration algorithm. The inner diagonalization loop is reduced into
a single Chebyshev subspace filtering step.

4.2 Chebyshev filters and estimation of bounds

To construct Chebyshev polynomials to filter the subspace efficiently, it is necessary to find two param-
eters which allow to achieve a desired filtering. These correspond to upper and lower bounds for the
undesired part of the spectrum and they can be obtained in a simple and effective way. We begin with
a brief review of the well-known Chebyshev polynomials.

Chebyshev polynomials of the first kind ([24, p.371] [30, p.142]) are defined by

Cult) = cos(k cos™i(t)), —-1<t<1,
MUY cosh(k cosh™i (), [t| > 1.

Note that Cy(t) = 1,C1(t) = t. The following important 3-term recurrence is well-known
Cri1(t) =2t Cr(t) — Cr_1(t), telR. (5)

For the desired filtering, we want to exploit the rapid growth outside [—1,1] of the Chebyshev
polynomial. This well-known property is discussed in [24], see also [44, 45]. Assume that the full
spectrum of H (denoted as o(H)) is contained in [ag, b]. Then, in order to approximate the eigensubspace
associated with the lower end of the spectrum, say [ag,a] with ag < a < b, it is necessary to map [a, b]
into [—1, 1] before applying the Chebyshev polynomnial. This can be easily realized by an affine mapping

defined as . b b
—c a —a

t :: N pr— =
Ly =""0% =0 =t

where ¢ denotes the center and e the half-width of the interval [a, b].
The Chebyshev iteration utilizing the three-term recurrence (5) to dampen values on the interval
[a,b] is listed in Algorithm 4.3, see also [45]. The algorithm computes

Y =pn(H)X where  p,(t) = Cpn [L£(2)] . (6)

This yields the iteration
2
XjJrl:*(H—CI)Xj—X]',l j:1,2,..7m—1.
e

with X given and X; = (H — ¢I)X,. As can be easily seen this is equivalent to a power iteration of

the form
Xjm\ _ (2(H-cl) -1 X;
X; ) I 0/)\X;.1) "

B
A little analysis would show that all the eigenvalues of the nonsymmetric matrix B are complex and
of modulus one, except that those corresponding to eigenvalues of H that are less than a are mapped
to real eigenvalues larger than one in magnitude. Therefore, just as for the standard power method, a
scaling is required. The simplest strategy, discussed in [30] is to consider the scaled sequence

- G2(H = cl)]
Xi= C;[2(ao — cI)]XO

Thus, the scaling factor is p; = C;[2(ag — cI)]. Clearly this requires an estimate for ag, but since this

is used for scaling, only a rough value is needed. For the first SCF iteration, we can use the smallest



Ritz value of T from the same Lanczos run (Algorithm 4.4 below) as used to obtain the upper bound
b for ag. For the latter SCF steps, the smallest Ritz value from the previous SCF step can be used.
Clearly, the vector sequence is not computed as shown above because p; itself can be large and this
would defeat the purpose of scaling. Instead, each X j+1 is updated using the scaled vectors X ; and
X j—1. The corresponding algorithm, discussed in [30] is shown in Algorithm 4.3 (the tildes and vector
subscripts are omitted).

Algorithm 4.3 [Y] = Chebyshev_filter(X,m,a,b,ag).

Purpose: Filter column vectors of X by an m degree Chebyshev polynomial in H. QOutput in Y.

1. e=(b-a)/2; c=(b+a)/2;

2. o=cef(ag— c); o1 = 0; v=2/o1.
3. Y =2(HX —cX)

4. Fori=2:m

9. ox =1/(y—o0);

6. Yiew = 22 (HY —¢Y) — 002X

7. X=Y;

8. Y =Y ew;

9. o = 09;

10. End For

Algorithm 4.3 explicitly dampens the [a, b] interval. The eigen-components associated with eigenval-
ues in [a, b] will be transformed to small values while those to the left of [a,b] will be around unity due
to the properties of the Chebyshev polynomials. This is the desired filtering property when computing
an approximation to the eigensubspace associated with the lower end of o(H). As seen in Algorithm
4.3, a desired filter can be easily controlled by adjusting two endpoints that bound the higher portion
of o(H).

The wanted lower bound can be any value which is larger than the Fermi-level but smaller than the
upper bound. It can also be a value slightly smaller than the Fermi-level; thanks to the monotonicity
of the shifted and scaled Chebyshev polynomial on the spectrum of H, and the fact that we compute
§ > nyee number of Ritz values, the desired lowered end of the spectrum will still be magnified properly
with this choice of lower bound.

Since the previous SCF iteration performs a Rayleigh-Ritz refinement step, it provides naturally an
approximation for the lower bound a. Indeed, we can simply take the largest Rayleigh-quotient from
the previous SCF iteration step as an approximation to the lower bound for the current Hamiltonian.
In other words, a is taken to be the largest eigenvalue computed in step 5-(b) of Algorithm 4.2 from the
previous SCF iteration, with no extra computation.

The upper bound for the spectrum (denoted by b) can be estimated by a k-step standard Lanczos
method. As pointed out in [44], the higher endpoint b must be a bound for the full spectrum of H. This
is because the Chebyshev polynomial also grows fast to the right of [—1, 1]. So if [a, b] with b < opaq(H)
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is mapped into [—1, 1], then the [b, 0, (H)] portion of the spectrum will also be magnified, which will
cause the procedure to fail. Therefore, the bound b must be larger than ,,4,(H). On the other hand
it should not be too large as this results in slow convergence. The simplest strategy which can be used
for this is to use Gerschgorin’s Circle Theorem. Bounds obtained this way can, however, overestimate
Omazx (H) .

An inexpensive way to estimate an upper bound of o(H) by the standard Lanczos [21] method is
described in Algorithm 4.4, to which a safeguard step is added. The largest eigenvalue A of the tridiagonal
matrix 7" is known to be below the largest eigenvalue A of the Hamiltonian. If @ is the corresponding
Ritz vector and 7 = (H — AI)@ then there is an eigenvalue of H in the interval [A —||7[|, A+ ||7[|] (see e.g.
[24]). Algorithm 4.4 estimates Apmqz by maz(X) + || f||, since it is known that ||r|| < | f]|. This is not
theoretically guaranteed to return an upper bound for \,,q; - but it is generally observed to yield an
effective upper bound. The algorithm for estimating b is presented in Algorithm 4.4 below. Note that
the algorithm is easily parallelizable as it relies mostly on matrix-vector products. In practice, we found
that k = 4 or 5 is sufficient to yield an effective upper bound of o(H). Larger k values (e.g., k > 10)
are not necessary.

In the end we can see that the extra work associated with computing bounds for constructing
the Chebyshev polynomials is negligible. The major cost of filtering is in the three-term recurrences
in Algorithm 4.3, which involve matrix-vector products. The polynomial degree m is left as a free
parameter. Our experience indicates that an m between 8 and 20 is good enough to achieve overall fast
convergence in the SCF loop.

Algorithm 4.4 FEstimating an upper bound of o(H) by k-step Lanczos:

1. Generate a random vector v, set v «— v/||v||2;
2. Compute f = Hv; a= fTv; f— f—av; T(1,1)=q;
3. Do j =2 to min(k,10)

4 B= 11l

J vo = vy v f/B;

6

f=Hv; f—f—Buo;

7 a=flv; [ f-au

8. TG j—-1)=p TOU-Lj)=8 T0Jj)=q
9. End Do

10. Return ||T||2 + ||f|l2 as the upper bound.

5 Diagonalization in the first SCF iteration

Within CheFSI, the most expensive SCF step is the first one, as it involves a diagonalization in order
to compute a good initial subspace to be used for latter filtering. In principle, any effective eigenvalue
algorithms can be used. PARSEC originally had three diagonalization methods: DIAGLA, which is
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a preconditioned Davidson method [31, 35]; the symmetric eigensolver in ARPACK [34, 22]; and the
Thick-Restart Lanczos algorithm called TRLan [40, 41]. For systems of moderate sizes, Diagla works
well, and then becomes less competitive relative to ARPACK or TRLan for larger systems when a
large number of eigenvalues are required. TRLan is about twice as fast as the symmetric eigensolver
in ARPACK, because of its reduced need for re-orthogonalization. In [45], TRLan was used for the
diagonalization at the first SCF step.

For very large systems, memory can become a severe constraint. One has to use eigenvalue algo-
rithms with restart since out-of-core operations can be too slow. However, even with standard restart
methods such as ARPACK and TRLan, the memory demand can still surpass the capacity of some
supercomputers. For example, the Siggs1 H1gep cluster by TRLan or ARPACK would require more
memory than the largest memory allowed for a job at the Minnesota Supercomputing Institute in 2006.
Hence it is important to develop a diagonalization method that is less memory demanding but whose ef-
ficiency is comparable to ARPACK and TRLan. The Chebyshev-Davidson method [44, 43] is developed
with these two goals in mind.

It is generally accepted that for the implicit filtering in ARPACK and TRLan to work efficiently,
one needs to use a subspace with dimension about twice the number of wanted eigenvalues. This
leads to a relatively large demand in memory when the number of wanted eigenvalues is large. The
block Chebyshev-Davidson method discussed in [43] introduced an inner-outer restart technique. The
outer restart corresponds to a standard restart in which the subspace is truncated to a smaller dimen-
sion when the specified maximum subspace dimension is reached. The inner restart corresponds to a
standard restart restricted to an active subspace, it is performed when the active subspace dimension
exceeds a given integer act,,q,; which is much smaller than the specified maximum subspace dimension.
With inner-outer restart, the subspace used in Chebyshev-Davidson is about half the dimension of the
subspace required by ARPACK or TRLan.

We adapted the Chebyshev filters discussed in Section 4.2 into a Davidson-type eigenvalue algorithm.
Although no Ritz values are available from previous SCF steps to be used as lower bounds, the Rayleigh-
Ritz refinement step within a Davidson-type method can easily provide a suitable lower bound at each
iteration. The upper bound can again be estimated by Algorithm 4.4, and it is computed only once.
These two bounds are sufficient for constructing a filter at each Chebyshev-Davidson iteration. The
constructed filter magnifies the wanted lower end of the spectrum and dampens the unwanted higher
end, therefore the filtered block of vectors have strong components in the wanted eigensubspace, which
results in an efficiency that is comparable to that of ARPACK or TRLan. The main structure of
this Chebyshev-Davidson method is sketched in Algorithm 5.1, we refer interested readers to [43] for
algorithmic details.

The first step diagonalization by the block Chebyshev-Davidson method, together with the Chebyshev-
filtered subspace method (Algorithm 4.2), enabled us to perform SCF calculations for a class of large
systems, including the silicon cluster Siggs1 H1s6o for which over 19000 eigenvectors of a Hamiltonian
with dimension around 3 million were to be computed. These systems are practically infeasible with the
other three eigensolvers (ARPACK, TRLan and Diagla) in PARSEC, using the current supercomputer
resources available to us at the Minnesota Supercomputing Institute (MST).

6 Numerical Results

PARSEC has been applied to study a wide range of material systems (e.g. [1, 20, 10]). The focus of
this section is on large systems where relatively few numerical results exist because of the infeasibility of
eigenvector-based methods. We mention that [42] contains very interesting studies on clusters containing
up to 1100 silicon atoms, using the well-known efficient plane-wave DFT package VASP [19, 18]; however,
it is stated in [42] that a cluster with 1201 silicon atoms is “too computationally intensive”. As a
comparison, PARSEC using CheFSI, together with the currently developed symmetric operations of
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Algorithm 5.1 Structure outline of the block Chebyshev-Davidson method

1. Compute by, using Algorithm 4.4,
set biow, = median of the eigenvalues of T from Algorithm 4.4.
Make the given initial size-k block Vi orthonormal, set V = [V4].

2. | Vy ]| = Chebyshev_filter(Vi, m, biow, bup)-
3. Augment the basis V by Vy: V «— [V, V; |, make V orthonormal.
4. Inmer-restart if active subspace dimension exceeds a given integer actmqy-

5. Rayleigh-Ritz refinement: update matriz M s.t. M =VTHV;
do eigendecomposition of M: MY =Y D; wupdated basis V: V «—V Y.

6. Compute residual vectors, determine convergence;
perform deflation if some eigenpairs converge.

7. If all wanted eigenpairs converged, stop; else, adapt bjo,, = maz(diag(D)),
set Vi = [ the first k£ non-converged Ritz vectors in V |.

8. Outer-restart if size of 'V exceeds mazximum subspace dimension.

9. Continue from step 2.

real-space pseudopotential methods [37], can now routinely solve silicon clusters with five thousand
atoms.

The hardware used for the computations is the SGI Altix cluster at MSI, it consists 256 Intel Itanium
processors at CPU rates of 1.6 GHz, sharing 512 GB of memory (but a single job is allowed to request
at most 250 GB memory).

The goal of the computations is not to study the parallel scalability of PARSEC, but rather to
use PARSEC to do SCF calculation for large systems that were not studied before. Therefore we
do not use different processor numbers to solve the same problem. Scalability is studied in [35] for the
preconditioned Davidson method, we mentioned that the scalability of CheFSI is better than eigenvector-
based methods because of the reduced reorthogonalizations.

In the reported numerical results, the total_eV/atom is the total energy per atom in electron-volts,
this value can be used to assess accuracy of the final result; the #SCF is the iteration steps needed
to reach self-consistency; and the #MVp counts the number of matrix-vector products. Clearly #MVp
is not the only factor that determines CPU time, the orthogonalization cost can also be a significant
component.

For all of the reported results for CheFSI, the first step diagonalization used the Chebyshev-Davidson
method (Algorithm 5.1). In Tables 2-8, the 1st CPU denotes the CPU time spent on the first step
diagonalization by Chebyshev-Davidson; the total CPU counts the total CPU time spent to reach self-
consistency by CheFSI.

The first example (Table 1) is a relatively small silicon cluster Siso5Ha7g, which is used to compare
the performance of CheFSI with two eigenvector-based methods. All methods use the same symmetry
operations [37] in PARSEC.

For larger clusters Siari3Hges (Table 2) and Siggo1 Hi012 (Table 3), Diagla became too slow to be



method | #MVp | #SCF steps | total_eV/atom | CPU(secs)
CheFSI | 189755 11 -77.316873 542.43
TRLan | 149418 10 -77.316873 2755.49
Diagla | 493612 10 -77.316873 8751.24

Table 1:  Sis95H276, using 16 processors. The Hamiltonian dimension is 292584, where 1194 states
need to be computed at each SCF step. The first step diagonalization by Chebyshev-Davidson cost
79755 #MVp and 221.05 CPU seconds; so the total #MVp spent on CheFS in CheFSI is 110000.
The polynomial degree used is m = 17 for Chebyshev-Davidson and m = 8 for CheFS. The fist step
diagonalization by TRLan requires 14909 #MVp and 265.75 CPU seconds.

practical. However, we could still apply TRLan for the first step diagonalization for comparison, but we
did not iterate until self-consistency was reached since that would cost a significant amount of our CPU
quota. Note that with the problem size increasing, Chebyshev-Davidson compares more favorably over
TRLan. This is because we employed an additional trick in Chebyshev-Davidson, which corresponds to
allowing the last few eigenvectors not to converge to the required accuracy. The number of the non fully
converged eigenvectors is bounded above by act,,q;, Which is the maximum dimension of the active
subspace. Typically 30 < actime, < 300 for Hamiltonian size over a million where several thousand
eigenvectors are to be computed. The implementation of this trick is rather straightforward since it
corresponds to applying the CheFS method to the subspace spanned by the last few vectors in the basis
that have not converged to required accuracy.

dim. of H
1074080

#MVp
1400187

#SCF
14

1st CPU
7.83 hrs.

total CPU
19.56 hrs.

total_eV/atom
-86.16790

Nstate

5843

Table 2: Sior13Hgos, using 16 processors. m = 17 for Chebyshev-Davidson; m = 10 for CheFS. (First
step diagonalization by TRLan cost 8.65 hours, projecting it into a 14-steps SCF iteration cost around
121.1 hours.)

dim. of H
1472440

#SCF
12

1st CPU
18.63 hrs.

total CPU
38.17 hrs.

#MVp
1652243

total_eV/atom
-89.12338

Nstate

8511

Table 3: Sis001H1012, using 16 processors. m = 17 for Chebyshev-Davidson; m = 8 for CheFS. (First
step diagonalization by TRLan cost 34.99 hours, projecting it into a 12-steps SCF iteration cost around
419.88 hours.)

For even larger clusters Sigoa7 Hiz0s (Table 4) and Sigpa1 Hiseo (Table 5), it became impractical to
apply TRLan for the first step diagonalization because of too large memory requirements. For these
large systems, using an eigenvector-based method for each SCF step is clearly not feasible. We note that
the cost for the first step diagonalization by Chebyshev-Davidson is still rather high, it took close to 50%
of the total CPU. In comparison, the CheFS method (Algorithm 4.2) saves a significant amount of CPU
for SCF calculations over diagonalization-based methods, even if very efficient eigenvalue algorithms are
used.

Once the DFT problem, Eq. (1), is solved, we have access to several physical quantities. One of
them is the ionization potential (IP) of the nanocrystal, defined as the energy required to remove one
electron from the system. Numerically, we use a ASCF method: perform two separate calculations,
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dim. of H | nstate #MVp #SCF | total_eV/atom | 1st CPU | total CPU
2144432 12751 | 2682749 14 -91.34809 45.11 hrs. | 101.02 hrs.

Table 4: Sigoa7H1308, using 32 processors. m = 17 for Chebyshev-Davidson; m = 8 for CheFS.

dim. of H | ngate #MVp #SCF | total_eV/atom 1st CPU | total CPU
2992832 | 19015 | 4804488 18 -92.00412 102.12 hrs. | 294.36 hrs

Table 5: Sigps1 H1g60, using 48 processors. m = 17 for Chebyshev-Davidson; m = 8 for CheF'S.

14 ‘

12,7 »—x IP (ASCF) | |
++EA (ASCF)| |

10 B -Epomo ]

Energy (eV)

0 2 4 6 8
Cluster Diameter (nm)

Figure 2: Ionization potential (IP, crosses) and electron affinity (EA, “plus” signs) for various clusters
with diameters ranging from 0 nm (SiH4) to 7 nm (Sigos1H1s60). Squares denote the negative of the
highest occupied eigenvalue energy (Egono) of the neutral cluster. Diamonds denote the negative of
the lowest unoccupied eigenvalue energy (Eruao)-
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Figure 3: Density of states (DOS) of the cluster Sigoa1 Higeo (upper panel) compared with periodic
crystalline silicon (lower panel). As a consequence of the large size, the DOS of the Sigpa1 Higeo cluster
is very close to that of bulk silicon (the infinite-size limit).
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one for the neutral cluster and another for the ionized one, and observe the variation in total energy
between these calculations. Figure 2 shows the IP of several clusters, ranging from the smallest possible
(StHy) to Sigpa1 Hiseo. For comparison, we also show the eigenvalue of the highest occupied Kohn-Sham
orbital (Froamo). A known fact of DET-LDA is that the minus Egoaro energy is lower than the IP in
clusters [23], which is confirmed in Figure 2. In addition, the figure shows that the IP and —Egoao
approach each other in the limit of extremely large clusters.

Figure 2 also shows the electron affinity (EA) of the various clusters. The EA is defined as the energy
released by the system when one electron is added to it. Again, we calculate it by performing SCF cal-
culations for the neutral and the ionized systems (negatively charged instead of positively charged now).
In PARSEC, this sequence of SCF calculations can be done very easily by reusing previous information:
The initial diagonalization in the second SCF calculation is waived if we reuse eigenvectors and eigenval-
ues from a previous calculation as initial guesses for the ChebFSI method. Figure 2 shows that, as the
cluster grows in size, the EA approaches the negative of the lowest-unoccupied eigenvalue energy. This
implies that the ASCF method, if applied to bulk silicon, would predict energies for removal /addition
of electrons equal to the negative of the Kohn-Sham eigenvalues at the valence/conduction bands edges
respectively.

The properties of large silicon clusters are expected to be similar to the ones of bulk silicon, which
is equivalent to a nanocrystal of “infinite size”. Figure 3 shows that the density of states already
assumes a bulk-like profile in clusters with around ten thousand atoms. The presence of hydrogen
atoms on the surface is responsible for subtle features in the DOS at around -8 eV and -3 eV. Because
of the discreteness of eigenvalues in clusters, the DOS is calculated by adding up normalized Gaussian
distributions located at each calculated energy eigenvalue. In Figure 3, we used Gaussian functions with
dispersion of 0.05 eV. More details are discussed in [39].

We also applied PARSEC to some large iron clusters. Tables 6-8 contain three clusters with more
than 300 iron atoms. The number of states, ng;qte, is multiplied by two because spin effect is considered.
These metallic systems are well-known to be very difficult for DFT calculations, because of the “charge
sloshing” [25, 18]. The LDA approximation used to get exchange-correlation potential Vx¢ is also
known not to work well for iron atoms. However, PARSEC was able to reach self-consistency for these
large metallic clusters within reasonable time length. Physical significance of the computed data will
be discussed in [38]. It took more than 100 SCF steps to reach self-consistency, which is generally
considered too high for SCF calculations, but we observed (from calculations performed on smaller iron
clusters) that eigenvector-based methods also required a similar number of SCF steps to converge, thus
the slow convergence is associated with the difficulty of DFT for metallic systems. Without CheFS, and
under the same hardware conditions as listed in Tables 6-8, over 100 SCF steps using eigenvector-based
methods would have required months to complete for each of these clusters.

H size

Nstate

#MVp

#SCF

total_eV/atom

1st CPU

total CPU

2790688

1812 x 2

9377435

110

-795.18064

16.16 hrs.

112.44 hrs.

Table 6: Fesgz, using 16 processors. m = 20 for Chebyshev-Davidson; m = 19 for CheF'S.

H size

Nstate

#MVp

#SCF

total_eV/atom

1st CPU

total CPU

2985992

1956 x 2

10241385

119

-795.19898

11.62 hrs.

93.15 hrs.

Table 7: Fesag, using 24 processors. m = 20 for Chebyshev-Davidson; m = 19 for CheFS.
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H size Nstate #MVp #SCF | total_eV/atom | 1st CPU | total CPU
3262312 | 2160 x 2 | 12989799 | 146 -795.22329 16.55 hrs. | 140.68 hrs.

Table 8: Fesgp, using 24 processors. m = 20 for Chebyshev-Davidson; m = 17 for CheF'S.

7 Concluding Remarks

We developed and implemented the parallel CheFSI method for DFT SCF calculations. Within CheFSI,
only the first SCF step requires a true diagonalization, and we perform this step by the block Chebyshev-
Davidson method. No diagonalization is required after the first step; instead, Chebyshev filters are
adaptively constructed to filter the subspace from previous SCF steps so that the filtered subspace
progressively approximates the eigensubspace corresponding to occupied states of the final Hamiltonian.
The method can be viewed as a nonlinear subspace iteration method which combines the SCF iteration
and diagonalization, with the diagonalization simplified into a single step Chebyshev subspace filtering.
CheFSI significantly accelerates the SCF calculations, and this enabled us to perform a class of large
DFT calculations that were not feasible before by eigenvector-based methods. As an example of physical
applications, we discuss the energetics of silicon clusters containing up to several thousand atoms.
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